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Simple Summary: Cancer stem cells (CSCs) are known to be highly resistant to conventional
therapeutic approaches, such as chemotherapeutic drugs and radiation. Therefore, selectively targeting
CSCs with specific markers or signaling pathways can be an effective therapeutic strategy for treating
chemotherapy-resistant liver cancer. However, there is not enough information currently available to
make a conclusive statement regarding hepatic CSC-specific signaling pathways and biomarkers.
In present study, we provide an overview of the current knowledge on the specific surface markers
and critical signaling pathways of hepatic CSC.

Abstract: The first report of cancer stem cell (CSC) from Bruce et al. has demonstrated the relatively
rare population of stem-like cells in acute myeloid leukemia (AML). The discovery of leukemic CSCs
prompted further identification of CSCs in multiple types of solid tumor. Recently, extensive research
has attempted to identity CSCs in multiple types of solid tumors in the brain, colon, head and neck, liver,
and lung. Based on these studies, we hypothesize that the initiation and progression of most malignant
tumors rely largely on the CSC population. Recent studies indicated that stem cell-related markers
or signaling pathways, such as aldehyde dehydrogenase (ALDH), CD133, epithelial cell adhesion
molecule (EpCAM), Wnt/β-catenin signaling, and Notch signaling, contribute to the initiation and
progression of various liver cancer types. Importantly, CSCs are markedly resistant to conventional
therapeutic approaches and current targeted therapeutics. Therefore, it is believed that selectively
targeting specific markers and/or signaling pathways of hepatic CSCs is an effective therapeutic
strategy for treating chemotherapy-resistant liver cancer. Here, we provide an overview of the current
knowledge on the hepatic CSC hypothesis and discuss the specific surface markers and critical
signaling pathways involved in the development and maintenance of hepatic CSC subpopulations.
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1. Introduction

Liver cancer is the sixth most frequently diagnosed solid tumor worldwide in 2018 [1] and the third
leading cause of cancer-related deaths [2]. Cancer that begins in the liver is called primary liver cancer.
Hepatocellular carcinoma (HCC) represents the predominant histological subtype and accounts for
approximately 80% of all primary liver cancer patients [3]. Intrahepatic cholangiocarcinoma (ICC) is the
second most common primary liver cancer, representing approximately 20% of patients [4]. Both HCC
and ICC are extremely heterogeneous tumors at both the genetic and phenotypic level. A newly
defined mixed or combined hepatocellular carcinoma-cholangiocarcinoma (HCC-CC) characterized
by dual hepatocellular and biliary epithelial differentiation suggests the existence of bipotent hepatic
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stem/progenitor cells with both hepatocyte and cholangiocyte lineages [5]. Indeed, recent studies
indicate that HCC, ICC, and HCC-CC are highly heterogeneous in terms of their cellular and molecular
characteristics and contain a small subset of self-renewing cells preferentially expressing various stem
cell markers [6–9].

Furthermore, several studies have shown that purified CD133+ cells from HCC cell lines have
higher proliferation potential and tumorigenic ability in animal models and exhibit stem cell-like
characteristics, including their ability to self-renew and differentiate into multiple cell lineages [10].
Moreover, a subset of ICCs expresses stem/progenitor cell-related markers, suggesting CSCs are a
possible cell source for ICC [11–14]. Thus, identifying and selectively targeting CSCs represents a feasible
therapeutic strategy for treating liver cancer regardless of the underlying cause. However, there is
not enough information currently available to make a conclusive statement regarding the cellular
origin of hepatocarcinogenesis, and additional characteristics related to hepatic CSC-specific signaling
pathways and markers remain to be elucidated.

2. The Origin of Cancer Stem Cells

Owing to the similarities between normal stem cells and CSCs for instance the capacity to
self-renew and multi-lineage differentiation [15], many recent investigations have sought to determine
whether CSCs arise from the dysregulated normal stem cells or more differentiated cells through
multiple mutations. The answer may largely depend on the specific types of cancers and malignant
phenotypes. The origin of CSCs is still under debate for the past few years [15,16]. Somatic stem cells
are able to divide indefinitely and differentiate into some or all cell types of the tissue or organ [17].
In fact, it has been postulated that CSCs might originate from cells with stem-like characteristics
or from normal stem cells by the accumulation of multiple mutations that render the stem cells
cancerous [18]. Leukemic stem cells share several properties with normal hematopoietic stem cells
(HSCs), supporting the stem-cell origin hypothesis [19,20]. Stem cells are usually characterized
by their ability to undergo unlimited self-renewing cell division. It is therefore reasonable to
hypothesize that these extended lifespan of a stem cells makes it a prime target for the multiple
mutations necessary for tumor progression [21]. However, this hypothesis probably demands high
mutation rates, because few somatic stem cells exist naturally in the adult tissues. Besides the stem-cell
origin hypothesis, recent publications have suggested that cancer cells can also derive from fully
differentiated (or “mature”) cells by undergoing de-differentiation to become more stem cell-like
characteristics [22,23]. In this hypothesis, tumorigenesis is initiated by oncogenic mutations in a
differentiated cell and subsequent acquisition of stem-cell-like features functions through a process
of de-differentiation. Probability, the more differentiated cells exist in adult tissues, the greater the
chance of mutations that can cause oncogenic transformation [24]. Surprisingly, the entire sequence of
tumorigenesis can be mediated by only few steps; Takahashi et al. have recently revealed that terminally
differentiated adult fibroblasts can be genetically “re-programmed” into induced pluripotent stem
(iPS) cells by introducing only four transcription factors (Myc, Oct4, Sox2, and Klf4) [25,26]. However,
currently there is not enough information available to make a conclusive statement regarding the
origin of CSCs, and further investigation is warranted.

3. Cancer Stem Cells: Implications for Hepatocarcinogenesis

3.1. Identification of CSCs in Various Types of Tumors

The majority of cells in bulk tumors have limited tumorigenic growth and self-renewal potential;
indeed, only a small population of tumor cells possess a marked self-renewal capacity, and differentiation
and the ability to generate new tumors [27]. These higher tumorigenic subpopulations are known
as CSCs holding a higher tumorigenic potential [28]. The CSC concept has been proposed to explain
the high degree of phenotypic and functional heterogeneity of cancer cells within a given tumor [21].
In the 1960s, Bruce et al. demonstrated that only small fractions (1–4%) of leukemic cells can form
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colonies in in vitro and initiate new tumors in recipient animals [29]. The identification of leukemic
CSCs prompted further studies to identify and isolate CSCs in various solid tumors. Extensive research
in the past few decades has identified CSCs in multiple solid tumors, including colon [30], brain [31],
lung [32], liver [33], and other cancers [34]. CSCs are generally defined by their distinct and specific
surface antigen expression [35–37] and by their capacity to generate spherical colonies from single cell
in suspension cultures [38]. Moreover, CSCs exhibit a higher resistance to standard chemotherapy [39]
and radiation therapy [40] through deregulated apoptosis and survival signaling. These drug-resistance
properties of CSCs suggest that the majority of standard therapeutic approaches can eliminate the
bulk tumor cells but may ultimately fail to obtain reliable clinical responses because conventional
treatments are not as effective at eliminating CSCs; thus, the remaining CSCs are able to re-initiate
tumor development in patients.

3.2. CSCs as a Novel Therapeutic Target

Despite some promising therapeutic outcomes, conventional therapeutic approaches against
tumors have many limitations that frequently lead to local recurrence with subsequent metastasis and
poor survival. The main reason for these cancer relapse and unsatisfactory long-term clinical responses
is resistance to conventional therapy. CSC-mediated multiple drug resistance has been observed
over the past half-century in various tumor types, including leukemia [41], colorectal [42], brain [43],
pancreatic [44], melanoma [45], breast [46], and cancers. Moreover, CSC-mediated radioresistance was
also observed in breast [47] and brain [48] cancers. Over the past years, many efforts have been devoted
to investigate the potential origin of hepatic CSCs. For instance, Tang et al. found that hepatic progenitor
cells can be transformed into tumor-initiating cells by transforming growth factor beta (TGFβ) and
interleukin-6 (IL-6)-related signaling pathways [49]. Consistently, Wu et al. also revealed that a small
subset of hepatic progenitor cells express tumor initiating cell markers during hepatocarcinogenesis
in both rat and human models, and they are transformed through miR216a and Akt-dependent
pathway [50]. Another study also investigated pathological characteristics of hepatic oval cells (HOCs)
and their potential roles during the progression of HCC [51]. Dumble et al. showed that HOCs were
involved carcinogenesis of HCC through p53 signaling pathway [52]. Likewise, c-myc expression
may promote the hepatocarcinogenesis of HOCs [53]. In addition, the infection of hepatitis B or C
virus (HBV or HCV) significantly increases the malignant transformation into HCC by approximately
15-to 20-fold compared with HCV-negative subjects [54]. HBV infection facilitates the expressions of
various CSCs-associated transcription factors (c-Myc, Klf4, Nanog, Oct4, and Sox2) and CSCs-related
genes (CD90, CD117, and CD133), and thus stimulates the self-renewal capacity of hepatocyte derived
cells [55]. Similarly, Wang et al. also found that the overexpression of hepatitis B virus X protein
enhances the stem-like properties and tumorigenic potential of OV positive liver CSCs by activating
the MDM2/CXCR4/OV6 signaling cascades [56]. In this context, the development of novel therapeutic
strategies that selectively eliminate CSCs and leave the normal and healthy cells largely unaffected is
urgently required. An improvement can potentially be achieved by the selective targeting of subtle
differences in surface antigens regulating their functions as well as alterations in signaling pathways
of CSCs. Since their identification in multiple solid tumors and leukemia, various CSC elimination
strategies selectively targeting CSC-specific surface markers and signaling pathways have been applied.
While most are still at the preclinical stage, currently, some of these strategies can successfully eliminate
CSCs and thereby prevent local recurrence with subsequent metastasis. The potential origin of hepatic
CSCs is summarized in Figure 1.

3.3. The Hepatic CSC Microenvironment

Hepatic cancer occurs more frequently in patients with chronic liver diseases due to the chronic
inflammatory response and continuous hepatocyte destruction/regeneration that occurs [57]. A variety
of physiological changes that take place during long-term liver regeneration and inflammation
can enhance both the initiation and promotion phases of hepatocarcinogenesis. These changes
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accelerate the accumulation of genome instability through genetic and epigenetic alterations,
expansion of resident hepatic stem/progenitor cell populations, and modification of the hepatic
microenvironment. Chronic liver diseases can also induce proliferation of hepatic stem/progenitor
cells [58]. Their recruitment, proliferation, and development are tightly regulated by various factors
transmitted from stem cell niches referred to as a specialized microenvironment [59]. The liver
microenvironment is drastically changed in chronic liver diseases to favor tumors, including increased
expansion of hepatic progenitor cells and endothelial progenitor cells, hepatic infiltration by
lymphocytes, and the activation of hepatic stellate cells. During chronic liver diseases, hepatic stellate
cells are activated and proliferate, which results in scar formation and fibrosis with excessive extracellular
matrix (ECM) deposition [60]. These dynamic physiological conditions can cooperatively affect liver
tumorigenesis by supporting hepatic CSC development. For instance, compared with normal fibroblasts,
cancer-associated fibroblasts (CAFs) have enhanced self-renewal capacity and increased secretion of
various growth factors, such as CXCL12, hepatocyte growth factor (HGF), platelet-derived growth
factor (PDGF), and vascular endothelial growth factor (VEGF), which can promote tumorigenesis [61].
Multiple growth factors or cytokines secreted by endothelial cells (ECs) and CSCs in the tumor
microenvironment can promote the transformation of normal fibroblasts into CAFs [62]. Subsequently,
transformed CAFs can stimulate the stem-like properties of hepatic CSCs by modulating autophagy [63].
Similarly, myofibroblast activation releases several growth factors and cytokines that may result in
sustained tumor progression [64]. Mesenchymal stem cells (MSCs) have been implicated in promoting
cancer cell growth, invasion/metastasis, vasculogenesis, and immunosuppression within tumor
microenvironment for the restoration of cancer stem cells [65,66] by secreting various growth factors,
cytokines, chemokines, and ECM components [67]. Indeed, Mi et al. found that considerable amount
of IL-6 was secreted by MSCs and subsequently promoted human HCC invasion by activating
IL-6/STAT3 signaling pathway [68]. In addition, the tumor microenvironment is characterized by chronic
inflammatory conditions, which can promote tumor cell growth, survival, invasion, and metastasis [69].
Lymphocytic infiltration can cause the release of inflammatory molecules and the formation of oxygen
free radicals, which results in DNA damage and other stresses that can stimulate tumor growth [70].Cancers 2020, 12, x 4 of 28 
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Figure 1. Schematic diagram summarizing the potential origin of hepatic cancer stem cells (CSCs).
Hepatic progenitor cells can be transformed into tumor-initiating cells by activation of transforming
growth factor beta (TGFβ)/interleukin-6 (IL-6)-related signaling and miR216a/Akt-dependent signaling
pathways. Hepatic oval cells (HOCs) were involved carcinogenesis of hepatocellular carcinoma (HCC)
through p53 and c-myc related signaling pathways. In addition, the infection of hepatitis B or C
virus (HBV or HCV) significantly increases the malignant transformation into HCC by enhancing
the expressions of CSCs-associated transcription factors or activating MDM2/CXCR4/OV6 signaling
cascades. “↑” means increase.
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3.4. The Effect of Chemotherapy/Radiotherapy on Hepatic CSCs

CSCs have been known to exhibit various genetic and/or epigenetic alternations that are associated
with the resistance to classical therapeutic strategies, such as chemotherapy and radiotherapy [71].
These various alternations include dysregulation of ATP-binding cassette (ABC) membrane transporters,
cell cycle arrest (quiescent state), enhanced DNA repair efficiency, and high resistance to anticancer
drug-induced apoptosis [72]. Radiation and many types of chemotherapeutic agents exert their
anticancer effects by inducing DNA damage to cancer cells; thus, it seems reasonable to hypothesize
that the resistance of CSCs to classical therapeutic approaches may be due to the increased expression
of DNA repair-related genes, such as BRCA1 and RAD51 [73]. One of the most potent regulators
of CSC resistance to DNA damaging chemotherapeutic drugs is DNA damage checkpoint protein
kinases (CHKs), which are activated by genotoxic stress and delay the cell cycle progression to
facilitate DNA repair [74]. Lee et al. found that depletion of 14-3-3ζ, which regulates cell cycle,
differentiation, and apoptosis, increases the sensitivity to radiation therapy in CD133+ Huh7 liver
cancer stem cells [75]. Ma et al. reported that CD133+ hepatic CSCs exhibit greater chemoresistance
than CD133− subpopulation by activating well-known pro-survival Akt/PKB and anti-apoptotic
Bcl-2 signaling pathways [76]. Another important regulator of the DNA repair systems against both
endogenous and exogenous sources of DNA damage in stem cells is ATP-binding cassette transporters
(ABC transporters), which can selectively extrude various toxic substrates, leading to multidrug
resistance (MDR) [77]. Indeed, Fung et al. found that enhanced expression levels of ABC transporters
significantly promote chemoresistance, epithelial–mesenchymal transition (EMT) and cancer stemness
in HCC model [78]. PI3K/Akt, which is one of the most potent prosurvival signaling pathways,
contributes to the maintenance and survival and also triggers endogenous drug resistance in CSCs [79].
Indeed, Kahraman et al. showed PI3K/Akt/mTOR pathway-mediated resistance to Rapamycin to
Sorafenib cotreatment in CD133+/EpCAM+ hepetic CSCs [80]. Tumor necrosis factor (TNF)-related
apoptosis-inducing ligand (TRAIL) plays an important role in cancer therapy by inducing selective
apoptosis of cancer cells while having little effect on the normal cells [81]. Zhu et al. reveal that TRAIL
mediates drug resistance in various hepatic CSC models (PLC, HepG2 and Huh7 LC cells) through
PI3K/Akt/Bad signaling cascades [82]. Another promising target molecular to induce apoptosis in CSCs
is nuclear factor kappa B (NFκB), which is known as an antiapoptotic signal transcription factor, can be
activated by various chemodrugs including sorafenib [83]. Zou et al. showed that sorafenib-induced
NF-κB activation contributes to the enhanced resistance to sorafenib in CD133-positive sphere-forming
hepatic CSCs [84]. The multidrug resistance mechanisms of hepatic CSCs are summarized in Figure 2.Cancers 2020, 12, x 6 of 28 
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CSCs have been known to exhibit various genetic and/or epigenetic alternations, which are related to
the resistance to classical therapeutic strategies, such as chemotherapy and radiotherapy. These various
alternations include dysregulation of ATP-binding cassette (ABC) membrane transporters, cell cycle
arrest (quiescent state), enhanced DNA repair efficiency, and high resistance to anticancer drug-induced
apoptosis. “↑” means increase; “↓” means decrease.
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4. Surface Marker-Based Therapies

4.1. Aldehyde Dehydrogenase (ALDHs)

Aldehyde dehydrogenases (ALDHs) are a superfamily of oxidizing enzymes that catalyze the
oxidation (dehydrogenation) of various aldehyde derivatives. These proteins were first described as
enzymes conferring resistance against cyclophosphamide in in stem cells and cancer [85]. In cancer
cells, ALDH functions as a retinal dehydrogenase (RALDH) that is involved in a metabolic process of
converting retinol (also known as vitamin A) into active ligand retinoic acid (RA) [86]. Retinoic acids
are known to play many roles in the regulation of major embryonic growth and patterning decisions.
ALDHs are highly expressed in primitive hematopoietic progenitors and multipotent neuronal stem
cells [85]. Recent studies have demonstrated that ALDHhigh cancer cells enhanced tumorigenic capacity
and chemotherapeutic drug resistance in various types of cancer [87]. Indeed, a subpopulation of
cells with high ALDH activity has been observed in the highly tumorigenic colon CSCs with a
stem-like EpCAMhigh/CD44+ phenotype [88]. Moreover, high ALDH activity in breast CSCs correlates
with more aggressive tumor behavior as well as chemoresistance, and thus may be used as a poor
clinical outcome [89]. Ma et al. have found that ALDH-positive cells highly expressed primitive
cell surface marker CD133 and ALDH could be used as a positive marker for tumorigenic HCC
CSCs [90]. Ma et al. discovered in their purified subpopulations that CD133+ALDH+ cells are more
tumorigenic than CD133+ALDH− cells when grafted to mice [90]. In this context, it is reasonable to
assume that ALDH may serve as a novel marker of poor prognosis and potential therapeutic target for
the treatment of hepatocellular carcinoma [91]. Silencing snail expression significantly inhibits ALDH1
expression and subsequently suppresses stem-like properties and in vivo tumorigenic activities of
CD44+CD24−ALDH1+ cells [92].

4.2. EpCAM

Epithelial cell adhesion molecule (EpCAM, CD326) is a transmembrane glycoprotein that mediates
Ca-independent cell–cell adhesion in epithelial cells [93]. EpCAM was originally identified as a
cell–cell adhesion molecule [94,95]; however, it is a new type of cell adhesion molecule (CAM) that
does not structurally resemble any of the four major adhesion molecule families (cadherins, CAMs,
integrins, and selectins). EpCAM was initially described as a dominant tumor-associated antigen in
colon cancer cells [96] and is involved in the maintenance of stem-cell phenotypes [97] and malignant
tumor characteristics [98]. Recently, a number of researchers have focused on the regulatory role of
EpCAM in hepatic carcinogenesis [99–101]. Following a microarray analysis on hepatic tumor tissue
samples, EpCAM+ subpopulations exhibited significantly high levels of stem cell-related markers [98].
Moreover, EpCAM+ subpopulations were more tumorigenic than their EpCAM− counterparts in
nude mice [102]. These data suggest that EpCAM could be a potential target for the diagnosis and
therapy of hepatic cancers. Yamashita et al. demonstrated that activation of the Wnt/β-catenin signaling
pathway stimulates EpCAM expression which, in turn, negatively affects the prognosis of HCC
patients [103,104]. Wang et al. [105] and Arzumanyan et al. [106] demonstrated that hepatitis B antigen
HBx promotes the self-renewal and tumorigenicity of EpCAM+ hepatic progenitor cells by stimulating
β-catenin signaling and miR-181 expression. Ji et al. also demonstrates that aberrant expression of
long noncoding RNA, LINC00152 increases EpCAM expression, resulting in enhanced growth of HCC
both in vitro and in vivo by promoting Akt/mTOR signaling cascade [107].

4.3. Side Population

Stem cells with relatively high expression of ATP-binding cassette (ABC) transporter superfamily
members show resistance against the absorption of unrelated (toxic) substances by pumping these
compounds across cell membranes [108]. This action results in a low Hoechst 33342 side population
(SP) [109]. In 2006, Chiba et al. successfully used Hoechst dye 33342-effluxing SP cells to identify
hepatic cancer cells with stem-like properties in HCC [110]. Among the four HCC cell lines analyzed,
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SP fractions were detected in two cell lines as a minority population consisting of approximately less
than 1% of the total cell population. This subset of cells was characterized with a higher tumorigenic
potential when compared with non-SP counterparts. Importantly, tumor formation occurred following
the injection of as few as 1 × 103 SP-derived cells in NOD/SCID mice, and a high tumorigenic rate was
maintained indefinitely upon serial transplantation in vivo; in contrast, as many as 1 × 106 non-SP cells
were not sufficient to initiate measurable tumor formation [110]. The relevance of the SP phenotype for
tumorigenic potential and as a potential marker of CSCs suggests an urgent need for the development
of effective SP-targeted therapeutic strategies for the treatment of liver cancer. Hu et al. discovered
that Akt signaling was able to enhance the efflux activity of side population (SP) cells via altering
the subcellular localization and distribution of ABC transporter (known to confer drug resistance)
in HCC cell line MHCC-97L [111]. Moreover, Park et al. demonstrated that IL-8 increased drug
resistance through SP enrichment as well as enhanced multidrug resistance 1 (MDR-1) expression [112].
Chiba et al. described an important regulatory role for BMI1 in the self-renewal ability and enrichment
of tumorigenic stem-like SP cells in HCC. They suggested that BMI1 might be a potential therapeutic
target for the elimination of tumor-initiating SP fractions in HCC [113].

4.4. CD44

CD44 is a single-chain transmembrane receptor for hyaluronic acid (HA) and has also recently
been recognized as a marker for CSCs from various solid tumors, including gastric [114], bladder [115],
pancreatic [37], cervical [116], lung [117], colon [118], ovarian [119], breast [120], and prostate
cancers [121]. In hepatic cancers, CD44 has been extensively used in combination with other
putative surface markers to isolate CSCs from tumors. Interestingly, CD44+/CD90+ cells [122] and
CD44+/CD133+ [123] cells isolated from human HCC present a more aggressive phenotype than either
CD133 positive or CD90 positive cells alone. Lee et al. revealed that CD44+ subpopulations higher
self-renewal and circulating capacities than CD44− compartment in a graft model [124]. In addition,
CD133+ subpopulations preferentially expressed CD44 in four hepatic cancer cell lines, including
Huh7, MHCC-97L, MHCC-LM3, and SMMC-7721. CD44+/CD133+ subpopulations exhibited high
levels of stem cell-related markers and possessed a higher chemoresistance potential when compared
to their CD44−/CD133+ counterparts [125]. CD44 down-regulation strongly suppressed tumor cell
growth in vivo, increased apoptosis, and reduced chemoresistance in hepatic CSC subpopulations
when compared with the control group [126]. Hence, there is an urgent need for developing potentially
effective CD44-targeted therapeutic strategies. Cytoplasmic domains of CD44 can interact directly
with various intracellular signaling molecules, including Src family kinases, GTPases, and adhesion
molecules that regulate cell–cell interaction and motility [127,128]. CD44 interaction with HA can
promote the growth, survival, migration, and invasion of cancer cells [129]. The binding of HA to
CD44 promotes tumor cell growth in vivo by stimulating PI3K/Akt signaling pathway, which is known
to stimulate cell survival [130]. Furthermore, CD44 also interact with various receptor tyrosine kinases
(RTKs) [131], whose ligation has been implicated in cellular epithelial–mesenchymal transition (EMT)
and metastasis [132]. CD44 variant isoform CD44v6 is involved in HCC cell growth by interacting with
c-Met to stimulate RAS/MAPK signaling cascade [133]. Furthermore, its relationship with metastasis
seems to be related to its role in the EMT [134,135].

4.5. CD90

Various CD markers have been served to identify CSCs in various HCC cell lines and primary
clinical samples. CD90 (Thy-1) is a 25–37 kDa glycosyl phosphatidylinositol (GPI)-anchored membrane
protein expressed mainly in leukocytes including hematopoietic stem and progenitor cells [136].
This glycoprotein is required for cell adhesion within a tissue. Recent studies demonstrated that
the CD90+ cells showed a significant higher tumorigenic and metastatic potential than CD90−

counterparts when grafted to mice [137,138]. CD45−/CD90+ subpopulation derived from liver cancer
specimens were showed higher self-renewal and tumor initiating potential than CD45−/CD90−
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compartments [139,140]. Therefore, CD90 may also serve as a novel marker of poor prognosis and
potential therapeutic target for the treatment of hepatocellular carcinoma. Yamashita et al. demonstrated
that CD90 affects cell migration and invasiveness of EpCAM+ cells through the activation of TGF-β
signaling pathway, whereas imatinib mesylate decreased CD90-induced cell migration of EpCAM+

cells by suppressing TGF-β expression [141]. Chen et al. also revealed that CD90 signal transduction
through integrin-mTOR/AMPK-CD133 cascade is an important contributor to liver tumorigenesis [138].
Moreover, they also showed that inhibition CD90-mediated signaling pathway with a small-molecule
agent OSU-CG5 significantly reduced the CD90+ cells in and subsequently repressed the liver
cancer growth [138].

4.6. CD133

CD133 (also known as prominin-1) is a trans-membrane glycoprotein and an important cell surface
marker for stem/progenitor cells in various types of tissue [142]. CD133-positive subpopulations of HCC
cells were first reported as a potential CSC marker by Suetsugu et al. [143]. These authors found that the
CD133-positive subpopulation showed a distinct high tumorigenicity in an immunodeficiency mouse
xenograft model and lower levels of mature hepatocyte-specific markers, such as cytochrome P450 and
glutamine synthetase (GS), when compared with CD133-negative counterparts [143]. Furthermore,
Zhang et al. found that enhanced cytoplasmic CD133 expression is correlated with poor prognosis
HCC patients [144]. Interestingly, normal stem/progenitor cells and CSCs share many features,
including the capacity to self-renew and differentiate into multiple cell types [145]. A 70% partial
hepatectomy (PHx) model in rodents has been widely used to study the precise regulatory mechanisms
of self-renewal and differentiation in CSCs during tumor development that may also be related to
liver homeostasis and regeneration. CD133 is significantly upregulated during early liver restoration
following a strong regenerative stimulus, such as a 70% hepatectomy [146,147]. CD133 expression
was significantly higher in a self-renewing subpopulation of human liver cancer cells, and it was
absent in fully differentiated normal hepatocytes. Subsequent studies on CD133 expression in various
human liver cell lines found the in vivo tumorigenic potential of these cells to positively correlate
with CD133 expression [148]. Following a quantitative analysis of 41 HCC tissue specimens, Ma et al.
found that CD133-positive cells were detected at low quantities in HCC (1.3–13.6% of the cells in
the bulk tumor) [149], and Chen et al. also revealed that their presence negatively correlated with
overall survival and recurrence rates [150]. The clinical significance of relative CD133 expression
levels in HCC was similarly reported by Zhao et al. [123]. CD133 expressing stem-like HCC cell
population has increased resistance to conventional chemotherapeutic agents by stimulating Akt
signaling pathway [151]. Interestingly, Ma et al. demonstrated that miR-130b promotes CD133-positive
tumor-initiating HCC cell growth and self-renewal ability by suppressing tumor protein 53-induced
nuclear protein 1 (TP53INP1) expression [149]. Recently, Tang et al. provide in vitro and in vivo
evidence that IL-8/CXCR1 signaling axis plays an important role in the self-renewal and angiogenesis
in CD133 positive tumor-initiating HCC cells through the MAPK signaling pathway [152]. They also
demonstrated that IL-8 levels were highly increased in CD133 positive cells isolated from HCC cell lines
or clinical samples [152]. Additionally, Chen et al. demonstrate that the CD90-integrin-AMPK-CD133
signal cascade plays an important role in liver cancer [138]. These recent studies may lead to the
development of more effective options against various types of hepatic cancer with high affinity
and specificity.

5. Signaling Pathway-Based Therapies

5.1. Wnt/β-Catenin Signaling

The Wnt/β-catenin signaling is a highly conserved signaling pathway that regulates complex
developmental and physiologic processes, including growth, regeneration, and self-renewal [153].
Aberrant activation of Wnt/β-catenin signaling is observed in approximately 30% of all HCCs,
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further emphasizing the important role of this signaling during hepatocarcinogenesis [154].
Recent studies have suggested that the expression of β-catenin, a key mediator of Wnt/β-catenin
signaling, was significantly higher in HCC than its non-tumor counterparts [155]; in addition,
inhibition of Wnt1-mediated signaling produced greater antitumor effects when compared with control
groups [156]. Hepatoblastoma, a malignant embryonal tumor of the liver, was reported to be tightly
linked to excessive Wnt/β-catenin signaling [157]. Furthermore, the interaction of Wnt/β-catenin
signaling and CTNND1 markedly activates a specific gene transcriptional process that accelerates liver
cancer progression and metastasis [158]. The incidence of activating mutations in β-catenin in HCC is as
higher than p53 alterations [159]. Usually, aberrantly activated Wnt/β-catenin signaling can result in the
abnormal stabilization of positive modulators of Wnt/β-catenin such as β-catenin or loss-of-function
mutations in negative modulators of the signaling such as APC and Axin [160,161]. Consistently,
loss-of-function mutations of many positive or negative regulators of the signaling such as TP53, AXIN
(axis inhibition protein), and CTNNB1/β-catenin were observed in hepatocellular tumors [162,163].
Other well-known direct or indirect target genes of this signaling are CD44, C-Jun, Cyclin D1,
C-Myc, VEGF, and MMP-7 [164,165]. Moreover, its target genes in the liver include cytochrome
P450, EGFR, EpCAM, LECT2, glutamine synthetase, and SMP30 [166]. Moreover, Ji et al. found that
activation of activated Wnt/β-catenin signaling enriched the EpCAM+ subpopulation by increasing
the expression of four microRNA-181 family members [167]. These finding highlight the potential role
of dysregulated Wnt/β-catenin signaling in the maintenance of stem-cell phenotypes and malignant
liver cancer characteristics. In this context, various attempts have been made to develop various
pharmacological inhibitors of the Wnt/β-catenin signaling. These inhibitors may help to eliminate
hepatic CSC populations thought to be associated with multiple drug resistance, metastasis and
tumor relapse.

5.2. Transforming Growth Factor (TGF)-β Signaling

TGF-β signaling plays a critical role in liver regeneration, but exerts growth-promoting effects
in hepatic carcinogenesis via a number of effectors [168,169]. Importantly, HCC patients with raised
TGF-β levels in serum samples had shown significantly lower survival rates when compared with
patients who had normal TGF-β levels [170,171]. Increased levels of TGF-β are closely correlated with
more advanced and aggressive tumor stages in HCC patients [172,173]. TGF-β signaling induces an
EMT process in various types of liver cancer; however, the complex molecular mechanisms underlying
this process are not fully understood [174]. A loss-of-function mutation in ELF, a Smad4 adaptor protein,
was found to produce hepatocarcinogenesis through deregulated cell proliferation and promotion of
tumor angiogenesis [175]. These studies suggest that TGF-β signaling can be a potential prognostic
marker and therapeutic target in various types of hepatic cancer. The TGF-β signaling is comprised of
three ligands (TGF-β1, TGF-β2, and TGF-β3) with different ligand binding affinities and signaling
capabilities. TGF-β ligands bind to a single-pass transmembrane protein type II receptor, which in turn
recruits and phosphorylates a second transmembrane kinase type I receptor. Upon ligand binding, the
type I receptor phosphorylates the serine residue of the R-SMAD2/3 and results in ligand-induced
transcription of various target genes [176,177]. SMAD7 is required for the down-regulation of TGF-β
signaling by antagonizing activation of R-Smads [178]. Interestingly, TGF-β1 is known to promote
the migration and EMT in HCC cells by enhancing snail expression and suppressing E-cadherin
expression [179]. This process also seem to be affected by other ECM components by activating
KAK-mediated Akt and ERK1/2 signaling [180].

5.3. Notch Signaling

The Notch signaling is a highly conserved signaling pathway that regulates complex developmental
and physiologic processes, such as cell fate decisions and tissue pattern formations [181]. This signaling
is also involved in the regulation of stem cell differentiation and maintenance [182,183]. Notch signaling
activation occurs via an interaction between four Notch receptors (Notch 1–4) and five canonical
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ligands (Jag1, Jag2, Dll1, Dll3, and Dll4) [184,185]. It has been shown that Notch 1 and 2 share a similar
basic structure and are ubiquitously expressed in a wide variety of tissues and cells types at varying
levels [186,187]. In contrast, the expressions of Notch 3 and 4 are restricted to a more limited range of
tissues and cell types, such as smooth muscle cells and vascular endothelial cells [188,189]. While the
oncogenic functions of Notch signaling have been demonstrated in many human tumor types, its
potential roles in the maintenance of CSCs have recently been identified in several solid tumors.
Recent studies have suggested that suppression of Notch signaling markedly reduced the self-renewal
potential and tumor-initiating capacity of colorectal CSCs [190]. Consistently, suppression of Notch
signaling led to a greater decrease of the stem cells-like properties of and increased cellular sensitivity
to ionizing radiation of glioblastoma-derived CSCs [191]. Aberrantly elevated Notch signaling is
observed in CD133+ cells when compared with CD133− compartments in HepG2 cell line [192].
Moreover, aberrant expression of Notch 3 and the notch ligand Jagged were recently observed in
HCC [193,194]. Collectively, Notch signaling is as an important prognostic marker and could be used as
a potential therapeutic target for hepatic cancers. Villanueva et al. have found that activation of Notch
signaling may stimulate the HCC tumor formation in mice through direct activation of insulin-like
growth factor 2 (IGF2) promotors [195]. They also revealed significantly enhanced expression of Notch
signaling target genes such as Sox9, Hes1/2, Nrarp, and Spp1 in HCC compared them with four
non-tumorigenic livers [195]. Moreover, Notch signaling target genes (e.g., DNASE1, CDK1, and
CCND1/2) that are involved in cell cycle regulation were also significantly increased in HCC tissues
as compared with non-cancerous liver tissue [195]. Zhou, et al. found that Notch signaling pathway
inhibitor DAPT could suppress invasion of HCC cells via the ERK1/2 signaling pathways, resulting in
the downregulation of MMP-2/9 and VEGF expressions [196].

5.4. Hedgehog Signaling

The Hedgehog (Hh), secreted glycoproteins, was first identified as a critical mediator of
precise pattern formation during embryo development, and it is also involved in the regulation
of growth, cell migration, and differentiation [197–199]. In mammals, Hh signaling is comprise of
three known ligands, Sonic hedgehog (Shh), Desert hedgehog (Dhh), and Indian hedgehog (Ihh) [200].
Inappropriate activation of the Hh signaling has been described in a variety of human cancers including
pancreatic, skin, and gastrointestinal cancers [201,202]. The Hh signaling cascade is initiated upon
binding of the Hh ligand to the PTCH receptor and subsequent inhibition of the smoothened (SMO) [203].
Several research groups reported that Hh signaling is aberrantly activated in HCC [204–206]. Cai et al.
demonstrated enhanced expression of Hh signaling components (PTCH1, Shh, Gli1) in liver cancer
tissues compared with non-cancer tissues; in addition, these expressions positively correlated with
tumor progression [206]. A recent study suggested that HCC cells secrete Shh ligands to induce
glycolysis of adjacent glycolytic stromal cells, which consequently leads to the secretion of the lactate
that HCC cells use as a source of energy [207]. Another study reported that the hepatic expression and
activity of Hh ligands were significantly increased in all patients with chronic liver disease caused by
the hepatitis C virus or HCC [208]. In addition, Hh signaling inhibition with synthetic small molecules
reduces fibrosis [209]. Thus, hepatitis infections result in the increased production of Hh ligands and
activated Hh signaling in liver cells, which in turn promotes liver cirrhosis and hepatocarcinogenesis.
Consistently, aberrant activation of Hh target genes such as Gli1 and PTCH1 are observed in multiple
types of HCC, indicating that the Hh signaling is frequently activated in HCC [210,211]. Wang et al.
also demonstrated that suppression of Hh signaling significantly increased autophagy by up-regulating
of Bnip3 (a member of BH3- only subset of the Bcl-2 family), which in turn stimulates apoptosis in
various human HCC cell lines [212]. Patil et al. found that inhibiting the Hh pathway with GDC-0449,
an Hh signaling antagonist, suppressed liver fibrosis and hepatocarcinogenesis in a murine model of
primary liver cancer [209].
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5.5. BMI1 Signaling

BMI1, also known as polycomb group RING finger protein 4, is a highly conserved regulatory
factor throughout evolution [213]. BMI1 functions as an epigenetic regulator of gene expression and
is also known for its significant influence on embryonic development at different stages of life and
stem cell self-renewal and differentiation [214,215]. Recently, BMI1overexpression has been found
in various types of cancer and is associated with the poor overall survival of patients [216–218].
Consistently, BMI1 overexpression is highly correlated with malignant phenotypes and thereby causes
malignant transformation in HCC [219–221]. Aberrant BMI1 expression contributes to the maintenance
of CSC subpopulations in multiple types of cancer [34,222–224]. Additionally, BMI1 is involved in the
maintenance of the tumorigenic SP subpopulation in liver cancer [113]. BMI1 was first identified as
an oncogenic effector for the development of lymphocytic leukemia by suppressing c-Myc, which is
dysregulated in multiple cancer types, such as colon, lung and liver cancers [225–227]. The inhibition
of the Ink4a/Arf locus-specific binding of BMI1 reduced cell proliferation and increased senescence
of stem cells or CSCs [228,229]. BMI1 gene silencing in the HCC cells inhibited sphere formation
ability in vitro and tumorigenesis in vivo by blocking the cell cycle transition from the G0/G1 to the S
phase [230]. Xu et al. found that while activating BMI1 or RasV12 alone was insufficient to enhance
HCC development, over-expression of these two genes at the same time is suspected to promote
tumor formation in mice [231].This results suggested that BMI1 can cooperate with other oncogenes to
stimulate hepatocarcinogenesis in vitro and in vivo. Effendi et al. demonstrated that the suppression
of BMI1 expression was followed by a respective decrease in drug efflux protein ATP-binding cassette
transporter B1 (ABCB1) expression [232]. BMI1 signaling was highly activated in CD133+ liver CSCs
and plays an important role in the maintenance of liver hepatic stem/progenitor cells in mice [233].
Furthermore, BMI1 knockdown drastically reduced the number of SP cells, and the knockdown of BMI1
in SP cells significantly abolished their tumorigenicity in HCC [113,146,234]. Collectively, BMI1 may
be a potential target for the diagnosis and therapy of hepatic cancers. The potential roles of stem
cell-related markers or signaling pathways targeting hepatic cancer stem cells are summarized in
Figure 3.Cancers 2020, 12, x 12 of 28 
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6. Potential Clinical Application of Liver Cancer Stem Cells

6.1. Aspects of Diagnosis and Prognosis

Although great advances in diagnosis and therapeutic strategies for liver cancer have remarkably
enhanced the chances for successful treatment at early stages, 30–60% of patients relapse after
conventional therapy [235]. New diagnostic approaches selectively with specific hepatic CSC markers
are getting more attention for evaluating the tumor progression and therapeutic effects [7]. As previously
mentioned, CD133 expression is negatively correlated with overall survival and recurrence rates in
patients with HCC [144,236–238]. HCC patients with higher level of CD133 expression in primary
lesion have shorter 5-year survival times and higher relapse rates after surgical resection compared to
patients with lower CD133 expression [144,239]. The up-regulated expression levels of CD133 have also
been related to the ability to survive under hypoxia or malnutrition by performing autophagy [240].
HCC patients with higher level of CD133 expression have also shown poorer response to conventional
chemotherapeutic agent Sorafenib [241]. It has been shown that the CD90+ cells showed a significant
higher tumorigenic and metastatic potential than CD90− counterparts, suggesting its role as a
marker for metastatic liver cancer [242,243]. Consistent with these findings, CD90 also affects cell
migration and invasiveness of EpCAM+ hepatic CSCs through the activation of TGF-β signaling
pathway [141]. Thakolwiboon et al. also demonstrated a correlation positive between CD90 expression
levels and tumor progression in hepatocellular carcinoma [244]. Moreover, Lu et al. revealed that
HBV infection, one of the leading causes HCC, significantly increased CD90 expression and its high
expression was positively correlated with poor prognosis [245]. Therefore, CD90 may also serve as a
novel marker of poor prognosis and potential therapeutic target for the treatment of hepatocellular
carcinoma. CD44 expression is associated with metastatic phenotype [246] and CD44 variant isoform
CD44v6 is involved in HCC cell growth by interacting with c-Met to stimulate RAS/MAPK signaling
cascade [133]. Furthermore, its relationship with metastasis seems to be related to its role in the
EMT [247–249]. Interestingly, CD44+/CD90+ cells [243] and CD44+/CD133+ [125] cells isolated from
human HCC present a more aggressive phenotype than either CD133 positive or CD90 positive cells
alone. These double positive cells exhibited enhanced tumorigenicity and chemoresistance probably
via the increased expression of stemness-related genes [125]. Hence, CD44 may also serve as a novel
marker of poor prognosis and potential therapeutic target for the treatment of HCC. Taken together,
these studies suggest that the these characteristics of hepatic CSCs can be useful to predict tumor
progression and survival of patients with HCC, although further studies are warranted to fully elucidate
their impact on prognosis and treatment.

6.2. Liver CSCs-Targeted Therapy

CD133 is one of mostly defined and well-characterized hepatic CSC markers, thus,
many investigators have tried to develop therapeutic strategies targeting CD133+ cells. Smith et al.
demonstrated that CD133 antibody conjugated to a cytotoxic drug (monomethyl auristatin F)
significantly enhance the antitumor effects and reduce adverse systemic effects of potent cytotoxic
drugs in hepatocellular and gastric cancers [250]. Zhang et al. found inhibitory effects of transcription
factor Ikaros on the self-renewal capacity of CD133+ hepatic CSCs via direct binding to the CD133
P1 promoter and subsequent suppression CD133 expression [251]. Similarly, a murine anti-human
CD133 antibody (AC133) conjugated to a potent chemotherapeutic agent, monomethyl auristatin F
(MMAF), significantly reduced the self-renewal capacity of CD133+ hepatic CSCs and subsequently
delayed tumor formation in a SCID mouse model [250]. Blocking the Akt signaling pathway can
inhibit the growth of CD133-positive HCC cells and sensitize to chemotherapeutic drug 5-FU [76].
Zhang et al. demonstrated that all-trans retinoic acid (ATRA) could induce differentiation of EpCAM+

HCC CSCs to decrease their tumorigenic potential by reducing CSC-related markers and increasing
hepatocyte-specific genes. Consistent with this result, the efficacy of the combinational therapy of
cisplatin and ATRA was more prominent than either drug treatment alone [252]. Yamashita et al.
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found that Oncostatin M (OSM) resulted in the reduction of tumorigenic capacity by inducing the
differentiation of EpCAM+ hepatic CSCs. Moreover, the combinational therapy of 5-fluorouracil and
OSM synergistically suppressed HCC by targeting both CSCs and non-CSC cells [253]. The CD90/CD44
double positive cells exhibited more tumorigenic phenotypes than the CD90/CD44 double negative
counterpart [243]. Indeed, CD44 blockade with anti-CD44 antibody prevented the tumor formation and
metastasis of CD44-positive hepatic CSCs in vivo [243]. Currently, several EpCAM-blocking antibodies
are in clinical development, such as Adecatumumab (recombinant human IgG1 monoclonal antibody)
and Catumaxomab (trifunctional IgG2 antibody). In liver cells, RNA interference-based blockage of
EpCAM significantly inhibited the self-renewal and differentiation capacity of hepatic cancer stem-like
cells in vitro and in vivo [102]. Taken together, these findings suggested that therapeutic strategy that
focuses on targeting CSCs can be an alternative approach to overcome the limitations of traditional
liver cancer treatments. The potential effects of target therapy on hepatic CSCs are summarized in
Figure 4.Cancers 2020, 12, x 14 of 28 
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Figure 4. Schematic diagram summarizing the effect of target therapy on hepatic CSCs. CD133 antibody
conjugated to a cytotoxic drug (monomethyl auristatin F), transcription factor inhibitor Ikaros, and Akt
signaling inhibitor with 5-FU reduced the self-renewal capacity of CD133+ hepatic CSCs. All-trans
retinoic acid (ATRA) with cisplatin, Oncostatin M (OSM), EpCAM-blocking antibodies (Adecatumumab
and Catumaxomab), and EpCAM blocking RNA interference (RNAi) inhibited the self-renewal capacity
of CD133+ hepatic CSCs. In addition, anti-CD44 antibody prevented the tumor formation and metastasis
of CD44-positive hepatic CSCs.

7. Future Perspectives

Primary liver cancer consists predominantly of HCC and ICC. Liver CSCs may be the origin
of some HCCs and ICCs. This CSC hypothesis explains why only a minority of the cells from most
liver cancers with malignant phenotypes are clonogenic in vitro and in vivo. However, several critical
questions on liver cancer development remain to be addressed, including the origin of liver CSCs,
whether CSCs originate from normal stem cells or from more differentiated progenitor cells, the effect
of hepatitis virus infection, the functional involvement of the liver CSC niche, and the cause of
CSC emergence [254]. The most of the currently available knowledge about hepatic CSCs is largely
influenced by the basic biological features of normal stem cells such as distinct signaling pathways
and/or surface markers. In this context, targeting these common biological characteristics to eliminate
hepatic CSCs may reduce normal hepatic stem cells and subsequently prevent the normal liver
regeneration. Until now, it remains unclear whether HCC CSCs can be selectively depleted without
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unduly affecting normal and healthy liver stem cells. Therefore, further characteristics associated with
CSC-specific cell surface markers and signaling pathways need to be investigated.
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