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ABSTRACT Bigenic expression relationships are conventionally defined based onmetrics such as Pearson or
Spearman correlation that cannot typically detect latent, non-linear dependencies or require the relationship
to be monotonic. Further, the combination of intrinsic and extrinsic noise as well as embedded relationships
between sample sub-populations reduces the probability of extracting biologically relevant edges during the
construction of gene co-expression networks (GCNs). In this report, we address these problems via our
NetExtractor algorithm. NetExtractor examines all pairwise gene expression profiles first with Gaussian
mixture models (GMMs) to identify sample sub-populations followed by mutual information (MI) analysis that
is capable of detecting non-linear differential bigenic expression relationships. We applied NetExtractor to
brain tissue RNA profiles from the Genotype-Tissue Expression (GTEx) project to obtain a brain tissue specific
gene expression relationship network centered on cerebellar and cerebellar hemisphere enriched edges.We
leveraged the PsychENCODE pre-frontal cortex (PFC) gene regulatory network (GRN) to construct a
cerebellar cortex (cerebellar) GRN associated with transcriptionally active regions in cerebellar tissue. Thus,
we demonstrate the utility of our NetExtractor approach to detect biologically relevant and novel non-linear
binary gene relationships.
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Formulating gene co-expression networks (GCNs) or relevance
networks Butte et al. (2000) is a powerful method to understand
genetic relationships and explore biochemical mechanisms underly-
ing phenotypic expression. A GCN consists of genes represented as
nodes, where the relationships between genes, typically across a set of
ribonucleic acid (RNA) expression profiles, are edges. A GCN is
constructed from a gene expression matrix (GEM) where each edge is
weighted by a value of interaction or correlation between the

connected genes using a predefined metric. A threshold is then
calculated to determine if the edge weight is significant to be included
in the GCN. Eisen et al. (1998) developed the first reported GCN, and
since then a variety of software tools have been implemented such as
WGCNA Langfelder and Horvath (2008), CLR Faith et al. (2007),
MRNET Peng et al. (2005), RMTGeneNet Gibson et al. (2013), KINC
Ficklin et al. (2017), petal Petereit et al. (2016) and FastGCN Liang
et al. (2015) using various approaches for identifying co-expression
patterns.

Conventionally, GCNs leverage the Pearson or Spearman corre-
lation metric to generate the weight of the edges in the network. As
powerful as these techniques are to determine relationships between
genes, they are severely restrictive since they primarily discover linear
correlations and cannot detect non-linear or embedded relationships
or require the RNA expression profiles to be monotonic. Also, it has
been shown in previous works such as KINC Ficklin et al. (2017) and
EdgeScaping Husain and Feltus (2019), that existing patterns can be
masked by a combination of intrinsic and extrinsic noise, along with
the possibility of multiple relationships existing for each gene-gene
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edge based on sub-populations of tissue samples. Hence, in recent
years it can be observed that several new approaches at determining
non-linear relationships within gene expression analysis has been
explored. A common non-linear metric is mutual information (MI)
Davies (1978) that has been utilized in a variety of applications by
Roche et al. (2017), Barman and Kwon (2017), Pepke and Ver Steeg
(2017), Zhang et al. (2014), Chan et al. (2017), and Wang et al.
(2013).

In this report we aim to address the drawbacks of being limited
to the detection of linear bigenic relationships for GCN construc-
tion, as well as the presence of noisy correlated edges, with NetEx-
tractor. NetExtractor is a workflow that minimizes the problem of
extrinsic noise with the application of Gaussian mixture models
(GMMs), and explores non-linear latent relationships using the MI
metric. MI essentially predicts the dependence of one random
variable (RV) over another RV and this dependence is not restricted
to linearity between gene expression relationships. It can also
identify correlations in differential expressions in RNA-seq data
within gene edges.

As a case study we apply NetExtractor to a GEM derived from
brain tissue RNA expression profiles obtained from the Genotype-
Tissue Expression (GTEx) project Lonsdale et al. (2013) where we
extracted differential bigenic expression patterns in different brain
tissue samples that were not detected with conventional correlation
metrics. Applying MI over the GMMs permits us to explore novel
non-linear relationships within sub-populations of samples. Leverag-
ing these newly discovered gene-gene relationships as novel brain
edges using NetExtractor along with the extensive brain gene regu-
latory networks (GRN) described by the PsychENCODE project

Wang et al. (2018), we elucidate a GRN uniquely associated with
cerebellar cortex (cerebellar) tissue gene expression.

MATERIALS AND METHODS
In this sectionwe outline theNetExtractor workflowdepicted in Figure 1,
modules A-D. Source code for NetExtractor algorithm (Modules
A-D) is available under the MIT license at https://github.com/
bhusain/NetExtractor.git. Figure 1 modules E-G represent NetEx-
tractor validation which is discussed in detail within the Result
section.

Gene Expression Matrix (GEM) normalization
Before applying the NetExtractor workflow to an RNAseq GEM, it is
imperative to normalize the GEM. A parallel code was implemented
on the Palmetto supercomputer at Clemson University for applying
the following transformations:

Replace missing expression values for samples with ‘NA’.
Apply element-wise log2 transformation.
Identify and remove outlier samples using the K-S test (D , 0.15).

Lopes et al. (2007)
Apply quantile normalization to ensure suitable comparison between

samples. Rapaport et al. (2013)

We began with the panGTEx GEM Lonsdale et al. (2013) com-
prising of 56,202 genes along with 53 types of tissues being repre-
sented with 11,688 samples depicted by Figure 2. A similar
normalization process was applied to the panTCGA GEM
Hoadley et al. (2018) which contained 60,101 gene names along
with 33 types of cancer being represented with 11,093 tissue samples.

Figure 1 NetExtractor workflow and validation. Key stages of the algorithm are depicted by modules A-D. Modules E-G represent stages involved
in the application and validation of NetExtractor using brain tissue RNA profiles from the Genotype-Tissue Expression (GTEx) project.
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The K-S test eliminated a total of 328 outliers for panGTEx and
102 outliers in panTCGA GEMs.

Using the normalized panGTEx GEM, brain specific tissue sam-
ples were extracted into a brainGTEX GEM that consisted of 56,202
genes and 1,670 samples representing 13 brain tissue types [Amygdala,
Anterior cingulate cortex(BA24), Caudate(basal ganglia), Cerebellar
Hemisphere, Cerebellum, Cortex, Frontal Cortex(BA9), Hippocampus,
Hypothalamus, Nucleus accumbens(basal ganglia), Putamen(basal
ganglia), Substantia nigra, Spinal cord(cervical c-1)] as depicted by
Module A in Figure 1. Hence, the total number of possible edges for
56,202 genes to calculate the correlation weight is 1,579,304,301
edges as represented in Module B.

NetExtractor workflow
In previous work, the KINC algorithm Ficklin et al. (2017) demon-
strated the utility of using GMMs to sort expression states and
address the problem of natural extrinsic (condition-specific) variation
during GCN construction from mixed input expression conditions.
The study illustrated that in gene-gene pairs with more than one
condition-specific binary expression mode, the application of the
Pearson or Spearman correlation metrics on the collective set of
samples can be inappropriate to determine the true correlation value
for a potential edge. Although utilization of GMMs in KINC shows
promising results, a major drawback still persists where even within
each mode only linear or monotonic relationships can be identified.
In this study, we embrace the presence of multiple expression modes
in a pairwise gene comparison as representative of condition-specific,
possibly non-linear binary gene expression relationships. As with
KINC, we identify multiple expression modes using GMMs. How-
ever, we replace correlation metrics with MI to detect non-linear
relationships between gene pairs. Before we elaborate on the specifics
on the implementation we give a brief overview of the background of
the metrics utilized by NetExtractor.

Gaussian Mixture Models (GMMs) GMMs is a probabilistic
model that assumes all the data points are generated from a mixture
of a finite number of Gaussian distributions with unknown parameters

that incorporates information about the covariance structure of the
data as well as the centers of the latent Gaussians. We utilized the
python Scikit-learn ’sklearn.mixture.BayesianGaussianMixture’ Buitinck
et al. (2013) implementation that differentiates into multiple classes
to estimate GMMs that correspond to different estimation strategies.
The Scikit-learn package implements the expectation-maximization
(EM) algorithm for fitting mixture-of-Gaussian models. In the NetEx-
tractor algorithm workflow, we applied GMMs to 1,579,304,301
possible brainGTEX edges to obtain clusters between 1-5 modes per
edge using the variational Bayesian estimation of a Gaussian
mixture. In our algorithm in order to investigate differential ex-
pression values we restricted our results to edges that contained 2 or
more sub-population modes.

Mutual Information (MI) MI is a measure of the similarity
between two RVs, where jUij is the number of the samples in cluster
Uj and

��Vj

�� is the number of the samples in cluster Vj. The MI
between clusterings U and V is given as:

MIðU;VÞ ¼
XjUj

i¼1

XjV j

j¼1

��Ui \ Vj
��

N
log

N
��Ui \ Vj

��
jUijjVij

We utilize the the python Scikit-learn package to calculate the nor-
malized MI score to scale the results between 0 (no mutual informa-
tion) and 1 (perfect correlation). In NetExtractor, MI was calculated for
all the gene pairs as well as for each individual sub-population modes
per edge. The final value of MI assigned per edge is the average of the
MI values for all individual GMM sub-population modes.

Mean Silhouette Coefficient (S) Mean Silhouette Coefficient
Rousseeuw (1987) is calculated using the mean intra-cluster distance
a and themean nearest-cluster distance b for each sample. The Silhouette
Coefficient for a sample is then calculated as ðb2 aÞ=maxða; bÞ.
Essentially, b is the distance between a sample and the nearest cluster
that the sample is not a part of. We utilize the ’sklearn.metrics.sil-
houettescore’ to calculate inter-cluster score between the different
modes per edge. The best value is 1 and the worst value is -1. Values
near 0 indicate overlapping clusters. Negative values generally

Figure 2 Normalization of panGTEx gene expression matrix. Sample distributions for panGTEx gene expression matrix before and after
normalization.
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indicate that a sample has been assigned to the wrong cluster, as a
different cluster is more similar.

MI based inter-cluster score thresholding
As depicted in Figure 1, we apply GMMs on the edge list which is then
followed by calculating the MI for each sub-population mode and
subsequently we calculate the inter-cluster score (S) for each gene-
gene edge. As with other conventional methods we select two
thresholds to restrict the edge that gets included in our GCN. The
first threshold to be selected is the MI value that would entail the
cutoff for the edge to be included within the GCN. For this purpose
we randomly selected 5 million edges (experiment performed X
10 times) and plot the average of MI value distribution as depicted
in Figure 3.We then select a value of thresholdMI . ¼0.95 based on
the observation that an exponential rise in MI can be noticed. It is
essential to note since MI is a non-linear relationship metric that
relies on the predictability of one RV based on the information of the
second RV, it is to be expected for a large number of edges to contain
high MI values. Basing NetExtractor solely on MI would result in a
fairly large GCN but since we restrict edges that contain only two or
more GMM sub-populations we further prune the network to
195,850 edges as shown by Module C in Figure 1. In order to restrict
edges with differential expressions we ensured the GMM clusters are
mutually exclusive and do not overlap in a significant manner. To this
end we calculated the inter-cluster loss using the Mean Silhouette
Coefficient (S) on the 195,850 edges and restrict the score to a
threshold . ¼ 0.75. This threshold was selected specifically to
ensure that the overlap of the number of samples between the
GMM sub-populations did not exceed twice the variance per sub-
population. This resulted in a final edge list of 10,966 edges com-
prising 5,441 genes as depicted by Module D in Figure 1.

Data availability
The normalized panGTEx and panTCGA GEMs along with their
annotations data are hosted on the Clemson servers and are available
upon request. Source code is available under the MIT license at
https://github.com/bhusain/NetExtractor.git. S1 Table: Differentially

expressed GCNs separated based on the five clusters. S2 Table:
Functional enrichment analysis of all five cerebellar clusters. S3
Table: Subset of cerebellar associated GRN included 636 nodes
connected via 1,146 edges. S4 Table: Functional enrichment output
for WGCNA_GCN and KINC_GCN. Supplemental material avail-
able at figshare: https://doi.org/10.25387/g3.12649700.

RESULTS
When the 10,966 edges were visualized as scatter plots it was observed
that all the edges had distinctly different expression levels for
cerebellum and cerebellar hemisphere tissue samples when compared
to other brain tissue samples. Thus, we further classified all these
edges into 5 clusters based on how differential gene expression values
were distributed. In the subsequent section we will elaborate on
module E-G from Figure 1 as the application and validation of
NetExtractor algorithm.

Classification of cerebellar clusters
Based on the distribution of the expression levels between cerebellar
vs. non-cerebellar samples, we manually categorized the edges into
5 broadly classified clusters as depicted by Figure 4 and included in
Supplemental Table S1:

Cluster 1: Both genes had high cerebellar expression while low non-
cerebellar expression levels. 1,971 edges and 1,105 genes were
classified into this cluster.

Cluster 2: One of the genes in the edge had higher expression levels
for cerebellar samples while the other gene has constant expres-
sion levels across all samples. 4,978 edges and 3,556 genes were
classified into this cluster.

Cluster 3: One of the genes had high cerebellar expression levels and
low non-cerebellar expression levels, while the other gene in the
edge had the exact opposite expression level distributions. 1,407
edges and 921 genes were classified into this cluster.

Cluster 4: One of the genes in the edge had higher expression levels
for non-cerebellar samples while the other gene had constant
expression levels across all samples. 2,266 edges and 1,844 genes
were classified into this cluster.

Figure 3 Mutual Information value distribution
The distribution of MI values against the number
of edges.We select a thresholdMI.=0.95 based
on the elbow of the distribution.
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Cluster 5: Both genes had high non-cerebellar expression values and
low cerebellar expression levels. Only 324 edges and 232 genes
were classified into this cluster.

The overlap of the number of genes within each cluster can also be
observed in Table 1. The total unique genes within all clusters is 5,441.
It is noteworthy to observe that more edges containing higher
cerebellar tissue expression levels were extracted using NetExtractor.

Functional enrichment analysis of cerebellar clusters
In order to investigate the cerebellar genes and edges picked using
NetExtractor, we performed functional enrichment analysis based on
functional annotations using the ToppGene suite Chen et al. (2009).
For each cluster we counted the number of statistically significant
enriched GO terms (q ,1024) for the GO categories: molecular
function (MF), biological process (BP), and cellular component (CC).
ToppGene human phenotype and microRNA labels were also
analyzed.

It can be observed that clusters 1, 2, and 4 represent statistically
significant functional enrichment as depicted by Table 2. On the other
hand clusters 3 and 5 did not show significance in the enriched terms,
and it is interesting to note that in both of these clusters both genes
have differentially expressed values for cerbellar vs. non-cerebellar
tissues with atleast one gene having a low expression profile for
cerebellar tissue samples. It is also notable in Supplemental Table S2,
which contains all of the enrichment information per cluster, that
primary enriched terms for human phenotype for clusters 1, 2, and
4 were associated with human central nervous system phenotypes
whereas clusters 3 and 5 were not enriched. We also note that nearly
all the terms associated to the 5,441 genes that were analyzed were
’brain specific’, in fact displaying primary or secondary cerebellar
functional activities. This phenomena could also be attributed to the
fact that cluster 3 and 5 both contained relatively fewer genes than
other clusters, which may have reduced the possibility of functional
enrichment. Further investigation may be required to better un-
derstand why the differential distribution of cerebellar samples in

both those clusters did not indicate strong ’brain specific’ terms. In
order to validate the function enrichment results we perform two
comparative analysis: (1) 100 sets of 5,000 random genes each
extracted from the entire brainGTEX GEM to test statistical signif-
icance that did not lead to any enriched terms. (2) We take each
cluster individually and perform functional enrichment while com-
paring against a similar number of random genes (random genes
experiment performed X100).

Cerebellar gene regulatory network construction
A pre-frontal cortex (PFC) GRN which describes significant tran-
scription factor (TF) - target gene activity linkages was obtained from
the PsycheENCODE project Wang et al. (2018). We utilized this PFC
GRN to analyze the set of 5,441 genes that were obtained through the
NetExtractor algorithm. There are two components to our decision to
utilize the PsychENCODE PFC GRNs to create a cerebellar GRN. (1)
The NetExtractor algorithm itself is knowledge independent, and
based on the criteria of multiple mixture models with variance that
are clearly non-overlapping, we discovered that within the brainG-
TEX GEM, cerebellar samples demonstrated the most distinct dif-
ferential expression values. Hence, the decision to explore cerebellar
associated gene pairs and construct a GRN was due to the output of
NetExtractor. (2) We utilize the PsychENCODE datasets since it is
one of the larger databases that compiles information about a
significant number of genes with their transcription factors. One
important caveat is that the database is specifically created for PFC

Figure 4 Classification of edges into clusters. Classification of edges into 5 clusters based on the distribution of cerebellar cortex tissues vs. non-
cerebellar brain tissues differential expression values.

n■ Table 1 Overlap of genes between the 5 clusters

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Cluster 1 1105 265 382 206 0
Cluster 2 3556 316 988 99
Cluster 3 921 157 137
Cluster 4 1844 41
Cluster 5 232
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tissues and not for cerebellar tissues. Since the genes we isolated
through our technique have been shown to be specifically associated
to cerebellar tissue, but the GRN information we have is for PFC, we
used this opportunity to analyze the GRN in a unique context for
genes that regulate cerebellar activity.

The cerebellar gene set was pruned to only consider genes with
regulatory information contained in the PsychENCODE PFC GRN.
This reduced our gene list to 3,978. Since we were interested in genes
that are specifically associated solely with cerebellar activity, we
analyzed each of the 3,978 genes by isolating the PFC and cerebellar
samples and performing an ANOVA test to determine whether the
variance of expression levels between the samples of PFC vs. cere-
bellar tissue was significant. Figure 5A depicts genes with significantly
higher expression levels for cerebellar tissues as opposed to PFC. In
contrast Figure 5C has significantly lower expression values for
cerebellar tissues than PFC, where as Figure 5B depicts no significant
difference between the two expression level distributions. By elim-
inating all genes that did not represent a significant difference in
expression levels to PFC, we further reduced the number of genes to
808. This step represents module F in Figure 1.

In order to focus on a more manageable set of genes for the
construction of a cerebellar GRN, we further pruned the list to
primarily focus on genes that are both target genes (with higher
cerebellar expression levels than PFC) as well as TFs represented by
the green nodes in Figure 6. We then extracted the network of genes
from the PFC PsychENCODE GRN that act as target genes to the
green nodes. These target genes are represented by blue nodes in
Figure 6. Similarly, any gene that is a TF to the green nodes as the
target gene is also included in the network. Nodes colored red in
Figure 6 indicate TF targeting the green nodes where the expression

level for PFC is higher than that of cerebellar samples. In total, this
subset of cerebellar associated GRN included 636 nodes connected via
1,146 edges. Details of this cerebellar GRN are provided in Supple-
mental Table S3.

Cerebellar gene regulatory network validation
To validate the constructed cerebellar GRN, we compared the genes
with a size-controlled random list for enrichment in transcriptionally
active PsychENCODE histone acetylation peaks across three brain
tissues. Since the PsychENCODE histone acetylation peaks were only
annotated on autosomes and sex chromosomes, 7 out of 636 genes
were dropped from the analysis due to their location on chromosome
scaffolds. The remaining 629 are considered ’protein-coding’ genes by
Ensembl Zerbino et al. (2017). A random list of genes was assembled
using the Homo sapiens GRCh38 v85 GFF3 file from Ensembl as the
gene pool. To be considered a random size-controlled match, a gene
had to be ’protein-coding’, found on an autosome or sex chromo-
some, and have a gene length within 10% of an original gene. Genes in
the original list were removed from the gene pool in order to avoid
duplicates across lists.

We acquired the PsychENCODE coordinates for active histone
acetylation peaks in cerebellar, PFC, and Temporal Cortex (TC)
tissues. To encompass histone acetylation regions that may play a
role in gene expression from an upstream or downstream position,
1000bp bumpers were added to both sides of each gene. With their
respective extended coordinates, all original and size-controlled genes
were then surveyed for overlaps with PsychENCODE histone acet-
ylation peaks across all three brain tissues. Since in several cases it was
observed that multiple histone acetylation peaks were active in more
than one tissue, a tissue exclusive list was compiled that contained
histone acetylation peaks exclusively active in only one of the three
brain tissue types. Therefore, each gene in the original and size-
controlled list was surveyed for overlap of histone acetylation peaks in
the complete and exclusive lists for each tissue. We repeated ran-
domized size-controlled list creation 100 times and determined the
mean and variance to test for statistical significance between original
and size-controlled genes. As a sanity check we also performed the
same test by replacing the 629 genes from the cerebellar GRN by equal
number of genes from the PsychENCODE PFC GRN, ensuring that
these genes had high PFC expression levels in comparison to cere-
bellar tissue sample as depicted in Figure 5C.

n■ Table 2 Functional enrichment analysis of the 5 categorized
clusters

Gene Set GO-MF GO-CC GO-BP
Human

Phenotype MicroRNA

Cluster1 12 17 69 44 3519
Cluster2 27 63 189 37 4914
Cluster3 1 7 7 0 3140
Cluster4 22 48 171 39 3933
Cluster5 0 0 0 0 388

Figure 5 Tissue RNA profiles expressed as a Gaussian mixture model for cerebellar cortex (cerebellar) tissue vs. pre-frontal cortex (PFC) tissue. (A)
An example distribution between the tissues where expression of cerebellar samples are significantly higher than PFC samples. (B) Example
distribution where there is no significant difference between PFC and cerebellar tissue expression levels. (C) Example distribution between the
tissues where expression of PFC samples are significantly higher than cerebellar samples.
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The results for the active histone acetylation peaks overlap test are
displayed in Figure 7 where the green bar represents the 629 cerebellar
GRN genes, white bar represents the 629 PFC GRN genes, and blue
bar indicates mean of 629 random size-controlled genes. It can be
observed that the cerebellar GRN genes (green bar) culled using

NetExtractor had significantly higher histone acetylation peak over-
lap for cerebellar and exclusive cerebellar tissues. Similarly, the PFC
GRN genes (white bar) obtained from the PsychENCODE GRN have
significantly higher histone acetylation peaks for PFC and exclusive
PFC. By contrast when TC and exclusive TC tissues were tested, there

Figure 6 Cerebellar sub-gene regulatory network
(GRN). The GRN constructed centered around genes
that are both TFs as well as target genes with high
cerebellar cortex (cerebellar) expression levels.
Green nodes represent transcription factors (TF) with
high cerebellar expression levels, red nodes repre-
sent TF with high pre-frontal cortex (PFC) expression
levels, and blue nodes represent target cerebellar
high genes.

Figure 7 Brain tissue edge overlap with PsychENCODE histone acetylation peaks across three brain tissues. Comparing transcriptionally active
PsychENCODE histone acetylation peaks between the extracted 629 cerebellar cortex (cerebellar) genes from the cerebellar sub-gene regulatory
network, 629 pre-frontal cortex (PFC) genes that demonstrated higher expression values that cerebellar genes from the PsychENCODE GRN, and
629 random, length-control genes (n = 100). Exclusive refers to histone acetylation peaks active in only one of the three brain tissue types
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was more overlap with active histone acetylation peaks in random
size-controlled genes relative to cerebellar GRN or PFC GRN genes.

To further validate the cerebellar GRN we compared the 629 genes
for enrichment to a size-controlled 629 random gene list in 20 non-brain
cell lines for histone modifications by ChIP-seq from the ENCODE
project Bernstein et al. (2005) as depicted by Figure 8. The experiment
was performed using the cerebellar GRN and compared against an equal
number of randomized size-controlled genes (n = 100). In contrast to the
earlier experiment it can be observed that in most cases the mean of
random set of genes displayed similar histone acetylation peak overlap to
the genes containedwithin cerebellar GRN. In summary, for validation of
cerebellar GRN genes we utilize the histone acetylation peaks data in
three ways: (1) Comparing genes within the cerebellar GRN against a
similar number to random genes over 20 non-brain cell lines as
represented by Figure 8. This validation experiment is aimed to dem-
onstrate that in non-brain cell lines, random genes outperform for
histone acetylation peaks than genes that we attribute to cerebellar
GRN.(2) Comparing genes within the cerebellar GRN against a similar
number to randomgenes as well as genes within the PFCGRNover three
cell lines: cerebellar cortex, pre-frontal cortex, and temporal cortex. This
experiment indicates that cerebellar GRN genes outperform PFC and
random genes for histone acetylation peaks correspondence over cere-
bellar cortex genes. (3) Similarly, PFC genes have a significant overlap
with histone acetylation peaks over pre-frontal cortex genes when
compared against cerebellar and random genes. These set of experiments
were performed as a validation test to check if the genes selected for the
cerebellar GRN could infact be attributed to cerebellar cortex tissue. The
interactions of edges within the GRN are validated based on the highMI
values for each edge and the data essentially being a sub-network of the
PsychENCODE PFC GRN.

Comparing NetExtractor
In this manuscript we have illustrated the capability of utilizing
NetExtractor to generate a cerebellar specific GCN as well as a

GRN, but in order to elucidate the utility of differential gene
expression using a non-linear relationships metrics it is essential
to compare the output of NetExtractor to more conventional GCN
construction techniques. For this purpose we utilize theWGCNA and
KINC algorithms to generate WGCNA_GCN and KINC_GCN. In
Table 4 we summarize the results comparing the outputs of the three
algorithms. WGCNA essentially applies a weighted linear similarity
measure to attribute a value for each gene-gene edge relationship.
Hence, this correlation matrix is populated for the entire edgelist,
while a threshold is selected to construct the final GCN. WGCNA
pools all samples within an edge together to calculate the edge
correlation score and is therefore a traditional linear metric for
GCN construction. Along with the limitations of using a linear metric
that are included in the manuscript, another drawback that was
encountered is the large computation time it might require. We
utilized IterativeWGCNA python wrapper implementation Greenfest-
Allen et al. (2017) to construct WGCNA_GCN with the normalized
GEM (Module A in Figure 1) as the input. Since,the significance
threshold needed to be manually selected the default value of 0.5
was chosen to capture as many edges as possible with the result of
465,444 edges across 6,778 genes comprised within 85 modules as
depicted by Table 4.

KINC on the other hand expands on the concept of WGCNA by
first implementing GMMs to determine the existence of sub-pop-
ulations within the samples. These sub-populations of selected edges
can then be enriched in a tissue specific manner to attribute an edge to
tissue types. Therefore, KINC does not club all the samples together
while calculating relationships between the edges for gene-pairs.

KINC calculated the correlation for each gene pair upon using
GMMs in a manner similar to NetExtractor. Only GMM sub-
populations with equal to or more than 30 samples underwent
Spearman correlation, while values less than 0 were ignored.
50,000 KINC similarity jobs were submitted on the Open Science
Grid Roy et al. (2007) by using the OSG-KINC similarity workflow

Figure 8 Brain tissue edge overlap with ENCODE histone acetylation peaks across 20 non-brain cell lines Comparing histone modifications across
20 non-brain cell lines between 629 cerebellar cortex (cerebellar) genes from the cerebellar sub-gene regulatory network and 629 random, length-
control genes (n = 100).
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Poehlman et al. (2017). The KINC significance threshold of 0.8961
was found by using random matrix thresholding (RMT) algorithm
within the KINC thresholding script. The KINC_GCN was then
constructed by extracting the 7,795 edges comprised of 1,692 genes
with correlations . 0.8961 contained within 183 linked community
modules (LCM). All identified edges in the KINC_GCN were tested
for sample label enrichment using the KINC.R package [https://
github.com/SystemsGenetics/KINC.R], hence allowing us to calculate
cerebellar specific edges (KINC_Cerebellar) as depicted in Table 4.

Finally, when discussing NetExtractor, theoretically it is a further
extension of KINC where we not only apply GMMs but instead of
using conventional linear or monotonic similarity metrics we use a
non-linear metric, MI to avoid restricting the type of relationships
within the sub-population. But another significant extension that
differentiates NetExtractor to the other two techniques is that we
calculate the inter-cluster score between the sub-populations that
mandates the differential expression within samples. This separates
NetExtractor outputs significantly from the previous algorithms since
the GCN now constructed focuses on a network that have non-
linearly related differentially expressed samples. The utility and
novelty of NetExtractor lies in the fact that it is capable of detecting
edges that would be conventionally missed by WGCNA and KINC.
We do not claim that NetExtractor is ‘better’ than either of those
methods but rather acts as an integral complement that extends the
gene relationship network with edges that have biological relevance
but have not been explored before.

As the results of our comparison between the three techniques we
observe that although there is a significant overlap in the genes that
are detected, it can be observed that the edges that are included in the
GCN for each of the algorithm show variation. This outcome is
expected since each of the algorithm inherently looks for a different
kind of a relationship within the edges. These results indicate
that neither of the algorithms is necessarily better or superior to
the other but are trying to detect fundamentally different forms of

relationships. We also performed functional enrichment analysis on
the genes obtained in WGCNA_GCN and KINC_GCN in a manner
similar to the one described above and found the enriched GO terms
to be ’brain specific’. The enrichment results are included in Sup-
plemental Table S4.

DISCUSSION
The implementation of GMMs to evaluate the expression distribution
of different tissue samples between two genes permitted us to address
the problem of extrinsic noise as well as determine if there are sub-
populations of sample distribution within the edge that are interest-
ing. Combining GMMs with MI further allowed us to explore
non-linear relationships that may be embedded within the distribu-
tion. The NetExtractor workflow focuses on filtering out all edges that
do not contain GMM sub-populations since in this work we focused
on differentially expressed high MI binary RNA profiles. The remain-
ing edges are further restricted by the inter-cluster loss criteria and
then categorized into 5 clusters depicted in Figure 4. As noted earlier,
clusters containing edges with either 1 or both genes exhibiting lower
expression values for cerebellar vs. other brain tissues when both
genes had differentially expressed samples did not show significant
functional enrichment, where as clusters 1, 2, and 4 seemed to be
significantly enriched for ’brain specific’ terms. This indicates that
gene pairs that exhibit higher expression values for cerebellar tissues

n■ Table 3 Top five enriched functions for genes in the cerebellar gene regulatory network (GRN)

Category Term ID Term Description q-value

GO-MF GO:0043565 sequence-specific DNA binding 2.36E-28
GO:0003682 chromatin binding 5.19E-25
GO:0001067 regulatory region nucleic acid binding 1.73E-21
GO:0044212 transcription regulatory region DNA binding 3.10E-21
GO:0008134 transcription factor binding 1.86E-20

GO-CC GO:0044451 nucleoplasm part 1.10E-28
GO:0005694 chromosome 3.66E-15
GO:0044427 chromosomal part 3.67E-15
GO:0000785 chromatin 6.26E-13
GO:0016604 nuclear body 9.52E-12

GO-BP GO:0010628 positive regulation of gene expression 4.58E-33
GO:0006357 regulation of transcription by RNA polymerase II 1.35E-32
GO:0051173 positive regulation of nitrogen compound metabolic process 1.37E-31
GO:0045935 positive regulation of nucleobase-containing compound metabolic process 1.37E-31
GO:0010557 positive regulation of macromolecule biosynthetic process 1.37E-31

Human Phenotype HP:0008050 Abnormality of the palpebral fissures 2.26E-08
HP:0200006 Slanting of the palpebral fissure 2.78E-07
HP:0000315 Abnormality of the orbital region 5.28E-07
HP:0000284 Abnormality of the ocular region 5.28E-07
HP:0000527 Long eyelashes 6.98E-07

Diseases C3714756 Intellectual Disability 5.53E-07
C0038379 Strabismus 1.62E-05
C0557874 Global developmental delay 8.46E-05
C1864897 Cognitive delay 8.46E-05
C4020875 Mental and motor retardation 8.46E-05

n■ Table 4 Overlapping genes and edges between NetExtractor
and other GCN construction methods

KINC KINC_Cerebellar WGCNA

Genes Edges Genes Edges Genes Edges

KINC 1,692 7,795 561 791 1,350 3,820
WGCNA 507 315 6,778 465,444
NetExtractor 375 0 122 0 2,774 295
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than other brain tissues are indicative of genes that are either more
brain related or more specifically cerebellar tissue related.

Using these results as well as the extracted cerebellar high
genes, it was then possible for us to utilize the PFC GRN
PsychENCODE information in a novel methodology to construct
a cerebellar specific GRN, which we validated using functional
enrichment as well as by comparing our gene set for active histone
acetylation peaks. The functional enrichment for the final 636 cer-
ebellar GRN genes gave significant enriched terms in all categories
with significance threshold of q value , 0.0001: GO-MF = 50,
GO-CC = 27, GO-BP = 153, and Human Phenotype = 100. The top
5 terms and their respective IDs for various categories are depicted
in Table 3 to illustrate the types of enrichment terms that were
observed.

The active histone acetylation peaks experiments for the cerebellar
GRN genes when compared against random or PFC high genes from
the PsychENCODE GRN depict clear trends for the NetExtractor
detected genes to be associated with actively transcribed genomic
regions in cerebellar or cerebellar hemisphere tissues. This evidence is
further bolstered when the cerebellar genes were compared against a
random gene set for non-brain cell lines that showed a mostly
consistent decrease in active histone acetylation peaks. Hence, uti-
lizing the NetExtractor algorithm we were not only able to identify
edges that were more likely to be associated to cerebellar tissues, using
a novel method of separating PFC and cerebellar genes we were able
to construct a GRN for cerebellar associated genes involving TFs
connected to target genes. This cerebellar GRN can be utilized to
identify unique cerebellar pathways as well as links that have not been
explored completely.

Future directions for this project are twofold. Instead of restricting
our analysis to only genes that behaved both as target genes as well as
TF and constructing the GRN using those central nodes, we will focus
on all the identified 808 cerebellar high genes and build a larger
cerebellar GRN that will permit us to study and explore regulatory
pathways in more depth. The second thrust for future works involves
evaluating the GRN as well as the larger GRN in context with
published protein-protein interaction (PPI) networks as well as
superimposing networks of known microRNAs to better understand
the regulatory pathways. On a broader scope, we envision the
application of the NetExtractor workflow on larger GEMs such as
panGTEx and panTCGA that may contain interesting non-linear
sample expression distribution patterns for gene pairs.

Limitations
Although NetExtractor demonstrated the capability of identifying
edges that display non-linear patterns in distributed sub-populations
of samples for the brainGTEX GEM, we recognize that it may not be a
suitable fit for data that is not differentially expressed for a specific
tissue type. This may lead to aberrant results that identify edges but
may not be truly meaningful. Even so, from 1,579,304,301 edges
NetExtractor was able to extract 10,966 edges, and then from that a
meaningful set of 808 genes that seemed to be closely associated to a
specific tissue type. It is especially important to note that NetExtractor
is knowledge independent, i.e., the algorithm itself is not cognizant of
tissue annotations per sample.

Another drawback is that since we begin with a GRN from
PsychENCODE created specifically for PFC tissues, we are limited
to the genes and transcription factors that are contained within that
network and cannot construct a fully robust cerebellar GRN. How-
ever, we demonstrate a novel technique to extract a sub-network
relevant to the tissue of interest from the available GRN.

CONCLUSION
In this report we detail an algorithm, NetExtractor, that combines the
GMM along with MI to address limitations of current GCN con-
struction techniques. The application of GMMs enabled the discovery
of embedded sub-populations with the expression levels of the tissue
samples while addressing the intrinsic and extrinsic noise obfuscating
the signal. Furthermore, using MI to determine the dependency
between the bigenic expression profile led to the isolation of non-
linear relationships within an edge. We applied NetExtractor to a
human brain GTEx brain GEM to construct a gene relationship
network associated with cerebellar and cerebellar hemisphere tissue.
Coupling these cerebellar edges with the PsychENCODE PFC GRN,
we built a unique cerebellar GRN that should have utility in the study
of gene regulation in the human cerebellum.
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