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Abstract: Background: Anti-TNF-alpha (anti-TNFα) therapies have transformed the care and man-
agement of inflammatory bowel disease (IBD). However, they are expensive and ineffective in greater
than 50% of patients, and they increase the risk of infections, liver issues, arthritis, and lymphoma.
With 1.6 million Americans suffering from IBD and global prevalence on the rise, there is a critical
unmet need in the use of anti-TNFα therapies: a test for the likelihood of therapy response. Here,
as a proof-of-concept, we present a multi-mRNA signature for predicting response to anti-TNFα
treatment to improve the efficacy and cost-to-benefit ratio of these biologics. Methods: We surveyed
public data repositories and curated four transcriptomic datasets (n = 136) from colonic and ileal
mucosal biopsies of IBD patients (pretreatment) who were subjected to anti-TNFα therapy and
subsequently adjudicated for response. We applied a multicohort analysis with a leave-one-study-out
(LOSO) approach, MetaIntegrator, to identify significant differentially expressed (DE) genes between
responders and non-responders and then used a greedy forward search to identify a parsimonious
gene signature. We then calculated an anti-TNFα response (ATR) score based on this parsimonious
gene signature to predict responder status and assessed discriminatory performance via an area-
under-receiver operating-characteristic curve (AUROC). Results: We identified 324 significant DE
genes between responders and non-responders. The greedy forward search yielded seven genes that
robustly distinguish anti-TNFα responders from non-responders, with an AUROC of 0.88 (95% CI:
0.70–1). The Youden index yielded a mean sensitivity of 91%, mean specificity of 76%, and mean
accuracy of 86%. Conclusions: Our findings suggest that there is a robust transcriptomic signature
for predicting anti-TNFα response in mucosal biopsies from IBD patients prior to treatment initiation.
This seven-gene signature should be further investigated for its potential to be translated into a
predictive test for clinical use.

Keywords: mRNA prognostic; anti-TNFα therapy; IBD; multicohort analysis

1. Introduction

Inflammatory bowel disease (IBD) is a chronic inflammation of the digestive system
and includes at least two main types: Crohn’s disease (CD) and ulcerative colitis (UC).
CD and UC patients often present with abdominal pain and diarrhea, as well as rectal
bleeding frequently occurring in UC patients [1]. Age-standardized prevalence of IBD has
increased from 79.5 in 1990 to 84.2 in 2017 (per 100,000), resulting in 6.8 million cases of
IBD globally [2]. While the US has the highest age-standardized prevalence rates (464.5 per
100,000), there is also an alarming rise in prevalence in low/middle-income countries [2].

The introduction of anti-TNFα therapies (drugs that inhibit the interaction of TNFα
with its receptors) has revolutionized the management of IBD [3]. The five drugs (Etan-
ercept, Infliximab, Adalimumab, Certolizumab, and Golimumab) account for more than
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$25 billion in annual sales globally, making them one of the highest-revenue class of drugs
on the market [4]. However, anti-TNFα administration and usage remain suboptimal for
achieving positive health outcomes for several reasons. First, a substantial percentage
of patients fail to achieve a therapeutic response. Approximately 10 to 30% of patients
do not respond to the initial treatment (primary non-responders); of those who respond
initially, 23 to 46% become non-responders over time (secondary non-responder) [5]. Sec-
ond, anti-TNFα therapies carry an increased risk of infections, most notably reactivation
of tuberculosis, as well as liver problems, arthritis, and lymphoma [3]. Third, since the
treatment choice and administration are empirical, multiple different drugs are often tried
in sequence, resulting in high costs and morbidity [6–8]. For example, in a recent study,
direct healthcare expenses markedly increased after initiating anti-TNFα therapy from
approximately $5500 to $45,000 in the first year alone and exceeded $200,000 over a span of
5 years [9].

To date, there is no clear predictive factor of response or loss of response to anti-TNFα
therapies [10]. Although several studies have identified single biomarker predictors of
response, none has translated well for clinical practice [11–14]. Overcoming this gap in the
administration of anti-TNFα therapies is an important next step in improving their utility
and reducing overall healthcare costs, morbidity, and mortality.

Several studies have previously used gene expression profiles to predict response to
anti-TNFα therapies [13,15,16]. However, almost all studies used a single homogeneous
cohort with a relatively small sample size that does not represent the clinical and biological
heterogeneity of the patients with IBD, and this could be due to sample source (colon vs.
ileal biopsy), age, disease duration, and disease status (flare vs. remission). This lack of
biological and clinical heterogeneity, in turn, reduces the generalizability of findings. Using
a multicohort analysis framework [17], we have repeatedly demonstrated that leveraging
biologically, clinically, and technically heterogeneous cohorts identifies a more robust
generalizable gene signature compared to using a single homogeneous cohort [18–28] and
can be translated in a diagnostic test for use in clinics [29–32].

Here, we hypothesized that a multicohort analysis of transcriptomic data from base-
line (pretreatment) intestinal mucosal biopsies from patients with IBD across heterogeneous
datasets would identify a robust generalizable gene expression signature predictive of a pa-
tient’s response to anti-TNFα therapy. To test this hypothesis, we performed a multicohort
analysis of four publicly available gene-expression datasets and identified a seven-gene sig-
nature that robustly predicts anti-TNFα responders from non-responders prior to initiation
of treatment.

2. Methods
2.1. Dataset Search and Curation

We systematically searched (June 2019) for clinical studies on anti-TNFα therapy
response in two public data repositories, NCBI GEO and EBI ArrayExpress, using the
following search terms: infliximab, Remicade, adalimumab, Humira, certolizumab, Cimzia,
golimumab, Simponi, etanercept, and Enbrel. We then excluded studies if they (1) did
not directly pertain to anti-TNFα therapy in IBD, including its subtypes (UC and CD),
(2) did not have a clinical adjudication for response, or (3) did not contain transcriptomic
data from baseline (pretreatment) samples. Altogether, we identified 5 datasets that
passed our inclusion criteria: GSE12251, GSE23597, GSE14580, GSE23597, and E-MTAB-
7604 [13,15,16,33].

2.2. Sample Curation and Clinical Response Adjudication

Two datasets, GSE12251 and GSE23597, contained samples collected from ACT1 Trial,
raising the possibility that samples may be overlapping between the two datasets. To ensure
that there were no overlapping samples present in both studies, we compared the raw gene-
expression data of the samples across both datasets and found that 23 samples were exactly
matched, thus confirming the presence of overlapping samples. These 23 samples made
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up the entirety of GSE12251, while being a subset of samples in GSE23597. Therefore, we
removed GSE12251 from our analysis altogether. GSE14580 comprises active UC patients
and is a subset of GSE16879 (matching GSM sample IDs in both datasets); therefore,
overlapping samples were removed from GSE16879 to prevent duplicates. The remaining
samples in GSE16879 were derived from a CD cohort where 19 patient biopsies were
extracted from the colon (CDc) and 18 from the ileum (CDi). In the CDi group, 8 patients
were responders and 10 were non-responders [15]. GSE23597 had response outcome
adjudicated at weeks 8 and 30 post-Infliximab treatment [33]. For the scope of our analysis,
we used the week-8 timepoint for adjudication to be consistent with the timepoints for
response assessment used in the other datasets. We used the clinical response definition to
anti-TNFα therapy, as described in each original study (Supplementary Materials Table S1),
and assigned each sample a binary response label (responder = 1; non-responder = 0).

2.3. Gene-Expression Normalization

Microarray: The 3 microarray datasets used Affymetrix Human Genome U133 Plus
2.0 Array (GEO platform accession: GPL570) for profiling. Thus, to remove platform
specific technical variation, we processed samples from all microarray cohorts in one batch.
Specifically, we downloaded original data files (.CEL) and normalized all data by using
the Robust Multichip Average (RMA) method from the affy R package (version 1.63.1,
REF) in conjunction with a custom CDF from BrainArray, HGU133Plus2_Hs_ENTREZG
(version 23.0.0, ENTREZG).

RNA-seq: One study, E-MTAB-7604, used RNA-Seq for transcriptome profiling. For
this study, we downloaded the raw data (fastq files) from ArrayExpress. We used our
previously described pipeline to process the data [34]. Briefly, we used FASTQC to assess
multiple QC metrics and Cutadapt [35] to trim adapter sequences and 3 bases on the 3′

end of the reads. We used STAR aligner (version 2.7.3a) to map the reads to the human
reference genome and transcriptome (versions GRCh38 and GENCODE v32 primary
assembly GTF, respectively) [36,37]. We used STAR quantification option to sum the
mapped reads across Ensembl transcript IDs, which were then translated to Entrez gene
IDs with AnnotationDbi from Bioconductor [38]. All 44 samples passed standard QC
metrics, and the resulting counts matrix (20,460 Entrez genes by 44 samples) was used in
subsequent data-normalization and -processing steps.

Voom transform: Low-expressed genes were filtered by using the following cutoff: max
counts per million (CPM) less than 5 across all 44 samples. Normalization factors were
obtained by using Trimmed Mean of M values (TMM) method (edgeR package version
3.28.0) [39,40]. The voom method (limma R package version 3.41.18) was then used to
transform counts into normalized log2-CPM [41]. This method transformed the data to
make them amenable for multicohort analysis with microarray datasets.

2.4. Inter-Dataset Co-Normalization

We used Combat CO-Normalization, using conTrols to co-normalize samples across
platforms [31]. COCONUT (COCONUT R package version 1.0.2) uses healthy controls (HC)
to removes batch effects under the assumption that HCs from different cohorts represent
the same distribution. Briefly, HCs from each platform undergo ComBat co-normalization
without covariates [42]. The derived cohort-specific normalization factors are then applied
to the diseased samples in a cohort. In order to co-normalize microarray and RNA-Seq
expression data, we made use of pooled healthy controls from datasets that were available
to co-normalize across platforms.

2.5. Leave-One-Study-Out (LOSO) Multicohort Analysis

We performed a LOSO multicohort analysis with k studies, holding out one study
and performing a multicohort analysis on the remaining k-1 cohorts, and repeated k times
in a round-robin fashion where a different study was held out each time. In each round,
we calculated the effect size (Hedges’ g) for all genes between anti-TNFα responders and
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non-responders within a study and summarized across all datasets, using the DerSimonian
and Laird random-effects model to obtain a pooled or summary effect size [17]. We
calculated effect size correlations between each pair of datasets to assess dataset similarity
and potential for signal to exist. A p-value based on standard normal distribution was
calculated for the pooled effect size with a Benjamini–Hochberg False Discovery Rate
(FDR) correction for multiple hypothesis testing (q-value). We considered only genes
that were significant across all LOSO rounds. We applied a q-value threshold of 10% and
absolute effect size threshold of 0.8, where needed, to obtain a set of significant differentially
expressed (DE) genes.

2.6. Anti-TNFα Response (ATR) Score and Performance Metrics

We used the following formula to calculate an anti-TNFα response (ATR) score for
each sample:

ATR score = zscore
(

GeoMean(pos)− GeoMean(neg) ∗
(

Npos
Nneg

))
where GeoMean(pos) and GeoMean(neg) are the geometric mean of the expression of all
positive (overexpressed in responders) or negative (underexpressed in responders) genes,
respectively; and Npos and Nneg are counts of positive to negative genes, respectively. In
the case of 0 positive genes, the formula collapses to GeoMean(neg) term with negative
sign scaled via zscore. We used the ATR score in conjunction with the ground truth
response adjudication to test the class discriminatory power of a gene set, using area-under-
the-receiver operating-characteristic curves (AUROC) as our primary metric. We used
the trapezoidal method to calculate AUROCs and generated a smoothened pooled ROC
curve with weighted standard deviation, using the Kester and Buntinx Method [43]. We
determined an optimal cut-point to obtain the sensitivity and specificity of each AUROC,
using the Youden method (cutpointr R package version 1.1.0).

2.7. Parsimonious Anti-TNFα Response Gene Signature

To identify a minimal set of genes with robust discriminatory performance (weighted
AUROC) despite heterogeneity, we used a greedy forward search algorithm [31,44]. Briefly,
starting with a set of DE genes, an ATR score, samples’ response adjudications, and
a stopping threshold (0.1), the forward search computes the ATR score for each gene
individually and chooses the gene with the highest weighted AUROC across datasets. In
subsequent iterations, each one of the remaining genes is added to the model, one at a time,
whereby the gene which provides the greatest increase in weighted AUROC is retained.
Once the iterative increase in weighted AUROC falls below the stopping threshold (i.e.,
the addition of any gene from the list no longer increases the total weighted AUROC by
more than the threshold), the forward search terminates, resulting in the final gene list.
We defined the weighted AUROC as the sum of each dataset’s AUROC multiplied by its
number of samples.

2.8. Pathway Analysis

We used Gene Set Enrichment Analysis (GSEA) [45] to explore the biological relevance
of differentially expressed genes, as identified by the multicohort analysis. Specifically,
we tested significance of over-representation of genes reflected in Gene Ontology (GO),
including biological process (BP), molecular function (MF), and cellular compartment (CC).
The human transcriptome reference was used as background, and the p-values from the
hyper-geometric test were adjusted by using the Benjamini–Hochberg method.

3. Results
3.1. Data Collection, Curation, and Preprocessing

We chose to integrate multiple independent gene-expression datasets that collec-
tively represent biological, clinical, and technical heterogeneity observed in the real-world
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patient population to identify a robust generalizable gene signature for anti-TNFα ther-
apy response in IBD [17,24,25,27]. We surveyed NCBI GEO and EBI ArrayExpress for
whole-transcriptome datasets from patients with IBD who were subjected to anti-TNFα
therapies that met the inclusion criteria (Table 1 and Methods). Collectively, these datasets
included patients from multisite global studies, such as ACT1 Trial (biological hetero-
geneity), with a wide range of disease severity (clinical heterogeneity) and profiled by
using different high-throughput platforms (technical heterogeneity). Overall, we identified
four gene-expression datasets comprising 136 mucosal biopsy samples (71 responders and
65 non-responders), for which 15,116 genes were measured across all datasets.

Table 1. Mucosal biopsy datasets used for multicohort analysis. Responders and non-responders were labeled based on
cohort’s annotation criteria, as described in Methods.

Accession Author Center Platform Disease Anti-TNFα Responder Non-Responder Total

EMTAB7604 Verstockt
University
Hospital
Leuven

Illumina
HiSeq 4000 IBD Adalimumab/

Infliximab 19 25 44

GSE14580 Arijs
University
Hospital
Leuven

GPL570 UC Infliximab 8 16 24

GSE16879 Arijs
University
Hospital
Leuven

GPL570 CD Infliximab 20 17 37

GSE23597 Toedter Multicenter
ACT1 GPL570 UC Infliximab 24 7 31

Total 3 Authors >2 centers 2 platforms 2 major
subtypes

2 anti-TNFα
therapies 71 65 136

3.2. Multicohort Analysis Identified 324 Significant Differentially Expressed (DE) mRNAs
between Responders and Non-Responders

In order to assess the potential for obtaining signal, we considered dataset similarity
based on gene-effect size correlations. We found strong positive correlations (>0.5) between
GSE14580 and GSE16879, as well as GSE23597 and E-MTAB-7604 (Supplementary Materials
Figure S1). This indicated that there is potential for a generalizable response signal. To
obtain a baseline signal of response, we performed a LOSO multicohort analysis, using
all four datasets. We identified 324 differentially expressed mRNAs (58 overexpressed
and 266 underexpressed) in responders, as compared to non-responders, with absolute
pooled summary effect size >0.8 and false discovery rate (FDR) <10% (Figure 1a and
Supplementary Materials Table S2). Notably, E-MTAB-7604, an RNA-Seq dataset, stood
out in comparison with the three microarray datasets whereby gene effect sizes are visibly
varied; this is very likely due to technical heterogeneity in how gene expression is measured
across the two platforms. Importantly, when considering gene effect sizes across datasets
in a pooled fashion (Figure 1a, top row), we obtained point estimates for the effect size of
genes that represent the underlying transcriptional differences between responders and
non-responders that may exist in the overall IBD patient population.

The GSEA of these 324 genes showed that the most over-represented pathways in-
cluded neutrophil activation, neutrophil degranulation, and neutrophil-mediated immu-
nity, as well as leukocyte migration. The Gene Ontology analysis of the 324 genes found
that they are enriched for the regulation of inflammatory response as the major predic-
tive factor for responsiveness to anti-TNFα therapy, consistent with previous studies
(Figure 1b) [46–48].
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Figure 1. Multicohort analysis of IBD cohorts reveals 324 significant DE genes. (a) Heatmap of 324 DE genes’ effect sizes
sorted by pooled summary effect size. Genes were selected by |pooled summary effect size| > 0.8, FDR < 10% in a LOSO
multicohort analysis between anti-TNFα responders vs. non-responders in 4 individual datasets. (b) Thirty top-ranked
significantly enriched GO terms revealed by the gene-set enrichment of the 324 GE genes. GeneRatio in x-axis represents
the number of genes in our gene set within a pathway (size of points) out of the total number of genes of that pathway. The
adjusted p-value of enrichment of our gene set in each pathway is shown by the color of points.

3.3. A Parsimonious Seven-Gene Signature Suitable for Clinical Utility

The list of 324 DE genes was not optimized for discriminatory performance and
ill-suited for translation to clinical practice. Hence, we used a greedy forward search
to identify a parsimonious discriminatory gene set, yielding seven genes. Of the seven,
three genes (WNK2, OCRL, and ASB7) were overexpressed, and four were underexpressed
(PCBP3, AMPD2, FAM155A, and IL13RA2), in responders (Figure 2a and Supplementary
Materials Table S2—highlighted in red). Using this seven-gene signature, we computed
an ATR score for each sample across all datasets (Methods). The ATR scores of respon-
ders were significantly higher than those of non-responders across all datasets (p < 0.05;
Figure 2b). Overall, the seven-gene signature had robust discriminatory performance
across all datasets, with a pooled AUROC of 0.88 (range from 0.80 to 0.97; Figure 2c). We
used the Youden Index to determine an optimal cut-point that maximizes the signature’s
differentiating ability, and this yielded a mean sensitivity of 91%, mean specificity of 76%,
and mean accuracy of 86% (Supplementary Materials Table S3). Based on the pooled
ROC (Figure 2c), we estimated the performance of the ATR score for rule-in and rule-out
scenarios, respectively. Specifically, for a rule-in scenario with sensitivity fixed at 95%, the
ATR score has a specificity of 50%; alternatively, for a rule-out scenario with the specificity
fixed at 90%, the ATR score has a sensitivity of 70%.
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Figure 2. Effect sizes and discriminatory performance of the 7-gene signature. (a) Forest plots for random-effects-model
estimates of effect size of the 7-gene signature derived from greedy forward search, comparing anti-TNFα responders vs.
non-responders (box size is inversely proportional to standard error of effect size; whiskers represent upper and lower
confidence intervals). (b) Violin plots of ATR scores based on the 7-gene signature in responders vs. non-responders
(p < 0.05). (c) ROC curves shown for discriminatory performance of 7-gene signature in discovery datasets obtained with
LOSO approach. The dotted line denotes 0.5 AUC line (random guessing). The gray shaded area denotes confidence band
around pooled ROC curve (black line).

4. Discussion

Although anti-TNFα therapies offer a powerful way to manage the progression and
treatment of IBD, they are expensive, ineffective in more than 50% of patients, and increase
the risk of infections, liver problems, arthritis, and lymphoma [3,5]. With global prevalence
of IBD on the rise, a prognostic for anti-TNFα therapy response is crucial to addressing the
challenges associated with clinical use of potent immunomodulators [2]. To date, no studies
have identified a set of biomarkers that have translated to clinical practice [10–14,49–51].

Our goal was to address this unmet global healthcare need by identifying a clear pre-
dictive gene signature of response to anti-TNFα therapy, in the hopes that it would greatly
improve the efficacy and cost-to-benefit ratio of these biologics. We used our established
multicohort analysis framework to analyze four mucosal biopsy datasets curated from
the public domain and identified 324 genes that were differentially expressed between
anti-TNFα responders from non-responders prior to treatment initiation, irrespective of
biological, clinical, and technical heterogeneity between datasets due to sample source
(colon or ileal), disease pathology (UC or CD), disease status (remission or flare), age,
and sex. From this broad set of genes, we utilized a greedy forward search algorithm to
downselect a parsimonious set of genes that have the potential to translate well into a
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clinically useful response signature. Specifically, our seven-gene signature (WNK2, OCRL,
ASB7, PCBP3, AMPD2, FAM155A, and IL13RA2) had a robust pooled AUROC performance
of 0.88 across all datasets, demonstrating the feasibility of using a multi-mRNA signature
for an anti-TNFα response prognostic test. Interestingly, IL13RA2 has been previously
identified as an underexpressed marker in baseline (pretreatment) mucosal biopsies of
patients that had endoscopic remission after being subjected to anti-TNFα therapy [13].
The other six genes in the context of anti-TNFα response in IBD have not been investigated,
holding promise of yet undiscovered molecular pathophysiology. Irrespective of biological
context, in clinical practice, a prognostic test with this level of performance would be
useful in multiple clinical applications. We envision use cases for rule-in and rule-out tests
with the ATR score. For rule-out case with sensitivity fixed at 95%, the ATR score has a
specificity 50%. Alternatively, for a rule-in case with specificity fixed at 90%, the ATR score
has a sensitivity 70%.

While our results show that the seven-gene signature has the potential to translate
into a clinically actionable prognostic test, a limitation of our analysis is that we included
all gene-expression datasets published to date for analysis. As a result, it was not pos-
sible to hold out datasets for independent validation at this stage. However, we have
previously shown in a methodological study that three-to-five datasets are sufficient to
find reproducible differentially expressed genes, if in fact there is signal between the two
classes [52]. It is evidently clear in the literature that roughly one-third of patients on
anti-TNFα therapies respond, while two-thirds do not. Moreover, previous studies have
sought to identify underlying transcriptional differences in anti-TNFα naïve IBD patients
that predispose some patients to having a therapeutic response. In lieu of independent
validation, we applied a stringent method of biomarker discovery via a LOSO round-robin
multicohort analysis. This ensures that no one dataset drives the biomarker discovery
process. Moreover, it has been shown to lend itself to a more generalizable signal that
would be reproducible in external cohorts [31]. However, we recognize that it is possible
that an independent validation cohort may exhibit characteristic variations that are not
captured in our discovery datasets, such that the seven-gene signature would suffer from
a loss in performance. Our framework is designed to account for this eventuality; by
incorporating more sources of variation from forthcoming datasets while holding out data,
our methodology enables iterative refinement and improvement in performance, allowing
us to progress towards the goal of a developing a clinically actionable test.

We believe that our seven-gene signature will have a significant impact on the use
of anti-TNFα therapies. There is no generalizable prognostic test to predict response to
anti-TNFα therapy across the heterogeneous patient population. When translated as a
companion diagnostic test, the seven-gene signature would identify patients who are
likely to benefit from biologic therapy (rule-in), while identifying patients unlikely to
respond (rule-out), enabling the clinician to identify other treatment modalities for them
substantially sooner. In other words, our seven-gene signature would aid the clinicians’
treatment decision by increasing the percentage of patients more likely to improve from
anti-TNFα therapy, while minimizing the number of patients who would not have a
response and, consequently, reducing the adverse side effects that diminish quality of
life. Collectively, our seven-gene signature would significantly reduce healthcare costs,
morbidity, and mortality.

To summarize, we report several important findings in this work. First, despite a
relatively low sample size and a limited number of datasets, we demonstrated that our
multicohort analysis framework with an LOSO approach identified 324 DE genes between
anti-TNFα responders and non-responders, despite biological, clinical, and technical hetero-
geneity between datasets. Second, we further illustrated that, from this broad set of genes,
we converged to a parsimonious seven-gene signature, using greedy forward search, and
achieved a pooled performance AUROC of 0.88. We expect this signature to be validated
in prospective patient cohorts, as this would enable us to develop a clinically actionable
predictive test.
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