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Background: Radiomics is an emerging field that translates medical images into
quantitative data to enable phenotypic profiling of human disease. In this retrospective
study, we asked whether it is possible to use image-based phenotyping to describe and
determine prognostic factors in the aging population.

Methods: A radiomic frailty cohort with 101 patients was included in the analysis (65 ±
15 years, 55 men). A total of 44 texture features were extracted from the segmented
muscle area of the ultrasound images of the anterior thigh. Univariate and multivariate
analyses were performed to assess the image data sets and clinical data.

Results: Our results showed that the heterogeneity of muscle was associated with an
increased incidence of hearing impairment, stroke, myocardial infarction, dementia/
memory loss, and falls in the following two years. Regression analysis revealed a
muscle radiomic model with 87.1% correct predictive value with good sensitivity and
moderate specificity (p = 0.001).

Conclusion: It is possible to develop and identify image-based phenotypes in the elderly
population. The muscle radiomic model needs to further be validated. Future studies
correlated with biological data (genomics, transcriptomics, metabolomics, etc.) will give
further insights into the biological basis and molecular processes of the developed
radiomic model.
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INTRODUCTION

Medical imaging provides the ability to detect and localize many anatomical or physiological changes
that are important to determine whether a disease is present or if therapy is effective (Prescott, 2013),
but to date, we describe complex diseases with simple numbers, such as the thickness or cross-
sectional area of your muscle. Current markers for Frailty are neither sensitive nor specific enough to
identify differences in disease phenotype and might inaccurately suggest a similarity in the
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contribution of various frailty risk factors or adverse events to
disease progression (Alvarez-Bustos et al., 2021).

The field of radiology is going through a revolution, starting with
an increased number of pattern recognition tools. These advances
have facilitated the development of “Radiomics”, a precision tool that
extracts intensity, shape, size, or texture from medical images using
data-characterization algorithms (Tomaszewski and Gillies, 2021).
This methodology has the power to translate medical images into
quantitative data to enable phenotypic profiling of human disease. It is
motivated by the concept that biomedical images contain information
that reflects underlying pathophysiology, and these relationships can
be revealed via quantitative image analysis that offers information on
the disease microenvironment and the disease state. This data is then
used to build diagnostic or predictive phenotypes. It has mostly been
used in the field of oncology for treatment response, outcome
prediction, and assessment of cancer genetics, otherwise known as
tumor phenotyping. (Gillies et al., 2016).

Our research group has focused on researching and developing
quantitative imaging biomarkers for the diagnosis, treatment, follow-
up, and risk assessment of frailty. In this Brief Research Report, we
would like to highlight the possible application of Radiomics as a
research method in the aging population. We believe it can also be
used to take a fresh look at other pathophysiological processes, such
as frailty. In this retrospective study, we asked whether it is possible
to use image-based phenotyping to describe and determine
prognostic factors in the aging population. We will also explore
and explain the usefulness and applicability of such methodology, as
well as its current limitations.

METHODS

Study Design
This was an exploratory study of previously acquired
ultrasound data (November 2014—February 2015) and its

corresponding follow-up clinical data (March 2017). The
cohort consisted of 112 patients between 20 and 90 years
old that previously participated in a cross-sectional frailty
study (64 ± 15 years, 61 men) (Mirón Mombiela et al.,
2017). We only excluded participants if image data was
missing from the original study. Radiomic features were
extracted from the segmented muscle area of the ultrasound
images of the anterior thigh. The clinical data mining included
obtaining physical characteristics, muscle performance data,
frailty phenotype, and quality of life. We also recorded about
30 comorbidities and risk factors from the patient’s medical
history at baseline and its incidence two years after the
ultrasound scanning. Univariate and multivariate analyses
were performed to assess associations of the radiomics
features with the clinical data (Figure 1). All research was
carried out by the relevant Spanish legislation and adhered to
the principles of bioethics included in the Declaration of
Helsinki. The Institutional Research and Ethics Committees
approved the study, and each patient gave written informed
consent before entering the original study.

Radiomics Features
We defined 44 radiomic image features that are used to describe
and characterize tissues and can be extracted in an automated
way. Four features were extracted from the intensity histogram
(first-order statistics) and the other 40 features were extracted
from second-order and higher-order statistical methods: from the
gray-level co-occurrence matrix (GLCM) 9 features were derived,
from the gray-level run-length matrix (GLRLM) 13 features, from
the gray-level size zone matrix (GLSZM) 13 features and from the
neighborhood gray-tone difference matrix (NGTDM) only 5. The
features were extracted using the MATLAB toolbox Radiomics
implemented by Vallières and others (Vallieres et al., 2015). The
full list of the radiomic features used in this study can be found in
Supplementary Table S1.

FIGURE 1 | Flowchart showing the main steps for developing descriptive and prognostic image-based phenotyping using radiomic features extracted from
ultrasound images. Abbreviations: MT: muscle thickness; VL: Vastus lateralis; RF: rectus femoris muscle; VI: vastus intermedius; F: Femur; PACS: Picture archiving and
communication system.
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Image Data Set
We applied a radiomic analysis to one previously acquired image
data set (MirónMombiela et al., 2017). The data set consisted of 7
ultrasound images from 101 patients after excluding those with
incomplete image data. The measured site was the midpoint
between the superior border of the patella and the anterior
superior iliac spine, with the transducer positioned
perpendicular to the longitudinal axis of the femoral
quadriceps (Mirón Mombiela et al., 2021). Three cross-
sectional images contained annotations from the previous
study and one longitudinal image were excluded from the
analysis. The other 3 cross-sectional images, all corresponding
to the anterior compartment of the right thigh, were downloaded
from the Picture Archiving and Communication System (PACS)
of the hospital, to perform the data segmentation and feature
extraction. The data segmentation was performed by a radiologist
with three years-experience in muscle ultrasound (R.M.M.). Each
muscle region of interest (ROI) was manually segmented in 2D
from the cross-sectional images of the rectus femoris muscle. The
segmented ROI excluded bone, fatty tissue, muscle fascia, and the
internal tendon of the rectus femoris muscle.

Clinical Data Set
At the time of the ultrasound scanning the following information
was collected: 1) physical characteristics that included patients
age, sex, weight, height, and body mass index (BMI); 2) muscle
performance that included muscle strength and gait speed; 3) the
Frailty Criteria (Fried et al., 2001); 4) quality of life that was based
on the use of the generic questionnaire for the elderly, known as
OPQOL-35 (Older’s People Quality of Life) (Bowling, 2009); and
5) comorbidities and risk factors. We recorded the presence or
absence of 30 comorbidities and risk factors and we followed up
its incidence for two years. We included hypertension,
hyperlipidemia, diabetes mellitus, chronic obstructive
pulmonary disease (COPD), hearing or visual impairment
developed in the last 6 months, Parkinson’s disease, stroke,
congestive heart failure, heart disease (that is not heart failure
nor myocardial infarction), myocardial infarction, renal disease,
previous cancer, arthritis and/or osteoarthritis, anxiety syndrome,
depression, previous fractures or osteoporosis, liver disease or
hepatopathy, dementia or memory loss, connective tissue disease,
hemiplegia, neoplasm, leukemia, malignant lymphoma, solid
metastasis, acquired-immunodeficiency syndrome (AIDS), and
peripheral vascular disease. The risk factors included smoking,
alcohol consumption, falls, and obesity. Finally, we recorded the
number of visits to a primary care physician, to the emergency
department, and hospital admissions in the last six months. Two
years after the ultrasound examination, we reviewed the subject’s
medical records and did a follow-up on the same variables
described before, and recorded its incidence. The full
description of how the frailty phenotype was obtained,
including grip strength and gait speed, and the classification
into groups can be found in Supplementary Appendix A1.

Sample Size
In texture analysis, the discriminative power of the predictive
model is dependent on having sufficient data. Radiomic analysis

can be performed with as few as 100 patients (Gillies et al., 2016).
Our study sample was calculated to meet this criterion. No other
sample calculations were performed.

Data Analysis
Descriptive data are presented with mean ± standard deviation
(SD) with the distribution of the data verified by the Kolmogorov-
Smirnov normality test. The evaluations of the different variables
of the study according to frailty phenotype and control group
were determined using ANOVA for the parametric variables, and
the non-parametric Kruskal-Wallis test was used. Correlations
were performed to investigate the relationship between physical
characteristics, muscle performance data, frailty phenotype,
quality of life, the incidence of comorbidities, and/or risk
factors, with the radiomic features. We used the coefficient of
Pearson (r) for parametric data, Spearman’s Rank for non-
parametric data, and Tau B of Kendal used for ordinal
variables. Heatmaps and Manhattan plots were used to
graphically represent the data and to better visualize the value
of the associations within the data. Hierarchical and K-Mean
cluster analysis was performed to identify the most relevant
grouping of radiomic features for the radiomic signature. Once
a radiomic phenotype and corresponding features were identified
a multiple logistic regression analysis was performed. We applied
a false discovery method by Benjamini and Hochberg as multiple
comparisons were performed during the study. All statistical
analyses were performed with SPSS version 24.0 for Windows
(IBM SPSS, Inc., Chicago, IL).

RESULTS

The sample was composed of 101 patients (64 ± 15 years, 55 men)
and there were 24 controls, 22 robust, 30 pre-frail, and 25 frail
patients (Supplementary Table S2). The physical characteristics (age,
weight, height, BMI, gait speed, and muscle strength), ultrasound
measurements (muscle thickness and subcutaneous fat thickness),
quality of life, sex, and frailty criteria distributed by the frailty
phenotype and the control group are shown in Supplementary
Table S2. The data shows that there are statistically significant
differences between age, height, BMI, gait speed, muscle thickness,
and quality of life, depending on the frailty phenotype. The weight
and subcutaneous fat thickness were distributed homogeneously
within the groups. In addition, females and males were also
homogeneously distributed. Supplementary Table S2 also shows
the number of positive criteria subjects had in each group, explaining
how patients were classified in the study. For comparison reasons, we
also applied the frailty criteria to controls.

Comorbidities at Baseline and Follow-Up
The analysis of comorbidities according to frailty phenotype
(Supplementary Table S3), shows how the distribution changes
among groups and increases in frequency at follow-up. At baseline,
11 out of 34 comorbidities surveyed were heterogeneous between the
groups, and at follow-up 19 out of 35. Among the comorbidities that
were statistically significant according to frailty phenotype at baseline
and follow-up are hypertension, hyperlipidemia, diabetes mellitus,
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visual impairment, stroke, congestive heart failure, heart disease,
renal disease, previous cancer, arthritis/osteoarthritis, anxiety/
depression, falls, obesity, number of visits to primary care,
number of visits to the emergency department, and
hospitalizations. There was no change in the prevalence of new
cases of leukemia, AIDS, Lymphoma, and alcohol consumption, so
variables were excluded from further analysis.

Association of Radiomic Data With Clinical
Data
We used multiple correlations of all the variables in this study
with the purpose to perform data mining, which refers to the
process of discovering patterns in large data sets (Gillies et al.,
2016) associated with imaging for further analysis. Radiomic
features had statistically significant correlations with age, gait
speed, frailty phenotype, subcutaneous fat tissue, and muscle
thickness (Supplementary Figure S1). Weight, height, BMI,
muscle strength, and quality of life had mostly weak to
moderate associations with a few to no significant correlations
with the radiomic features.

Prognostic Value of Radiomic Data
Both the Heatmap and Manhattan-Plot for radiomic features and
incidence of new diseases and risk factors showed weak to

moderate statistically significant associations (Figures 2A,B)
between the radiomic features taken at baseline and the
development of hearing impairment (35 out of 44 features),
stroke (37 out of 44 features), myocardial infarction (37 out of
44 features), dementia/memory loss (30 out of 44 features) and
falls (29 out of 44 features) after 2 years of follow-up. All other
variables evaluated lacked statistically significant associations or
the association was weak and were excluded from any further
analysis (like for example hypertension and number of visits to
primary care). These four diseases and one risk factor were
identified as radiomic signature or phenotype, and their
correlation coefficient values were further evaluated to identify
the radiomic features that could be used for constructing a
predictive model. Hierarchical and K-mean cluster analysis
was used for this purpose (Figure 2C) and identified three
independent clusters of radiomic features that were statistically
significant (p = 0.001). The complete list of radiomic features
corresponding to each cluster is found in the supplemental
materials (Supplementary Table S4).

Prognostic Validation of Radiomic
Phenotype
The muscle radiomic signature or phenotype identified a total of
22 subjects that developed 29 newly diagnosed comorbidities or

FIGURE 2 | Prognostic value of radiomic data. (A) Heatmap of Rho of Spearman Correlation coefficients for an association of Radiomic Features and Incidence of
new diseases and risk factors (n = 101). On the x-axis, radiomics features are shown, and on the y-axis are the incidence of comorbidities and risk factors. The elements
of the heatmap are color-coded depending on the value of the correlation coefficient. Red is for the highest value and green for the lowest, with 5 different colors in
between. Abbreviations: DM: Diabetes Mellitus; COPD: Chronic Obstructive Pulmonary Disease; #: number; PC: primary care; ED: emergency department; IHF:
Intensity Histogram Features; GLCM: Gray-Level Co-occurrence Matrix; GLRLM: Gray-Level run-Length Matrix; GLSZM: Gray-Level Size Zone Matrix; NGTDM:
Neighborhood Gray-Tone DifferenceMatrix. Note. Tau B of Kendal was used for the statistical analysis. (B)Manhattan plot of p-values for associations between radiomic
features and incidence of new diseases and risk factors (n = 101). p-values for univariate associations between each radiomic feature and the incidence of new disease
and risk factors after 2 years of following from baseline ultrasound. Radiomic features are situated on the x-axis in the same order as the heatmap, while the
corresponding p-values are located on the y-axis and graph with a -LOG10 (p-value) scale. Points above the red line (p= <0.05) indicate radiomic features in which case
the incidence of new diseases or risk factors showed significant association. (C) Hierarchical cluster dendrogram (n = 44). Hierarchical cluster dendrogram of radiomic
features significantly associated with hearing impairment, stroke, myocardial infarction, dementia or memory loss, and falls. Three independent clusters are identified for
the radiomic phenotype (p = 0.001).
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TABLE 1 | Multivariate Logistic Regression Analysis of Muscle Radiomic Phenotype Predictive Models (events = 29, n = 101).

Radiomic Signature
Models

Model Chi-
Square [df]

% Correct
Predictions

Sensitivity Specificity Hosmer
and Lemeshow

Test

Nagelkerke-
R2

Plot

Radiomic Model 1 53.54 [25], p = 0.001 87.1 92.4 68.2 0.999 0.634 Predictive
Radiomic Model 2 10.75 [4], p = 0.029 78.2 97.5 9.1 0.699 0.348 Not

Predictive
Radiomic Model 3 32.43 [14], p = 0.003 82.2 93.7 40.9 407 0.407 Not

Predictive

TABLE 2 | Stepwise multivariate logistic regression analysis of radiomic model 1.

Variables Radiomic features that
constitute the radiomic

model 1

Adjustment after strong
correlated variables

Calibration of the
radiomic model

Effect of age and frailty
phenotype on the
radiomic model

Wald
statistic*

p-value Wald
statistic*

p-value Wald
statistic*

p-value Wald
statistic*

p-value

Radiomic signature (dependent variable) 4,703 0.030 0.021 0.884 6,241 0.012 3,181 0.075
Small Zone Emphasis of GLSZM 2,162 0.141 0.018 0.892 2,407 0.121 0.553 0.457
Zone-Size Nonuniformity of GLSZM 2,758 0.097 0.018 0.892 2,875 0.090 1,030 0.310
Complexity of NGTDM 1,201 0.273 0.010 0.922 1,411 0.235 1,345 0.246
Short Run Emphasis of GLRLM 4,563 0.033 0.021 0.884 5,607 0.018 2,444 0.118
Run Length Nonuniformity of GLRLM 4,707 0.030 0.022 0.881 5,866 0.015 2,834 0.092
Run Percentage of GLRLM 0.992 0.319 0.019 0.891 1,276 0.259 0.107 0.744
Zone Percentage of GLSZM 2,851 0.091 0.021 0.886 2,739 0.098 2,461 0.117
Entropy of GLCM 1,033 0.309 0.000 0.999 0.008 0.930
Variance of GLCM 3,568 0.059 0.022 0.881 5,141 0.023 4,270 0.039
Variance of pixels 4,049 0.044 0.004 0.948 1,118 0.290 4,334 0.037
Gray-Level Variance of GLRLM 0.287 0.592 0.002 0.966 2,225 0.136 0.516 0.472
Contrast of GLCM 4,101 0.043 0.016 0.898 4,535 0.033 2,165 0.141
Dissimilarity of GLCM 2,920 0.087 0.018 0.894 2,225 0.136 0.001 0.970
Contrast of NGTDM 0.757 0.384 0.021 0.885 1,118 0.290 3,962 0.047
Grey-Level Variance of GLSZM 4,237 0.040 0.002 0.962 1,283 0.257
Strength of NGTDM 4,513 0.034 0.001 0.980 0.985 0.321
Correlation of GLCM 1,229 0.268 0.001 0.974 0.024 0.878
Auto-Correlation of GLCM 3,342 0.068 0.001 0.978 0.661 0.416
High Gray-Level Run Emphasis of GLRLM 2,369 0.124 0.016 0.900 3,780 0.052 0.808 0.369
Short Run High Gray-Level of GLRLM 2,989 0.084 0.016 0.898 4,735 0.030 2,570 0.109
High Gray-Level Zone Emphasis of GLSZM 0.283 0.595 0.002 0.969 0.657 0.417
Small Zone High Gray-Level Zone Emphasis of
GLSZM

1,575 0.209 0.016 0.900 5,125 0.024 2,626 0.105

Long Run High Gray-Level of GLRLM 4,335 0.037 0.023 0.881 3,323 0.068 4,388 0.036
Large Zone High Gray-Level Zone Emphasis of
GLSZM

4,352 0.037 0.023 0.878 5,314 0.021 4,461 0.035

Mean of pixels 1,902 0.168 0.014 0.905 2,954 0.086 1,997 0.158
Muscle Thickness (cm) 0.005 0.943 1,839 0.175
Subcutaneous Fat Thickness (cm) 0.015 0.902 2,660 0.103
Age (years) 0.022 0.883 3,552 0.059 2,282 0.131
Frailty Phenotype (Non-Frail/Frail) 0.000 0.990 0.012 0.914 3,846 0.050
Muscle Strength (kg) 0.003 0.954
Gait Speed (s) 0.013 0.910 2,207 0.137

Block Chi-Square [df] - 53.67 [6], p = <0.001 24.52 [5], p = 0,<0.001 15.86 [2], p = <0.001
Model Chi-Square [df] 52.21 [25], p = 0.001 105.88 [30], p = <0.001 61.31 [22], p = <0.001 69.40 [27], p = <0.001
Nagelkerke-R2 0.621 1,000 0.777 0.765
Hosmer y Lemeshow Test 0.069 1,000 0.970 0.922
Correct Predictions (%) 87.1 100.0 90.1 89.1

Abbreviations: GLCM, Gray-Level Co-occurrence Matrix; GLRLM, Gray-Level run-Length Matrix; GLSZM, Gray-Level Size Zone Matrix; NGTDM, Neighborhood gray-tone difference
matrix. *The Wald statistics are distributed chi-square with 1 degree of freedom. Sum Average of GLCM, was excluded of all statistical analysis because a Wald statistic equal to cero.
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events (2 hearing impairments, 4 strokes, 7 myocardial
infarctions, 11 dementia/memory loss, and 5 falls) in the
following two years. For the full characteristics of the sample
according to identified muscle radiomic phenotype see
Supplementary Table S4. To quantify the effects of each
radiomic predictive model on the likelihood of developing
hearing impairment, stroke, myocardial infarction, dementia/
memory loss, and/or falls, a multiple logistic regression
analysis was applied to the identified radiomic feature clusters.
The logistic regression analysis for all three models (Table 1) was
statistically significant (p = 0.029 to 0.001). The models explained
34.80–63% (Nagelkerke R2) of the variance in the radiomic
models. Although the data showed correct predictions ranging
from 78.1 to 87.1%, the regression analysis plots revealed that
only Model 1 was predictive of the outcome with good sensitivity
and moderate specificity. The other two models were good at
excluding disease or identifying individuals without this radiomic
phenotype. This is corroborated by the high sensitivity and low
specificity of both models.

Stepwise Logistic Regression Analysis of
Radiomic Model 1
A stepwise logistic regression analysis was applied to the best
model (see Table 2) to test the relation with the other relevant
clinical data identified (age, gait speed, frailty phenotype,
subcutaneous fat tissue, and muscle thickness) that were
significant to the muscle radiomic phenotype
(Supplementary Table S5) and the radiomics features
individually (Supplementary Figure S1). Block one shows in
detail the relation between the muscle radiomic phenotype
(dependent variable) and the radiomics features that
constituted model 1. Short Run Emphasis of GLRLM, Run
Length Nonuniformity of GLRLM, Variance of pixels,
Contrast of GLCM, Grey-Level Variance of GLSZM, Strength
of NGTDM, Long Run High Gray-Level of GLRLM, and Large
Zone High Gray-Level Zone Emphasis of GLSZM were
statistically significant (p < 0.05) and had the strongest
explanatory weight on the model. The second block assessed
the value of the strong correlated clinical variables with the
radiomic model 1, but because of the high amount of variables
included, all variables lose statistical significance. For this
reason, we recalibrate the model excluding the radiomic
feature with a Wald Statistic close to cero or cero and
evaluated Block 3 with the clinical variables again. Muscle
thickness, subcutaneous fat thickness, age, and gait speed had
a strong explanatory weight with the model, but no statistical
significance. The frailty phenotype had neither. This could be
due to the suppression effect due to the close nature between the
variables (age, frailty phenotype, and gait speed). Therefore,
block 4 evaluated the effect of only age and frailty phenotype on
the model given the big range of ages in the sample. Frailty
phenotype had a higher weight with the model and was
statistically significant, yet age was not statistically significant
to the model. And although blocks 3 and 4 were statistically
significant to the overall model, they did not improve
substantially the predictive capacity of the models.

False Discovery Rate for Multiple
Comparisons
This study tested the significance of thousands of variables, which
creates serious concerns over the accumulated Type 1 error.
Many of the significant developments within the field of so-
called “large-p, small-n” data analysis problems are robust
methods for the accommodation of multiple testing issues
(Kumar et al., 2012). We applied the FDR method to give
reasonable guidance on the validity of our results (Benjamini
and Cohen, 2017). The q-value in this study is 4.6%, which means
that approximately less than 5% of significant results are false
positives.

DISCUSSION

Radiomics aims to capture the informative content hidden in
medical images, overcoming the limitations of the human eyes
and human cognitive patterns (Gatta et al., 2020). These patterns
can be expressed in terms of macroscopic image-based radiomic
features. This allows us to infer phenotypes or signatures, possibly
containing prognostic information from quantitative analysis of
routine medical image data (Lambin et al., 2012).

This study shows that it is possible to use image-based
phenotyping or radiomics, to describe and determine
prognostic factors in the aging population (Figure 3). First,
the image analysis revealed a distinct radiomic phenotype/
signature capturing an association between muscle
heterogeneity detected by ultrasound radiomic features and the
incidence of hearing impairment, stroke, myocardial infarction,
dementia/memory loss, and falls in the following two years
(Figure 2 and Supplementary Table S4). Second, our sample
did develop a variety of comorbidities in the following two years
after the ultrasound scanning (Supplementary Table S3), but the
radiomic features extracted from muscle seem to be insensitive to
all other newly diagnosed comorbidities (Figure 2A). Thus
establishing a relationship between the radiomic features
extracted from muscle ultrasound and hearing impairment,
stroke, myocardial infarction, dementia/memory loss, and falls
found in this sample. Lastly, the regression analysis provides
evidence of a good statistically significant predictive model
(Table 1), allowing us to imply the prognostic value of muscle
ultrasound scanning. Even after being adjusted for several strong
correlated variables, the model remains stable where the adjusted
variables had little effect on the prediction capacity of the model
(Table 2).

The prognostic model we propose is simple and can be built
solely from data extracted from a routine muscle ultrasound
examination. Radiomic signature consisted of 26 radiomic
features, 4 focused on the variance of the pixels, 8 focused on
the distribution of pixels with high gray-level, and 14 focused on
the amount of heterogeneity the distribution of the pixels had.
Not all features were evenly weighted; as some had higher Walt
statistics concerning the model (Table 2). In biological terms, the
individual components of the radiomic model describe patients
that develop the radiomic phenotype. Theses patients had an
altered muscle structure, characterized with increased muscle
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echo intensity or higher grey-levels and heterogeneity or patchy
distribution of those pixels with high grey-levels in the ultrasound
images. While the other two models that were good at excluding
the radiomics phenotype where characterized by radiomics
features that focused on the distribution or presence of low
grey-levels and homogeneity (Supplementary Table S4),
imaging characteristics of a normal-looking muscle. Muscle
quality, expressed as echo-intensity, has been researched with
great interest and ultrasound can identify structural changes in
the muscle caused by muscle degeneration, specifically the
increase of adipose and intramuscular connective tissue that
results in an increased echo-intensity of the assessed muscle
(Pillen et al., 2009; Wilhelm et al., 2014; Akima et al., 2016).
Studies that have used fractal dimension, a texture radiomic
feature, to characterize muscle changes with ultrasound, have
found similar evidence of increased connective tissue and fiber
disorganization in the muscle as echo-intensity and heterogeneity
increases (Cury et al., 2018; Mirón Mombiela et al., 2021).

When aspects of the mitochondrial theory of aging were
examined in single muscle fibers instead of whole muscle
homogenates, it was discovered that some segments of fibers
were completely deficient for electron transport chain (ETC)
activity. There was a near-complete absence of normal mtDNA in
these regions, suggesting that ETC activity was closely linked to
the status of mtDNA in the region. Furthermore, fibers displaying
these mtDNA deletions and ETC deficiencies were also
significantly atrophied. These observations suggest that
mtDNA deletions may appear in a stochastic manner in small
segments of single fibers leading to the death of a segment of a
fiber (Johnston et al., 2008). These findings may explain why one
of the most predominant findings of muscle ultrasound in this
study in the aging population is increased heterogeneity
measured by its echo intensity.

Given the range of different ages (range from 20 to 90 years
old) included in the study, one might question the strong
predictive power of radiomics phenotype is because of the

number of younger patients included in the control and
robust group. Others might also think as odd to include a
control group in a non-experimental design, but the presence
of control groups allows researchers to confirm that study
results are due to either manipulation of independent
variables or inherent characteristics of the patients being
studied rather than extraneous variables. For this reason, we
conducted an analysis of the age and frailty phenotype effect had
on the radiomic model (Table 2). The results show that age was
not statistically significant and had a small effect on the model,
reducing the possibility of confirmation bias due to the ages
included in the sample. On the other hand, frailtyWald statistics
and p-value change erratically in response to small changes in
the model from one block to the other one. This could be
because of multicollinearity of the variable, as the Fried frailty
phenotype involves muscle dysfunction at its core and increased
echo-intensity has been reported associated with muscle
strength, muscle thickness, and gait speed—markers with
strong relationships with frailty status in previous research
(Bartley and Studenski, 2017). Ultimately, multicollinearity
does not reduce the predictive power or reliability of the
model as a whole, it only affects calculations regarding
individual predictors.

These results thus lend further credence to earlier studies. One
is that radiological images can detect structural muscle changes in
the aging population and that these changes can predict
important clinical outcomes, implying the importance of
detecting muscle quality in radiological images (Boutin and
Lenchik, 2020; Pickhardt et al., 2021). Notwithstanding, it also
adds to the current body of literature the capacity of medical
images, in this case, muscle ultrasound, to predict adverse
outcomes and identify those at risk of serious disease and
substantial disability. The ultrasound muscle changes in the
aging subjects that we report here are also reminiscent of
other published evidence that indicate that ultrasound
assessment of muscle can predict the length of stay in the

FIGURE 3 |Mitochondrial radiomic signature of ultrasound images. Radiomics aims to capture the informative content hidden in medical images, overcoming the
limitations of the human eyes and human cognitive patterns. These patterns can be expressed in terms of macroscopic image-based radiomic features and carry
information about their underlying pathophysiological processes and pinpoint specific biological mechanisms. This allows us to infer phenotypes or signatures, including
prognostic information. Here we graphically showed that a radiomic phenotype, capturing themuscle heterogeneity, was strongly prognostic of the development of
hearing impairment, stroke, myocardial infarction, dementia/memory loss, and/or falls. Based on the type of disease associated with the muscle ultrasound changes, we
also believe this identified group of diseases shares a mitochondrial link. Icons utilized in this figure were obtain from the Noun Project from the following authors: Gorkem
Oner (mitochondria), Gregor Cresnar (ear), Artem Kovyazin (brain), Tatina Vazest (heart), Luis Padra (fading head) and Visual Language Company (slipping person).
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intensive care unit (Gruther et al., 2008), postsurgical
complications (Mueller et al., 2016), frailty (Shah et al., 2019),
decreased quality of life (Mirón Mombiela et al., 2017), and/or
survival (Greening et al., 2015; Lee et al., 2021; Yanagi et al.,
2021). We build on that statement that muscle changes can
predict the new onset of hearing impairment, stroke,
myocardial infarction, dementia/memory loss, and/or falls in a
subgroup of aging individuals using radiomics methodology.

Usefulness and Applicability of Radiomic
Methodology
One of the main benefits is that medical imaging data acquired in
routine healthcare can be used in a new way to inform clinicians
about the biology of a disease and provide potential prognostic or
predictive information (O’Connor et al., 2015). With a rather
wide variability in the prognosis of aging individuals, there is an
urgent need for more precise and readily define prognostic
parameters to group patients according to disease risk, to
facilitate treatment options, and radiomics methodology could
provide that.

Strengths and Limitations
This study has two major strengths. One that is a longitudinal
study in comparison to one-time measures studies, which are
lacking in the frailty literature, which allows for a better
understanding of the adverse outcome prediction (Hwang
et al., 2021). And second, albeit the retrospective nature of the
study, the images utilized here were obtained prospectively, so
imaging protocols, settings, and acquisition were standardized in
the previous study, something that is not common in radiomic
studies (Van Timmeren et al., 2020).

Our study must also be interpreted with caution as the findings
are based on a limited sample size from a single center. As with other
radiomics studies, there is an inherent need for a high number of
patients, otherwise, it leads to overfitting of data or finding
relationships where there are none, also called false discovery
(Limkin et al., 2017). The limited number of adverse events in
this study (i.e., only two patients develop hearing impairment over a
median follow-up of 2 years) means that further testing in
independent cohorts is needed to refine and calibrate the
radiomic model. Confirmation of our results in studies with
more patients and longer follow-up time is therefore warranted
(Oikonomou et al., 2019). However, the best way to assess the
potential clinical value of a model is validation with prospectively
collected independent cohorts, ideally clinical trials (Rizzo et al.,
2018). A future prospective cohort or analysis of retrospectively
randomized clinical data is required to validate the radiomic
phenotype (Lu et al., 2019).

Another limitation of this methodology is that unfortunately,
neither the computational feature by traditional radiomics nor the
use of machine learning or deep network learning can explain the
function of radiomics for predicting clinical events. The
interpretability of this method is not strong, and in particular,
explanations of the underlying biological and molecular
mechanisms are lacking to none existent (Gao et al., 2021).
Although we have performed a robust statistical analysis, it

should be emphasized that radiomic analyses can be used to
identify correlations or associations, not causes; thus, they are not
expected to enable definitive assessment of contents of tissue through
imaging alone (Gillies et al., 2016). That is why one of the major
drawbacks of this study is the lack of biological data for comparison
and validation purposes. Efforts to introduce biological meaning into
radiomics are gaining traction in the field with distinct approaches
available (Tomaszewski and Gillies, 2021).

Furthermore, radiomics in general still faces many
challenges, including the stability and reproducibility of the
developed phenotypes or predictive models, as well as the
interpretability before it can be translated to clinical
applications (Ibrahim et al., 2021). To account for these
sources of variability researchers in radiomics need to image
at multiple time points, perform phantom studies, and analyzed
how sensitive the radiomics models are for different
segmentation methods. However, as with any emerging
methodology, proof-of-concept investigations need to be first
conducted to see what the potential applications and limitations
of a new methodology are (Kolossvary and Maurovich-Horvat,
2019).

Future Directions
It is hypothesized that phenotype similarities of different disorders
may indicate biological relationships of the underlying genes
(Scharfe et al., 2009). Mitochondrial dysfunction has been
identified in cancer, infertility, diabetes, heart diseases, blindness,
deafness, stroke, dwarfism, and resulting fromnumerousmedication
toxicities. Mitochondrial dysfunction is also involved in normal
aging and age-related neurodegenerative diseases, such as
Parkinson’s and Alzheimer’s diseases (Goldstein and Wolfe,
2013). The pathogenesis of muscle dysfunction in the aging
individual is multifaceted and encompasses lifestyle habits,
systemic factors, local environment perturbations, and
intramuscular specific processes. However, in this scenario,
derangements in skeletal myocyte mitochondrial function are also
recognized as major factors contributing to the age-dependent
muscle dysfunction (Adelnia et al., 2019; Liu et al., 2021).
Although mitochondrial defects affect many cellular processes,
the phenotype patterns predominantly represent deficiencies in
energy metabolism Zampino et al., 2020 with the nervous system
and the cardiac system being most susceptible. Thus, our results
showing a higher proportion of neurological (e.g., dementia, stroke,
and hearing impairment), cardiological (e.g., myocardial infarction),
associated with muscle dysfunction (e.g., falls, ultrasonic muscle
changes), lead to the proposed hypothesis that the muscle radiomic
phenotype could be due to mitochondrial dysfunction.

In the future, we hope to connect our radiomics data with other
data such as genetics, transcriptomics, proteomics, or metabolomics
to achieve better identification of actual pathways of disease
progression and to investigate evolving physiology in this field
(Gillies et al., 2016). Data sets could be used as an initial
framework for linking genes and pathways to clinical or
radiological phenotypes (Calvo and Mootha, 2010). We believe
that the mitochondrial theory of aging hypothesis could also be
supported by image-guided biopsies or the use of circulating cell-free
mitochondrial DNA, which could demonstrate that the imaging
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muscle shows spatial differences in protein expression, gene
expression, etc. Some authors suggest that image-guided
proteomics holds promise for characterizing tissues (Lambin
et al., 2012) and pay the way for understanding the physiological
and molecular mechanism of aging.

Conclusion
Although this study has several limitations, including its
retrospective nature, a small number of events and patients, and
the lack of biological correlation, it demonstrates the feasibility and
usefulness of radiomics methodology for building prognostic image-
based phenotyping in the elderly and frail population. The muscle
radiomic model needs to further be validated. Future studies
correlated with biological data (genomics, transcriptomics,
metabolomics, etc.) will give further insights into the biological
basis and molecular processes of the developed radiomic model.
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