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A B S T R A C T   

Understanding and classifying Chest X-Ray (CXR) and computerised tomography (CT) images are of great sig-
nificance for COVID-19 diagnosis. The existing research on the classification for COVID-19 cases faces the 
challenges of data imbalance, insufficient generalisability, the lack of comparative study, etc. To address these 
problems, this paper proposes a type of modified MobileNet to classify COVID-19 CXR images and a modified 
ResNet architecture for CT image classification. In particular, a modification method of convolutional neural 
networks (CNN) is designed to solve the gradient vanishing problem and improve the classification performance 
through dynamically combining features in different layers of a CNN. The modified MobileNet is applied to the 
classification of COVID-19, Tuberculosis, viral pneumonia (with the exception of COVID-19), bacterial pneu-
monia and normal controls using CXR images. Also, the proposed modified ResNet is used for the classification of 
COVID-19, non-COVID-19 infections and normal controls using CT images. The results show that the proposed 
methods achieve 99.6% test accuracy on the five-category CXR image dataset and 99.3% test accuracy on the CT 
image dataset. Six advanced CNN architectures and two specific COVID-19 detection models, i.e., COVID-Net and 
COVIDNet-CT are used in comparative studies. Two benchmark datasets and a CXR image dataset which com-
bines eight different CXR image sources are employed to evaluate the performance of the above models. The 
results show that the proposed methods outperform the comparative models in classification accuracy, sensi-
tivity, and precision, which demonstrate their potential in computer-aided diagnosis for healthcare applications.   

1. Introduction 

In the fight against COVID-19, the immediate and accurate screening 
of infected patients is of great significance. As widely used screening 
approaches, chest X-Ray (CXR) and computed tomography (CT) play an 
important role in the diagnosis of COVID-19 cases, especially when viral 
testing is in short supply. 

Studies showed that changes occur in CXR and CT images before the 
beginning of COVID-19 symptoms for some patients [1,2]. Also, the 
symptoms of COVID-19 and other lung diseases can be similar in their 
very early stages [3]. It is crucial to effectively distinguish COVID-19 
from other lung diseases during the early stages, otherwise inaccurate 
diagnoses may expose more people to coronavirus. 

The development of deep learning techniques enables end-to-end 
image classification without manual feature engineering. In the 
domain of COVID-19 detection, deep learning techniques have been 
widely adopted for related classification tasks [4–6]. For example, in 
Ref. [7], Inception net was utilized for COVID-19 outbreak screening 

with CXRs [8]. proposed a type of patch-based convolutional neural 
network (CNN) with a small amount of trainable parameters for 
COVID-19 diagnosis. The research in Ref. [9] considered flat and hier-
archical classification scenarios for COVID-19 identification for more 
than three classes. In Ref. [10], two algorithms including a deep neural 
network on the fractal feature of images and a CNN architecture with the 
direct use of the CXR images were presented. The above research 
demonstrates that the advantage of deep learning methods for CXR 
image classification is mainly the capability of capturing the pixel-level 
information which cannot be obviously noticed by human eyes. 

Having reviewed the success of the reported applications, the exist-
ing studies on COVID-19 classification also show some limitations and 
challenges. First, as the number of available training data is limited, data 
imbalances of different classes are found in plenty of the literature. Deep 
learning models are unlikely to be well trained by the unbalanced data, 
and the high accuracy in these circumstances cannot guarantee the 
effectiveness of COVID-19 detection. Furthermore, after a careful com-
parison of the images from different data sources, it can be found that 
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images in different classes vary in image quality, orientation, brightness, 
etc. The algorithms might take these into account during classification 
rather than focusing on the disease related information in images. 

In this research, we aim to design a COVID-19 detection system based 
on deep learning techniques which can be used in the screening process 
of COVID-19 CXR and CT images. Motivated by the fact that the viral test 
requires waiting time to obtain the results, the developed end-to-end 
medical images classification frameworks attempt to accelerate the 
testing process, alleviate the workload of clinicians in manual images 
processing, and provide patients with timely results, all of which facil-
itate effective isolation to further control the spread of coronavirus. 

To address the problem of data imbalance, we combined eight 
different data sources, such that each class in the dataset had a similar 
number of samples. To establish a more effective and suitable model for 
COVID-19 classification, we compared the classification results of 
several widely used CNN architectures which included VGG, ResNet, 
DenseNet, MobileNet, Inception and SqueezeNet. Among those models, 
we found that MobileNet achieved the best performance in COVID-19 
classification of CXR images, and ResNet achieved high test accuracy 
with less computational budget in the classification of CT images. 
Although MobileNet and ResNet possessed satisfactory classification 
performance, overfitting and gradient vanishing problems still occurred 
during training. 

To overcome these obstacles and further improve the classification 
performance of deep learning models, we proposed a type of dynamic 
CNN modification method which combines low-level and high-level 
features in the original model, such that the model is able to converge 
faster, be more robust and reach higher classification accuracy. The 
experimental results demonstrate that the proposed method achieves 
average 99.7% test accuracy in three-category classification, average 
99.9% test accuracy in four-category classification and average 99.6% in 
five-category classification, which surpass the original MobileNet 
architecture. 

The contributions of this paper are summarized as follows:  

• A type of dynamic CNN modification method is proposed in this 
paper for the detection of COVID-19 cases. The proposed method 
combines features in different layers of a CNN using weights that are 
dynamically changed according to the inputs. The modified Mobi-
leNet and modified ResNet are respectively applied to the classifi-
cation of CXR images and CT images for the COVID-19 detection.  

• To facilitate effective diagnosis, three classification scenarios are 
considered in this paper: (a) five-category classification: COVID-19 
infection, bacterial pneumonia, viral pneumonia (with the excep-
tion of COVID-19), tuberculosis, and normal controls; (b) four- 
category classification: COVID-19, Non-COVID-19 pneumonia, 
tuberculosis, and normal controls; (c) three-category classification: 
COVID-19, Non-COVID-19 infections, and normal controls.  

• Comprehensive comparisons are conducted in this research which 
include the comparisons between the proposed method and two 
recently published models, i.e., COVID-Net [11] and COVIDNet-CT 
[12]. Also, six widely used deep learning methods, VGG16 [13], 
Inceptionv3 [14], ResNet18_v1 [15], DenseNet121 [16], Mobile-
Netv3_small [17], and SqueezeNet1.0 [18], are employed for model 
selection and comparison.  

• The proposed models obtain the test accuracy of 99.6% on the 5-class 
CXR image dataset, 95.0% on the COVIDx dataset [11], and 99.3% 
on the COVIDx-CT dataset [12]. The dynamic CNN modification 
method alleviates the gradient vanishing problem, achieves satis-
factory sensitivity, precision, and strong robustness in classification. 

The implementation process of this paper is shown in Fig. 1, which 
will be elaborated in the following Sections. The rest of this paper is 
arranged as follows. Section 2 introduces the background of this 
research. Data information is introduced in Section 3. Six widely used 
CNN architectures applied to the COVID-19 classification are illustrated 
in Section 4. Section 5 presents the proposed dynamic modification 
method, especially, the modified MobileNet architecture is proposed for 
the classification of CXR images. Modified ResNet with applications on 
COVID-19 CT image classification is elaborated in Section 6. The 
robustness test is then analysed in Section 7. Section 8 makes the 
conclusion. 

2. Background 

2.1. COVID-19 related research 

Detecting COVID-19 with deep learning techniques is a trending 
topic and has attracted extensive attention recently. Promising results 
using advanced CNNs have been published and continue to emerge in 
this domain. In the detection of COVID-19, CXR images and CT images 
are the two main types of datasets used for classification. In addition, 
wearable sensor signals have been used as inputs for COVID-19 detec-
tion recently [19]. 

In the detection of COVID-19, a variety of deep learning models have 
been designed and achieved success in medical images classification. 
Researchers in Ref. [1] proposed a type of deep learning method named 
DarkCovidNet, which achieved 98.08% test accuracy in binary classifi-
cation and 87.02% test accuracy in three-category classification. In 
Ref. [11], COVID-Net, a tailored deep learning model derived through 
generative synthesis [20]) was used for the detection of COVID-19 cases 
with CXR images. The authors in this research also compiled CXR images 
from various open sources and made them available to the general 
public. For the chest CT images, a type of COVIDNet-CT model was 
proposed in Ref. [12] to identify COVID-19, non-COVID-19 pneumonia 
and normal cases using a machine-driven design exploration approach 

Fig. 1. Diagram of the implementation process.  
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which was similar to the method in Ref. [11]. Another contribution of 
this research is the introduction of COVIDx-CT, a benchmark CT image 
dataset derived from CT imaging data which consists of 104,009 images 
across 1489 patient cases. 

However, it must be acknowledged that there are also limitations in 
COVID-19 detection using deep learning techniques. Firstly, to control 
the spread of COVID-19 and protect people, many countries have issued 
a self-isolation policy, and people who begin to have mild symptoms are 
quarantined without CXR or CT examinations [21]. Thus, in the current 
CXR and CT image datasets, the number images of patients with severe 
COVID-19 symptoms is far greater than the number of images of patients 
suffering from only mild symptoms [21]. Secondly, the related research, 
especially that was conducted in 2020, suffered from a lack of COVID-19 
images and data imbalance. For example, in studies [4,8,21–24], the 
number of COVID-19 images ranges from 50 to 300, and in some studies 
the number of data in different categories is much imbalanced. Thirdly, 
there are no standard criteria in model evaluation, which leads to less 
effective comparison of the performance among different models. Also, 
with the increasing number of deep learning methods proposed in this 
domain, it would be more and more difficult for researchers and health 
organisations to select the most appropriate classification method for 
COVID-19 detection [25]. 

Motivated by these factors, this paper proposes a dynamic CNN 
modification method which are applied to MobileNetv3 and ResNet18 
for the classification of CXR and CT images. The datasets used in this 
paper are from a combination of different data sources, in which the 
number of samples is balanced and sufficient for model training. In 
addition, to provide fair and comprehensive comparison with other 
methods, we used two benchmark datasets, COVIDx [11] and 
COVIDx-CT [12], to evaluate the proposed method. In particular, we 
used the same performance indicators with [11,12] for result compari-
son, and the same training and testing datasets in comparative studies. 

2.2. Modern CNN models 

The preliminaries of CNN architectures adopted in this paper are 
introduced in this section. 

As one of the most important and prominent models in deep learning 
methods, CNNs have shown advantages in many application areas, such 
as computer vision, speech recognition and medical diagnosis [26–28]. 
In the ImageNet LSVRC-2012 competition, a revolutionary CNN archi-
tecture named AlexNet demonstrated that deep CNNs are able to achieve 
excellent performance on highly challenging datasets with purely su-
pervised learning [29]. Alex et al. developed a wide range of network 
settings and training skills, such as ReLU, dropout, pooling and local 
response normalization, which made it possible to train deep CNNs more 

effectively and achieve better performance [29,30]. 
In recent years, more advanced networks based on AlexNet were 

created, such as VGG, GoogLeNet, ResNet, DenseNet, MobileNet, 
SqueezeNet, etc.. In 2013, Network in Network (NiN) structure was 
proposed in Ref. [31], which introduced 1 × 1 convolutional layer to act 
as fully-connected layers on the channels, such that each basic block in 
the model is like a complete network. VGG is proposed in Ref. [13] 
which offers a template for using loops and subroutines to design new 
networks. Taking advantages of repeated convolutional blocks proposed 
in VGG and the structure of NiN, GoogLeNet combines convolution 
kernels with different size, uses Inception blocks and employs 1 × 1 
convolutions to reduce channel dimensionality [32]. In 2015, a novel 
type of CNN architecture named ResNet was proposed in Ref. [33], 
which profoundly influence network structure design thereafter. ResNet 
realized identity mappling through inserting shortcut connections be-
tween layers, which well-defines the function complexity for adding new 
residual blocks and obviously improves CNNs’ classification perfor-
mance [33]. DenseNet extended the architecture of ResNet by using 
concatenation as the cross-layer connections, and make each layer 
densely connected to the last layer in these connections [16]. 

The above CNN architectures mainly focus on improving model ac-
curacy. Another stream in this field was developed to improve the 
training efficiency of CNNs, which focused more on reducing compu-
tational budget of CNNs with reasonable compromising of accuracy. 
MobileNet is a typical model designed in this context. The first version of 
MobileNet was proposed in 2017, aiming at achieving the resource and 
accuracy tradeoffs. It uses the depthwise separable convolutions to build 
light weight deep neural networks [34] and is designed for training on 
mobile devices. Another commonly used model is SqueezeNet, in which 
the amount of weights was reduced to 50 times less than AlexNet but the 
accuracy was kept almost the same as AlexNet [18]. 

Recently published studies [4,8,21–24,35] have shown that VGG 
[13], Inception [14], ResNet [15], DenseNet [16], MobileNet [17] and 
SqueezeNet [18] demonstrated effectiveness in COVID-19 detection. 
Therefore, these models are employed in this paper for model selection 
and comparative studies. 

3. Data information 

Four classes of lung diseases are considered in this paper: COVID-19, 
bacterial pneumonia, viral pneumonia (except for COVID-19) and 
tuberculosis. In addition, healthy cases are included as the fifth class. 
The representative samples of each class are shown in Fig. 2. The dataset 
used in this paper is the combination across four publicly available data 
sources (DS): 

The distribution of samples across 7 data sources and the split of 

Fig. 2. Example CXR images from data sources [24,36–39].  

• COVID-19 CXR images are from the open source GitHub repository ieee8023/covid-chestxray-dataset (DS 1) [36], Actualmed-COVID-chestxray-dataset (DS 2), 
Fig. 1-COVID-chestx-ray-dataset (DS 3) [37], COVID-19 Radiography Database (DS 4) [24]. Data preparing for COVID-19 images in this paper referred to the code 
provided in the GitHub repository COVIDx Dataset contributed by Linda Wang et al. [11].  

• The images of tuberculosis positive cases are from the dataset [38] which include CXR databases respectively obtained in Shenzhen, China and Montgomery, USA 
(DS 5), and the data source TB Portals Program, Office of Cyber Infrastructure and Computational Biology (OCICB), National Institute of Allergy and Infectious 
Diseases (NIAID) (DS 6).  

• The bacterial and viral pneumonia CXR images are from Pneumonia Classification Dataset (DS 7) [39].  
• The CXR images of normal controls are from COVID-19 Radiography Database (DS 4) [24]. 
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train, validation and test sets are shown in Table 1. 
The classification of COVID-19 cases using CT images is also inves-

tigated in this paper. The data information of CT images for COVID-19 
detection refers to Section 6. 

4. CNNs applied to the COVID-19 detection 

In order to obtain the most suitable model for the classification task, 

we first employed six widely used CNN architectures which have proven 
to be successful in computer vision and medical diagnosis. 

As mentioned in Section 2, we employed VGG16 [13], Inceptionv3 
[14], ResNet18_v1 [15], DenseNet121 [16], MobileNetv3_small [17] 
and SqueezeNet1.0 [18] for COVID-19 detection in this paper. The 
model versions are determined by the trade-off of classification perfor-
mance and computational costs. For example, in our experiments, 
ResNet18 and ResNet50 reached a similar accuracy in classification. In 
this case we chose ResNet18 rather than ResNet50 due to its greater 
parameter efficiency and lower computational cost. Also, the models 
were selected based on the classification performance reported in the 
related literature. During the experiments, the above models were set to 
be the pretrained mode. Therefore, they possess the weights and 
hyper-parameters fine tuned on ImageNet. As 5 classes are investigated 
in this paper, the ouput layer in the above models are revised to have 5 
nodes. 

The classification results are depicted in Fig. 3. As the models are 
pretrained, almost all models in Fig. 3 achieve above 80% test accuracy 
after 30 epochs. The test accuracy and the size of parameters of each 
model are listed in Table 2. 

According to the test accuracy shown in Table 2, both DenseNet121 
and MobileNetv3_small have a test accuracy of 98.8%. However, from 
the validation accuracy shown in Fig. 3, it can be viewed that Dense-
Net121 has a larger oscillation in the training process compared to the 
MobileNet. In addition, the parameters of DenseNet121 are about four 
times the size of MobileNet, which indicates that MobileNet has greater 
parameter efficiency. Therefore, MobileNetv3_small proposed in 
Ref. [17] is selected as the backbone model for the CXR image 

Table 1 
Sample distributions and the split of training and testing sets (DS denotes data sources).  

Classes Total samples Training Testing DS1 DS2 DS3 DS4 DS5 DS6 DS7 

COVID-19 1770 1570 200 478 58 35 1199    
Tuberculosis 1436 1236 200     394 1042  
Normal 1341 1141 200    1341    
bacterial pneumonia 1700 1500 200       1700 
viral pneumonia 1345 1145 200       1345 
Total 7592 6592 1000 478 58 35 2540 394 1042 3045  

Fig. 3. Validation accuracy for six CNN models on the Chest X-Ray 
image dataset. 

Table 2 
Classification performance of six widely used CNN architectures: VGG, Inception, ResNet, DenseNet, SqueezeNet and MobileNet.  

PerformanceCNNs VGG16 Inceptionv3 ResNet18_v1 DenseNet121 SqueezeNet1.0 MobileNetv3_small 

Test Accuracy (%) 93.9 96.9 96.5 98.8 94.9 98.8 
Params (MB) 537.0 87.4 44.8 28.2 3.0 6.7  

Fig. 4. The structure of the Modified MobileNet. The contents of the original MobileNetv3_small are kept and denoted by light blue, whereas the dark blue blocks 
represent the modified parts. w1,…,w5 are the weights respectively multiplied by the outputs of each pointwise conv block. × represents element-wise multipli-
cation, ⊕ denotes the addition of five outputs of pointwise conv blocks multiplied by the corresponding weights w1,…,w5. 
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classification in this paper. 
However, in the process of training MobileNet, we found that over- 

fitting problem occurred which can be viewed from the divergence of 
the training and validation accuracy shown in Fig. 5(a). We also found 
that the gradients in the top four blocks of MobileNet were very small 
along with the training. To improve the classification performance of 
MobileNet and address the over-fitting problem, we proposed a type of 
modified MobileNet for the COVID-19 detection. 

5. Modified MobileNet with applications on COVID-19 chest X- 
Ray image classificaiton 

Motivated by the design of ResNet and the channel attention 
mechanism in SENet [40], we proposed a type of modified MobileNet 
based on the architecture of MobileNetv3_small in Ref. [17]. In the 
original MobileNetv3_small, as mentioned above, vanishing gradient 
and overfitting problems occurred, which are shown in Figs. 5 and 6. 
Furthermore, there is no residual connection in the top three blocks of 
MobileNetv3_small as the stride of these three layers is 2. Based on the 
above observations, we designed a type of modified MobileNet to make 
the model more adaptive to our dataset. 

The structure of the proposed method is depicted in Fig. 4, the cor-
responding configuration of hyper-parameters is shown in Table 3. In 
the modified MobileNet, the outputs of the top four blocks of the original 
model are processed by a pointwise convolution block, which is deigned 
to reduce the channel dimensionality and keep the ouputs of different 
layers summable. The outputs of five pointwise conv blocks are multi-
plied by the corresponding weights (w1, …, w5). As the weights are 
variable during training, the outputs of pointwise conv blocks are 
dynamically weighted and added. The weights are in a 1 × 5 vector 
which is the output of the first pointwise conv block with five channels 
fed by the inputs. The configuration of hyper-parameters can be found in 
Table 3. With this modified CNN architecture, we aim to:  

• Combine low-level and high-level information of the original 
network.  

• Address the overfitting problem occurred in the original MobileNet 
(Fig. 5(a)).  

• Solve the gradient vanishing problem during training (Fig. 6). 

In essence, the proposed CNN structure is changed dynamically ac-
cording to the input data. It is because the outputs of pointwise conv 
blocks (Fig. 4) are multiplied by the corresponding weights wi where the 
weights are obtained from a pointwise conv block. As the weights are 
variable and determined by the inputs, the outputs of pointwise conv 
blocks are dynamically weighted and combined. Therefore, this CNN 
modification method provides dynamic combinations of pointwise conv 
blocks which are adaptive to the inputs. 

In the original MobileNet, the output layer is a convolutional layer 
with 1024 input channels and 1 × 1 convolution kernels. This design 
achieved satisfactory classification results in ImageNet with 1000 clas-
ses, however, the large amount of parameters leads to extra computa-
tional burdens and over-fitting problem for the 5-class COVID-19 
classification task. The pointwise conv blocks in the branch circuits are 
used to first reduce the number of channels through the convolutional 
layer with 64 channels and 1 × 1 filters, and secondly reduce the spatial 

Fig. 5. Training and validation accuracy of original MobileNetv3_small and 
modified MobileNetv3_small. 

Fig. 6. Gradient values of the first eight convolutional layers in the original and 
modified MobileNet. 

Table 3 
Configuration of hyper-parameters used for training the original and modified MobileNet.  

ModelsParameters Input size Batch size Loss function optimizera epochs channels in PCBb 

Original MobileNet 299× 299× 3  128 softmax cross entropy adam + sgd 40 – 
Modified MobileNet 299× 299× 3  128 softmax cross entropy adam + sgd 40 5, 64c  

a The first 20 epochs: adam; the second 20 epochs: sgd. 
b Pointwise Conv Block. 
c The number of channels in PCB1: 5; PCB2 – PCB6: 64. 

G. Jia et al.                                                                                                                                                                                                                                      



Computers in Biology and Medicine 134 (2021) 104425

6

dimension of inputs by global average pooling. 
Also, we computed the gradients of weights in convolutional layers 

which are influenced by the modification structure, and compared them 
with the gradients in corresponding layers of the original MobileNet. 
Fig. 6 shows the distribution of absolute values of gradients in the first 
eight convolutional layers. The number of parameters of corresponding 
kernels is 7264. The mean value and variance of the absolute value of 
gradients in the original MobileNet are 0.037 and 0.002. For the 

modified MobileNet, the mean value and variance of the absolute value 
of gradients are 0.547 and 0.551. Fig. 6 demonstrates that this type of 
modification in MobileNet is able to alleviate the gradient vanishing 
problem which usually happens when networks are deep. Code files of 
the CNN modification method can be found in the github repository1. 

5.1. Classification results 

The training and validation accuracy of the modified MobileNet for 
the classification of COVID-19, tuberculosis, bacterial pneumonia, viral 
pneumonia and healthy cases are shown in Fig. 5(b). We adopted 5-fold 
cross validation for result evaluation. From Table 4, it can be noted that 
after using the modified MobileNet, the test accuracy reaches 99.6% 
which is higher than that of the original MobileNet by 0.8%. The 
overfitting problem is alleviated using the modified MobileNet, which 
can be seen by comparing Fig. 5(a) and (b). Sensitivity, precision, and 
F1-score of the original and proposed models are shown in Table 6. It can 
be noted from Tables 6 and 4 that the proposed model has achieved an 
accuracy of 99.6% in the five-category classification, and obtained 
sensitivity, precision and F1-score values of 100% in COVID-19 
detection. 

To test the effectiveness of the proposed method, we also applied the 
proposed method to the classification of 3 categories: COVID-19, 
healthy, and Non-COVID-19 infections; four categories: COVID-19, 
Non-COVID-19 pneumonia, tuberculosis and normal controls. The re-
sults are summarized in Table 5. These two scenarios could be imple-
mented faster and more convenient in practice when rapid diagnosis is 
required. It can be noted from Table 5 that the proposed method obtains 
99.7% test accuracy in three-category classification, 99.9% in four- 
category classification, and 99.6% in three-category classification, 
which all outperform the original MobileNet. 

To further observe the rationality and effectiveness of the proposed 
classifier, the class activation mapping (CAM) proposed in Ref. [41] was 

adopted to localize the discriminative image regions. In Fig. 7, the 
highlighted regions show the areas that the classifier used to identify 
that category. 

Table 4 
The validation and test accuracy obtained in the 5-fold cross validation. The test 
accuracy is obtained using the model achieved the best validation accuracy in 
the 5-fold cross validation.  

Folds Cross Validation (data partition) Validation Acc Test Acc 

Fold 1 20% 20% 20% 20% 20% 99.1% 99.6% 
Fold 2 20% 20% 20% 20% 20% 98.7%  
Fold 3 20% 20% 20% 20% 20% 98.8%  
Fold 4 20% 20% 20% 20% 20% 99.1%  
Fold 5 20% 20% 20% 20% 20% 99.2%   

Table 5 
Test accuracy of the modified MobileNet and original MobileNet in three clas-
sification scenarios: 3 categories: COVID-19, Non-COVID-19 infection, healthy; 
4 categories: COVID-19, Non-COVID-19 pneumonia, tuberculosis, healthy; 5 
categories: COVID-19, bacterial pneumonia, viral pneumonia (with the excep-
tion of COVID-19 infection), tuberculosis, healthy.  

ClassesModels Modified MobileNet Original MobileNet 

5 classes 99.6% 98.8% 
4 classes 99.9% 99.1% 
3 classes 99.7% 99.6%  

Table 6 
Precision, sensitivity and F1-score obtained for the proposed model on the test 
set.  

Class Precision Sensitivity F1-score Support 

COVID-19 1.000 1.000 1.000 200 
Tuberculosis 1.000 1.000 1.000 200 
Bacteria Pneumonia 0.995 0.995 0.995 200 
Normal Controls 0.985 1.000 0.993 200 
Viral Pneumonia 0.995 0.980 0.987 200  

Fig. 7. Class activation maps (CAM) of CXR images in each category. Images in the first row are the original CXR images of each class, the second row lists the 
corresponding CAM in which the highlighted parts represent the discriminative image regions that the classifier uses to identify that category. 

1 https://github.com/Guangyu05/COVID-19-CXR-CT-Classification 
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5.2. Result discussion 

Comparing Fig. 5(a) and (b), it can be found that the modified 
structure alleviates the over-fitting problem which occurred in the 
original MobileNet. The main reasons behind this are analysed as fol-
lows: (a) The poinwise conv blocks in the modified MobileNet uses 1× 1 
convolutional layer with 64 channels as well as global average pooling 
to reduce the dimensions of the corresponding outputs, which makes the 
input fed into the last layer to have a size of 64 × 1 × 1 rather than 
1024 × 1 × 1 in the original MobileNet; (b) the introducing of a dropout 
layer after the added outputs from former layers improves the general-
isability of the proposed model; (c) this structure is more capable of 
solving the vanishing gradient problem in back propagation due to the 
connections with former layers, which is shown in Fig. 6; (d) the pro-
posed structure combines the features obtained from lower layers and 
higher layers, which provides more comprehensive information for the 
classification of the final layer. 

5.3. Comparison with COVID-Net 

To provide comprehensive evaluation of the proposed method, we 
compared the proposed method with COVID-Net [11], a recently pro-
posed model for the detection of COVID-19 cases using CXR images. To 
provide fair comparisons, we employed the benchmark dataset COVIDx 
to evaluate both methods. 

COVID-Net [11] is a deep convolutional neural network designed for 

the detection of COVID-19 cases on COVIDx, an open access benchmark 
dataset containing 13,975 CXR images. In Ref. [11], a machine-driven 
design exploration strategy was used to create COVID-Net. The test ac-
curacy and parameters of the proposed method and COVID-Net are 
shown in Table 7, and the comparisons of sensitivity and precision are 
shown in Tables 8 and 9. 

From Tables 7–9, it can be concluded that the proposed method 
outperforms COVID-Net in terms of computational memory, accuracy 
(1.7% improvement on test accuracy), sensitivity, and precision in 
COVID-19 detection. It further demonstrates the effectiveness of the 
proposed method in diagnosing COVID-19 cases with CXR images. 

6. Modified ResNet with the application on COVID-19 CT image 
classification 

To further investigate the effectiveness of this type of model modi-
fication, we applied the same modification method to ResNet18 [33] 
and proposed a type of modified ResNet. This version of ResNet is chosen 
for the reason that it is the residual network with the fewest layers and 
parameters. The experiment was conducted using a benchmark CT 
image dataset COVIDx-CT which consists of 104,009 chest CT images 
across 1489 patients. Example CT images of this dataset are shown in 
Fig. 8, the information of the dataset can be found in Ref. [12]. Similarly, 
the comparisons of six CNN architectures are conducted for model se-
lection. The test accuracy, parameters of different models and the 
training process are shown in Table 10 and Fig. 9. 

After comparing the performance of VGG16 [13], Inceptionv3 [14], 
ResNet18_v1 [15], MobileNetv3_small [17], DenseNet121 [16], and 
SqueezeNet1.0 [18], we found that both InceptionNetv3 and ResNet18 
achieved satisfactory classification performance. Considering the 
parameter efficiency of ResNet18 and InceptionNetv3, we adopted 
ResNet18 as the CNN backbone, and modified it with a similar method 
to that used in the modified MobileNetv3_small (Section 5). The archi-
tecture of the modified ResNet18 is depicted in Fig. 10 and the corre-
sponding configuration of hyper-parameters is shown in Table 11. 

6.1. Comparison with COVIDNet-CT 

In this section, we compared the modified ResNet18 with COVIDNet- 
CT [12] on the benchmark dataset COVIDx-CT. COVIDNet-CT [12] is 
tailored for the detection of COVID-19 cases from chest CT images via a 
deep convolutional neural network. 

The results of COVIDNet-CT in the classification of COVID-19, Non- 
COVID-19 pneumonias, and normal controls are listed in Ref. [42] 
(COVID-Net CT-2 S (2 A)). To provide fair comparisons, we used the 
same training and test datasets as that of COVIDNet-CT [12] in our 
experiment. 

The comparative results can be found in Tables 12–14. The proposed 
method achieves 99.3% test accuracy on the COVIDx-CT dataset which 
consists of 143,778 training images, 25,486 validation images, and 
25,658 test images [12]. The modified ResNet18 possesses higher test 

Table 7 
Comparison of the proposed method and COVID-Net [11] on COVIDx: Test ac-
curacy (%) and Parameters (M).  

Architectures Params (M) Acc (%) 

COVID-Net 11.8 93.3 
Modified MobileNet 7.1 95.0  

Table 8 
Comparison of the proposed method and COVID-Net [11] on COVIDx: Sensi-
tivity (%).  

Architectures COVID-19 Non-COVID19 Normal 

COVID-Net 91.0 94.0 95.0 
Modified MobileNet 96.0 92.0 97.0  

Table 9 
Comparison of the proposed method and COVID-Net [11] on COVIDx: Precision 
(%).  

Architectures COVID-19 Non-COVID19 Normal 

COVID-Net 98.9 91.3 90.5 
Modified MobileNet 99.0 95.0 92.0  

Fig. 8. Example CT Images of three classes [12].  
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accuracy (1.4% higher than COVIDNet-CT) and outperforms 
COVIDNet-CT in sensitivity and precision in identifying three categories. 
However, the advantage of COVIDNet-CT is its higher parameter effi-
ciency in terms of much fewer parameters in the network. 

7. Robustness test 

Robustness analysis aims to evaluate the model’s capability to resist 
input perturbations. To test the robustness of the model, we add 
different levels of Gaussian noise to the test data and feed the contam-
inated data into the classifiers. In this section, we adopt modified 
MobileNet in Section 5 to analyse the robustness of the proposed 
method. Assume that the inputs are denoted by a which has the size of 
s1 × s2 × 3. To test the robustness of the model, we utilized two forms of 

Table 10 
Classification performance of six widely used CNN architectures: VGG, Inception, ResNet, DenseNet, SqueezeNet and MobileNet.  

PerformanceCNNs VGG16 Inceptionv3 ResNet18_v1 DenseNet121 SqueezeNet1.0 MobileNetv3_small 

Test Accuracy (%) 97.80 98.59 98.47 96.30 94.38 96.79 
Param (MB) 537 87.3 44.8 28.2 2.95 6.74  

Fig. 9. Validation accuracy for commonly used CNN models on the CT 
image dataset. 

Fig. 10. The structure of the Modified ResNet18. The contents of the original ResNet18 are kept and denoted by light blue, whereas the dark blue blocks represent 
the modified parts. w1,…,w5 are the weights respectively multiplied by the outputs of each pointwise conv block. × represents element-wise multiplication, ⊕
denotes the addition of five outputs of pointwise conv blocks multiplied by the corresponding weights w1,…,w5. 

Table 11 
Configuration of hyper-parameters used for training the original and the modified ResNet.  

ModelsParameters Input size Batch size Loss function optimizer epochs channels in PCBa 

Original ResNet 256× 256× 3  128 softmax cross entropy adam 20 – 
Modified ResNet 256× 256× 3  128 softmax cross entropy adam 20 5, 32b  

a Pointwise Conv Block. 
b The number of channels in PCB1: 5; PCB2 – PCB6: 32. 

Table 12 
Comparison between the proposed method and COVIDNet-CT [12] on 
COVIDx-CT: Test accuracy and Parameters.  

Architectures Params Acc (%) 

COVIDNet-CT 447.6K 97.9 
Modified ResNet 44.9 M 99.3  

Table 13 
Comparison between the proposed method and COVIDNet-CT [12] on 
COVIDx-CT: Sensitivity (%).  

Architectures COVID-19 Non-COVID19 Normal 

COVIDNet-CT 95.7 98.1 98.9 
Modified ResNet 99.2 99.8 99.1  
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perturbations. The first one is the additive form: 

a= a+m⋅randn(s1, s2, 3), (1)  

where a denotes the contaminated data, m denotes the noise levels 
which are positive values, randn() represents the function of Gaussian 
noise and ‘⋅’ denotes the element-wise multiplication. The noise level is 
respectively chosen as m = 1, 3,5, 7,10. 

The second form is the combination of multiplicative and additive 
noise: 

a= n ⋅ a+m⋅randn(s1, s2, 3), (2)  

where n denotes the multiplicative noise level, other denotations are the 
same as equation (1). The following levels of noise are considered: n =

0.5,0.7,0.9,1.1,1.3;m = 2.
Note that through data perturbations, the pixel values of input im-

ages may exceed [0, 255]. We limited the pixel values in [0, 255] by 
clipping the exceeded values. The robustness results of two forms of 
noise on test dataset are shown in Tables 15 and 16. 

From Tables 15 and 16, it can be concluded that the proposed model 
possesses stronger robustness compared to the original model, which 
demonstrates that the proposed method has stronger generalisation 
ability to accept wider range of data and its suitability to clinical ap-
plications when having inevitable data perturbations. 

8. Conclusion 

In this paper, a type of dynamic CNN modification method is pro-
posed for the classification of two COVID-19 CXR image datasets and a 
CT image dataset. The proposed method establishes connections be-
tween different layers of the original CNN architecture through point-
wise convolution blocks, which achieve dynamic combinations of 
different layers. Six widely used deep learning algorithms, as well as two 
recently published models specifically designed for COVID-19 detection, 
are employed and compared with the proposed method. Three scenarios 
of the classification problem are investigated using the proposed 

method. The results are analysed through test accuracy, sensitivity, 
precision, robustness test, and class activation maps. The modified CNN 
architecture demonstrates satisfactory classification performance in our 
comparative study, which shows its potential to be applied in clinical 
settings for computer-aided diagnosis of COVID-19 positive cases. 
Future work may investigate the impacts of image qualities on COVID- 
19 detection due to the difference of image sources. 
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chest x-ray datasets for computer-aided screening of pulmonary diseases, Quant. 
Imag. Med. Surg. 4 (6) (2014) 475. 

[39] D. Kermany, K. Zhang, M. Goldbaum, et al., Labeled optical coherence tomography 
(OCT) and chest x-ray images for classification, Mendeley data 2 (2). 

[40] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition, 2018, 
pp. 7132–7141. 

[41] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning deep features for 
discriminative localization, in: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, 2016, pp. 2921–2929. 

[42] COVIDx-CT dataset–results. https://github.com/h 
aydengunraj/COVIDNet-CT#results. 

G. Jia et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0010-4825(21)00219-5/sref21
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref21
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref21
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref21
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref24
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref24
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref24
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref26
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref26
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref26
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref27
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref27
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref27
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref27
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref28
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref28
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref28
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref29
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref29
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref29
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref30
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref30
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref30
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref32
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref32
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref32
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref33
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref33
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref33
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref38
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref38
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref38
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref40
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref40
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref40
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref41
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref41
http://refhub.elsevier.com/S0010-4825(21)00219-5/sref41
https://github.com/haydengunraj/COVIDNet-CT#results
https://github.com/haydengunraj/COVIDNet-CT#results

