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ABSTRACT We report the complete genome sequence for Streptococcus pyogenes
strain 1838 (type emm3) isolated from a patient with toxic shock syndrome. The
strain lacked the speK- and sla-encoding prophage frequently encountered among
emm3 strains and possessed an Arg66His mutation in CovR of the 2-component vir-
ulence regulatory system CovRS.

Streptococcus pyogenes (group A Streptococcus [GAS]) strain 1838 was isolated from
a patient with toxic shock syndrome in 2011 by the Streptococcus Laboratory at

the Centers for Disease Control and Prevention (CDC) (1). The strain was included
in a study to compare contemporary pharyngeal and invasive S. pyogenes isolates
in their capacity to acquire covRS mutations using a mouse model of skin infection
(2). CovRS (also known as CrsRS) is a 2-component regulatory system known to
regulate expression of multiple GAS virulence factors (3–5). Naturally occurring
CovRS mutations enhance expression of virulence genes and simultaneously down-
regulate the protease speB, which leads to hypervirulence (6–8). Among 6 SpeB-
positive emm3 GAS strains, mice infected with strain 1838 demonstrated increased
mortality in an in vivo subcutaneous infection assay for selection of CovRS mutants
(2). Like emm3 strain MGAS315 (9), strain 1838 can invade the vascular system in a
mouse model of pulmonary infection.

To understand the basis for hypervirulence, we sequenced the genome of strain
1838 using reads generated with both the PacBio RS II system and the Illumia MiSeq
(300-bp, paired-end) instrument by the W.M. Keck Foundation Biotechnology Resource
Laboratory at Yale University and Otogenetics Corporation, respectively. For DNA
extraction, bacteria were streaked from a vial of the frozen isolate from the CDC on a
Todd-Hewitt broth/2% yeast extract agar plate and incubated for 8 h at 37°C in 5% CO2.
Genomic DNA from the bacteria was extracted using the MasterPure Gram-positive
DNA purification kit (Lucigen/Epicentre, catalog number MGP04100) following the
manufacturer’s protocol with the following modifications: bacteria from the plate were
washed with 1-ml phosphate-buffered saline (PBS) 3 times and treated with 0.2-�g
proteinase K in 1-ml PBS at 37°C for 2 h; the bacteria were pelleted by centrifugation,
washed with 1-ml PBS 3 times, and resuspended in 150-�l Tris-EDTA buffer; and the
bacterial suspension was mixed first with 10 �l of 1.0-mg/ml PlyC (10) and then with
150-�l lysis buffer and a 175-�l precipitation solution of the MasterPure kit. PacBio
sequencing generated 132,929 reads with an average read length of 9,788 bp, and
Illumina sequencing generated 14,839,914 reads and 1,869,829,164 bp. Hybrid assem-
bly (i.e., long- and short-read sequences) using the SPAdes assembler (v 3.12.0) (11) and
default parameters yielded a complete genome with greater than 1000� coverage. The
complete genome was polished using Pilon (v 1.22) (12). The polished complete
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genome was annotated using the Prokaryotic Genome Annotation Pipeline at the
National Center for Biotechnology Information (13).

In comparison with the genome of the emm3 strain MGAS315 (14), the strain 1838
genome shows a chromosomal inversion known to occur in approximately one-quarter
of GAS genomes, presumably from a recombination event at homologous copies of
comX/sigX (15). The inversion was identified using whole-genome alignments to com-
pleted serotype M3 GAS genomes with progressiveMauve (16). The inversion was
verified by aligning both short and long reads to the completed 1838 genome and thus
is unlikely to be a misassembly. Analysis of the strain 1838 genome with PHASTER (17)
found 4 intact prophages, encoding speC, speA, and spd1. From the mid-1980s through
in the early 2000s, virtually all emm3 strains had a 315.4-like prophage encoding speK
and sla (14). However, like many emm3 strains from approximately 2007 to 2009 (18),
strain 1838 lacked the speK- and sla-encoding prophage. Strain 1838 does have 315.3-,
315.5-, and 315.6-like prophages. Polymorphisms relative to MGAS315 were identified
with NUCmer (v 3.1) (19) and by mapping Illumina short-read sequences from strain
1838 to MGAS315 with a custom pipeline as described by Long et al. (20). Excluding the
prophage sequences, there were 189 single-nucleotide polymorphisms (SNPs) and 13
insertions/deletions (indels) in strain 1838 relative to MGAS315. Based on the chromo-
somal SNP data, strain 1838 appears to be closely related to emm3 strains that were
responsible for a dramatic upsurge of M3 invasive infections in the United Kingdom in
2008 and 2009 (18) and consistent with currently circulating emm3 strains in the United
States (21).

The 189 chromosomal SNPs between MGAS315 and strain 1838 contain 39 missense
mutations, including one in each of covR, covS, and ropB. The ropB and covS SNPs are
consistent with known polymorphisms in MGAS315 (8, 22), and the SNP in covR results
in an arginine-to-histidine amino acid change at position 66 (Arg66His) in strain 1838
CovR. No other mutations were found in the known virulence genes and regulators. The
Arg66His mutation is near the phosphorylation sites of CovR (aspartate at position 53,
D53, and threonine at position 65, T65) (23), which may affect the phosphorylation of
CovR and lead to enhanced virulence gene expression and hypervirulence of strain
1838.

Data availability. The genome sequence of GAS strain 1838 has been deposited in
GenBank with the accession number CP029694. Raw sequences were deposited in the
NCBI SRA database under BioProject number PRJNA473837.
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