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Abstract: Schizophrenia is a severe, chronic mental disorder characterized by delusions and
hallucinations. Several evidences support the link of schizophrenia with accelerated telomeres
shortening and accelerated aging. Thus, schizophrenia patients show higher mortality compared
to age-matched healthy donors. The etiology of schizophrenia is multifactorial, involving genetic
and environmental factors. Telomere erosion has been shown to be accelerated by different factors
including environmental factors such as cigarette smoking and chronic alcohol consumption or
by psychosocial stress such as childhood maltreatment. In humans, telomere studies have mainly
relied on measurements of leukocyte telomere length and it is generally accepted that individuals
with short leukocyte telomere length are considered biologically older than those with longer ones.
A dysregulation of both innate and adaptive immune systems has been described in schizophrenia
patients and other mental diseases supporting the contribution of the immune system to disease
symptoms. Thus, it has been suggested that abnormal immune activation with high pro-inflammatory
cytokine production in response to still undefined environmental agents such as herpesviruses
infections can be involved in the pathogenesis and pathophysiology of schizophrenia. It has been
proposed that chronic inflammation and oxidative stress are involved in the course of schizophrenia
illness, early onset of cardiovascular disease, accelerated aging, and premature mortality in
schizophrenia. Prenatal or neonatal exposures to neurotropic pathogens such as Cytomegalovirus or
Toxoplasma gondii have been proposed as environmental risk factors for schizophrenia in individuals
with a risk genetic background. Thus, pro-inflammatory cytokines and microglia activation, together
with genetic vulnerability, are considered etiological factors for schizophrenia, and support that
inflammation status is involved in the course of illness in schizophrenia.
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1. Introduction

Schizophrenia is a severe, chronic mental disorder, with a heterogeneous genetic and
neurobiological background, characterized by delusions, hallucinations and thought disorder,
that causes an important impairment in social and vocational functioning. Current treatment consists
largely in the use of antipsychotic drugs combined with psychological and social support, but no
cure is currently available, mostly due to the poor understanding of the disease pathogenesis [1–4].
The etiology of schizophrenia is multifactorial, involving genetic and environmental factors [5].

It has been suggested that several genes can be associated with schizophrenia [6–8], including
those associated with synaptic function and neurobehavioral phenotypes [9]. Accumulating data using
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new genomic approaches in combination with extensive neuroimaging collections of brain phenotypes
is contributing to the definition of new putative schizophrenia risk genes [10,11] and support the
interest of genetically-based patient stratification in patient subgroups sharing deficits in particular
biological pathways [12] or the use of common genetic variants to predict endophenotypes such as
spatial visualization [13].

In relation with the environmental factors, epidemiological and serological studies in the last
decade have highlighted the significance of chronic infections by several pathogens, including viruses
(Cytomegalovirus, CMV, and other herpesviruses) and parasites, such as Toxoplasma gondii (T. gondii),
in the pathogenesis and clinical evolution of schizophrenia [14,15].

Schizophrenia patients show higher mortality rates than those who died without
schizophrenia [16–20]. In a recent meta-analysis, it has been estimated that schizophrenia is associated
with 13–15 years of potential life lost and with a life expectancy of 60 years for men and 68 years for
women [21]. It has been recently suggested that schizophrenia might be considered as a syndrome of
“accelerated aging” [22] or as a “segmental progeroid syndrome” [23].

In this review, we present and discuss recent evidences supporting the role of infection by
CMV and other pathogens and inflammation in telomere shortening and accelerated senescence in
schizophrenia patients.

2. CMV Is a Major Driver of Immunosenescence

Several biological parameters have been defined as hallmarks of ageing [24]. These hallmarks
include the age-associated deterioration of the immune response, also termed immunosenescence,
and the existence of age-associated low-grade inflammation usually known as inflamm-ageing [25].
CMV infection is associated with immunosenescence and the accumulation of highly differentiated T
cell clones [26,27] characterized by the production of pro-inflammatory cytokine [28–33]. One of the
major hallmarks of immunosenescence is leukocyte telomere shortening [34].

Telomeres are DNA and protein structures present at the ends of chromosomes to prevent the
loss of coding genetic material during cell replication. Telomeres shorten with each cell division
and shortened telomeres induce a DNA damage response leading to a growth arrest and, eventually,
triggering replicative senescence [35–38]. Telomerase, which it is normally expressed in pluripotent
and adult stem cell, compensates for telomere attrition by the addition of TTAGGG repeats onto
chromosome ends [39–42]. Telomerase-deficient mice show premature aging phenotypes, providing
the first evidences that telomere attrition is a determinant of longevity and is at the origin of different
age-related pathologies [43–45].

Telomere attrition occurs in normal tissues at an estimated rate of 50 to 150 base pairs per
cell division, resulting in a gradual decrease in median telomere lengths with increasing age [46].
Circumstances associated with replicative stresses enhance telomere shortening secondary to the
increased mitotic activity. Thus, chronic infection by different pathogens, in particular chronic viruses,
accelerate leukocyte telomere length (LTL) attrition [47,48]. In addition, the production of reactive
oxygen species associated with chronic inflammation, that can also be produced in response to
chronic infection, several drugs and toxic products, or radiation exposure, also cause DNA damage
and telomere loss [49]. Finally, inheritable gene mutations affecting the telomerase or the telomere
protein complex, resulting in decreased telomere lengths (short telomere syndromes, STSs) [50,51].
These syndromes are characterized by severe alterations in hematopoiesis (bone marrow failure) and in
organs with high cell turnover, such as skin (dyskeratosis), gastrointestinal tract (esophageal stenosis,
enterocolitis, celiac-like enteropathy) and lungs (idiopathic pulmonary fibrosis) [50,51].

2.1. CMV and Leukocyte Telomere Shortening in Healthy Ageing

In humans, telomere studies have mainly relied on measurements of LTL, which reflects telomere
length (TL) in other somatic cells. LTL displays high variation across individuals, a phenomenon
already observed in newborns and that has been related to different factors such as sex, ethnicity,



Brain Sci. 2018, 8, 188 3 of 17

or parental age at conception (reviewed in [52]). LTL is considered a biomarker of human ageing, and it
is generally accepted that individuals with short LTL are biologically older than those with longer
ones. However, recent evidences suggest that short telomeres increase the risk of age-related diseases
and play a role in the development of these diseases. Although the causes of age-associated frailty
are multiple, telomere shortening, immunosenescence and inflamm-ageing have been implicated in
its pathophysiology.

Peripheral blood T lymphocytes that have undergone a process of replicative senescence
(immunosenescence) are characterized by loss of proliferation, telomere shortening, and by
the decreased expression of CD28 and CD27 co-stimulatory molecules and the expression of
CD57 [34,53–56]. These hallmarks of immunosenescence increase with healthy ageing and also in
clinical situations associated with chronic activation of the immune response and an accumulation of
CD28−CD27−CD57+ T cells occurs during normal aging and chronic-antigen stimulation [25,57–59].
Senescence and telomere shortening is observed in particular in CMV infection, characterized by
accumulation of cells with a more differentiated state and shorter telomeres than in other virus
infections, such as human immunodeficiency virus (HIV), Epstein-Barr virus (EBV), and hepatitis C
virus (HCV) [47,48], indicating that CMV is a major driver of immunosenescence.

LTL correlates with lymphocyte telomere length and with the amount of highly differentiated T
cells. In addition, telomere shortening is more rapid in CMV-seropositive individuals, indicating that
CMV infection induces a strong decrease in T cell telomere length [60]. CMV seropositivity and CMV
IgG antibodies correlate not only with LTL but also with telomerase activity [61] The telomere lengths
in total and CMV-specific T cells are shorter in old compared to young individuals, although the
accumulated end-stage cells are multifunctional T cells and do not have the shortest telomeres [31].
CMV seropositivity and increased total pathogen burden level are significantly associated with shorter
telomere length among females [62]. Infection by CMV and other herpes viruses (herpes simplex virus
type 1 (HSV1), and human herpesvirus 6) are associated with greater LTL attrition, and higher IgG
anti-CMV were also associated with shorter LTL after 3-year follow-up [63]. In a recent longitudinal
analysis of healthy individuals (age range 21 to 88 years), with an average follow-up of 13 years
(7–19 years) follow-up, age-related telomere attrition, elevated pro-inflammatory cytokines and
anti-CMV IgG levels were observed, although no significant correlations among these inflamm-ageing
and immunosenescence related parameters were observed, indicating the complexity of the immune
aging processes [64].

2.2. CMV Seropositivity and Inflammation

Since the original demonstration that CMV seropositivity was associated with phenotypic and
functional alterations of T-cell immunity similar to those found in ageing [27], and that CMV
infection induces a strong decrease in T cell telomere length [60], cumulative evidences have
extensively documented that CMV infection is characterized by the expansion of CD28/CD27
negative or CD57+ senescent T cells, with short telomeres and high production of pro-inflammatory
cytokines [25,26,34,54,60,65–72]. The analysis of CMV in frailty has shown that the frequency of
CMV reactivation is associated with aging and ongoing frailty [73], while CMV-seropositivity is
not associated with pre-frailty in very old subjects [74].

The possible relationship between CMV infection with psychological stress has been recently
highlighted in a recent study showing that early-life adverse and stressful events, such as parental
loss or low socioeconomic status, increase the risk of CMV infection. The authors also propose that
CMV-driven immunosenescence and inflammation underlie the association between early life adverse
and the long-term health consequences such as cardiovascular disease and type 2 diabetes observed in
these individuals [75].
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3. Telomere Length in Age-Associated Diseases

LTL shortening has been proposed to be a primary molecular cause of ageing in healthy
individuals [24,42,76–78]. Recent evidences provide direct evidences supporting a direct role for
inflammation in telomere shortening [64,79]; indirect evidences have clearly shown a strong association
between these two parameters in healthy ageing and in different clinical circumstances, including
mental diseases (for review see [49]). Telomere erosion has been shown to be accelerated not only
by chronic viral infections (see Section 2.1), but also by different factors, including some medical
illnesses [50,80–83], and other environmental factors associated with oxidative stress and chronic
inflammation, such as cigarette smoking [84] and chronic alcohol consumption [85] or by psychosocial
stress such as childhood maltreatment [86].

In addition, different research groups have reported that many detrimental traits and potentially
harmful environmental factors are associated with short telomeres in humans. Accordingly,
comparatively short LTL is considered a marker not only of ageing but also of poor health, regardless
of the person’s age [87–90], which predicts all-cause mortality [91]. A significant LTL shortening has
also been found across psychiatric disorders [92–94].

LTL is a predictor of coronary heart disease events in middle-aged, high-risk men, and reduced
LTL is associated with all-cause mortality in patients with stable cardiovascular disease [95–99].
Furthermore, acute myocardial infarction and reperfusion accelerate immunosenescence in
cytomegalovirus-seropositive patients [100]. LTL attrition also associates with obesity [101,102] and
with the presence and number of diabetic complications in type 2 diabetes patients [103–109]. It has
been recently shown that reducing obesity may reduce the risk of diabetes complications associated
with shorter LTL, at least in some Chinese population [110].

Previous studies have shown that many psychiatric illnesses are associated with shortened
telomeres [93,94], including major depression [111], chronic mood and anxiety disorders [112] or
schizophrenia [113]. In major depressive disorder, LTL is proportional to lifetime exposure to the
disease, suggesting that LTL attrition is not related to the origin of this disease but on the contrary
it is associated with oxidative stress and inflammation [114], and with accelerated ageing [114–117].
Further studies are needed to clarify the possible role of TL shortening in the clinical outcome of major
depression. The observation that TL shortening is associated with pharmacological treatment [118] and
the finding that short LTL is also an index of poor response to selective serotonin reuptake inhibitor
(SSRI) treatment [119] might reflect the severity of depression in group of patients with shorter
telomeres. Metabolic stress, pro-inflammatory cytokines and metabolic alterations, and lifestyle factors,
e.g., cigarette smoking, are also important mediators of the association between depressive and anxiety
disorders and LTL [120].

Thus, the traditional view of LTL as a passive biomarker of human ageing is under revision as
new evidences suggest that the interplay between evolutionary forces and TL might result in distinct
health outcomes. While individuals with short telomeres might have a higher risk of diseases related
to restricted cell proliferation and tissue degeneration, including cardiovascular, metabolic or mental
diseases, those with long telomeres might have an increased risk of diseases related to increased
proliferative growth, including cancer [52].

4. Infection by CMV, T. Gondii and other Pathogens in Schizophrenia

Maternal or neonatal exposure to neurotropic pathogens, such as herpes viruses and T. gondii,
has been proposed as an environmental risk factor for schizophrenia in individuals with a risk
genetic background (Figure 1). The measurement of pathogen-specific immunoglobulin is a marker
of previous contact with each pathogen (IgM for first and IgG for longer term contact), whereas IgG
levels are associated with repeated reactivation of the pathogens. Serostatus and titer of IgG against
several herpes viruses and T. gondii have been studied in schizophrenia patients, but the results are
still inconclusive.
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Figure 1. Schematic representation of the possible role of prenatal infections in schizophrenia 
pathophysiology. Exposure to neurotropic pathogens such as cytomegalovirus (CMV), other herpes 
viruses or T. gondii, or early adverse or stressful events has been proposed as environmental risk 
factors for schizophrenia in individuals with genetic susceptibility. Thus, maternal immune response 
to infection during pregnancy induce the production of pro-inflammatory cytokines, such as 
interleukin (IL)-6, IL-1, tumor necrosis factor (TNF)-α and interferon (IFN)-γ, which activate placenta, 
fetal blood vessel and meninges. Inflammation may transiently alter brain development that, in the 
absence of genetic susceptibility, recovers in a short period of time. However, in the presence of 
genetic susceptibility to schizophrenia, the fetal meninges and blood vessels are hyper-responsive to 
these cytokines by secreting more cytokines and chemokines, the compensatory mechanisms (e.g., 
gene expression changes induced by IFN-γ) are exhausted and finally results in chronic inflammatory 
responses interfering with brain development. The inflammation status also influences postnatal 
brain development and the course of illness that after a prodrome phase finally results in 
schizophrenia. (Brain icon was obtained from: https://www.wpclipart.com/medical/anatomy/brain 
/brain_icon.png.html). 

It has been shown that chronic maternal infection with T. gondii or CMV can affect neonatal 
innate immunity and it has been proposed that chronic infections by these pathogens contribute to 
increased risk for psychosis [121]. Results from other groups also support that the increase in 
antibody levels to several viruses is predictive of an 18–34% increase in the risk of developing 
schizophrenia [122] or that anti-CMV and anti-HSV1 antibody levels are significantly increased in 
schizophrenia patients [123]. However, others have not found significant differences in antibody 
titers against the pathogens studied, and therefore do not support the hypothesis that increased 
exposure to neurotropic pathogens after birth is associated with schizophrenia [124,125]. Other 
evidences demonstrate that CMV infection is associated to poorer markers in the evolution of 
schizophrenia. Thus, CMV-seropositive schizophrenia patients show higher negative symptoms 
scores [125], low California Verbal Learning Test (CVLT) scores, decreased hippocampal volume, and 
poorer episodic verbal memory [126] than those CMV-seronegative patients. In addition, the risk for 
suicide in persons with serious mental illness, including schizophrenia, bipolar disorder, or major 
depression, has been shown to be associated with elevated levels of IgM antibodies to both T. gondii 
and CMV [127] or with elevated levels of antibodies to CMV [128] indicating that, even if these 

Figure 1. Schematic representation of the possible role of prenatal infections in schizophrenia
pathophysiology. Exposure to neurotropic pathogens such as cytomegalovirus (CMV), other herpes
viruses or T. gondii, or early adverse or stressful events has been proposed as environmental risk factors
for schizophrenia in individuals with genetic susceptibility. Thus, maternal immune response to infection
during pregnancy induce the production of pro-inflammatory cytokines, such as interleukin (IL)-6,
IL-1, tumor necrosis factor (TNF)-α and interferon (IFN)-γ, which activate placenta, fetal blood vessel
and meninges. Inflammation may transiently alter brain development that, in the absence of genetic
susceptibility, recovers in a short period of time. However, in the presence of genetic susceptibility to
schizophrenia, the fetal meninges and blood vessels are hyper-responsive to these cytokines by secreting
more cytokines and chemokines, the compensatory mechanisms (e.g., gene expression changes induced
by IFN-γ) are exhausted and finally results in chronic inflammatory responses interfering with brain
development. The inflammation status also influences postnatal brain development and the course
of illness that after a prodrome phase finally results in schizophrenia. (Brain icon was obtained from:
https://www.wpclipart.com/medical/anatomy/brain/brain_icon.png.html).

It has been shown that chronic maternal infection with T. gondii or CMV can affect neonatal
innate immunity and it has been proposed that chronic infections by these pathogens contribute
to increased risk for psychosis [121]. Results from other groups also support that the increase
in antibody levels to several viruses is predictive of an 18–34% increase in the risk of developing
schizophrenia [122] or that anti-CMV and anti-HSV1 antibody levels are significantly increased in
schizophrenia patients [123]. However, others have not found significant differences in antibody titers
against the pathogens studied, and therefore do not support the hypothesis that increased exposure
to neurotropic pathogens after birth is associated with schizophrenia [124,125]. Other evidences
demonstrate that CMV infection is associated to poorer markers in the evolution of schizophrenia. Thus,
CMV-seropositive schizophrenia patients show higher negative symptoms scores [125], low California
Verbal Learning Test (CVLT) scores, decreased hippocampal volume, and poorer episodic verbal
memory [126] than those CMV-seronegative patients. In addition, the risk for suicide in persons
with serious mental illness, including schizophrenia, bipolar disorder, or major depression, has been
shown to be associated with elevated levels of IgM antibodies to both T. gondii and CMV [127] or with
elevated levels of antibodies to CMV [128] indicating that, even if these pathogens are not directly
the cause of schizophrenia, they are involved in the pathogenesis, evolution, and complications of
the disease.

https://www.wpclipart.com/medical/anatomy/brain/brain_icon.png.html
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5. Schizophrenia, Inflammation, and Early Senescence

Schizophrenia and other mental disorders are associated with persistently high rates of morbidity
and mortality, despite the widespread use of treatments. Although the causal mechanisms of the
early mortality in schizophrenic patients are still poorly understood and require further studies,
schizophrenia has been associated with oxidative stress and chronic inflammation, which may be
associated with the early onset of inflammatory age-associated syndromes such as cardiovascular
disease or type 2 diabetes, accelerated ageing, and premature mortality in schizophrenia [129]
(Figure 2).
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agents, herpesviruses infections, or microbiome, can be involved in the pathogenesis and 
pathophysiology of this mental illness. An increased level of pro-inflammatory markers in both 
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Figure 2. Possible mechanisms involved in schizophrenia associated early ageing. Reactivation of
pathogens, such as Cytomegalovirus (CMV), involved in chronic inflammation together with other
stressful events and genetic vulnerability can be considered etiological factors for schizophrenia
and other mental diseases. Chronic inflammation induces telomere shortening that is related to
increased cardiovascular risk and cognitive impairment altogether involved in early mortality in
schizophrenia patients.

5.1. Schizophrenia and Inflammation

Cumulative evidences from epidemiological, genetic and peripheral biomarkers in schizophrenia
and mood disorder patients point to a dysregulation of innate and adaptive immune systems in the
disease, and support that these immune abnormalities contribute to disease symptoms, at least in
a subpopulation of patients [130]. It has been suggested that immune activation with a shift to a
pro-inflammatory state of the cytokine network in response to still undefined environmental agents,
herpesviruses infections, or microbiome, can be involved in the pathogenesis and pathophysiology of
this mental illness. An increased level of pro-inflammatory markers in both peripheral and cerebral
systems has been consistently documented in schizophrenia, supporting that a concomitant process
of inflammatory activity is involved in the progression of schizophrenia [131,132]. The analysis
of oxidative and inflammatory markers in psychosis shows that people with schizophrenia have
increased pro-inflammatory and pro-oxidative status and the results suggest that greater inflammation
and oxidative stress might lead to poorer outcomes in patients with first episodes of early onset
psychosis [133,134].
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5.2. Leukocyte Telomere Shortening in Schizophrenia

The exact causes and mechanisms involved in early cellular senescence in schizophrenia and
its possible significance in the pathogenesis and clinical evolution of the disease are still poorly
understood. It has been suggested that LTL shortening is involved in this process. Nevertheless,
there are discrepancies among the results of different groups, with studies reporting that LTL in
schizophrenia can be shorter [135–138], similar [139,140], or even longer [141,142] than in controls.
Furthermore, a recent study has also reported short telomeres in patients at ultra-high risk for
psychosis [143]. There are different reasons that can help to explain these discrepancies, going from the
different techniques used to study LTL, to epidemiological parameters (such as age, gender, ethnicity,
or style of life) or clinical aspects (such as disease progression, treatment response, or the presence
of comorbidities) that affect LTL [94,113,144,145] and could be acting as confounding factors in the
different studies. Of particular interest is the finding that telomere length correlates with positive
scores using the Positive and Negative Syndrome Scale (PANSS) [142]. However, despite these
limitations, most recent studies and meta-analysis support the presence of telomere shortening in
schizophrenia patients.

Thus, decreased LTL and increased levels of C-C Motif Chemokine Ligand 11 (CCL11),
which crosses the blood-brain barrier and is involved in neuroinflammation, are related with reduced
grey matter volume and a longer duration of illness, consistent with the hypothesis that schizophrenia is
associated with a pathological accelerated ageing, leading to impaired outcomes in these patients [146].
Telomere shortening also has a detrimental effect on brain size in healthy individuals, but the
association between these parameters is significant only for those older than 50 years [147], while in
schizophrenia patients this relationship was observed at 36 years [146]. In agreement with these
results, another recent study has shown that the diagnosis of schizophrenia, more than other possible
confounding parameters such as gender, age, cigarette smoking or alcohol drinking, is the most
important condition responsible for LTL shortening in these patients, and that major differences in LTL
shortening were mainly observed in patients younger than 50 years, while no significant differences
were observed in the group of older subjects [148].

The reasons underlying the phenomenon of telomere shortening in schizophrenia are poorly
understood and there is likely a combination of several genetic, environmental, and psychosocial
parameters in this process. Although schizophrenia is associated with different genetic alterations,
there are no evidences suggesting that they are directly involved in telomere shortening. A significant
decrease in telomerase activity among individuals with schizophrenia compared to unaffected
individuals has been defined in schizophrenia patients [149]. However, no reports on telomerase
alterations, which have been defined in several genetic diseases with disease phenotypes that overlap
those normally acquired with ageing [150,151], or in DNA telomere point mutations that accelerate
shortening leading to premature ageing [152], have been defined.

On the contrary, infection by CMV, a well-known driver of immunosenescence, (see Section 2),
which includes leukocyte telomere shortening and the expansion of T and Natural Killer (NK) cell
subsets characterized by the production of pro-inflammatory cytokine, has been postulated to be
involved in the pathophysiology and clinical evolution of schizophrenia in genetically susceptible
individuals. In a similar way, a pro-inflammatory state has been associated with telomere shortening
in different age-associated clinical syndromes such as cardiovascular disease, type 2 diabetes,
or neurodegenerative conditions (reviewed in [89]), and also in schizophrenia [146]. The relationship
between CMV infection, pro-inflammatory state and telomere shortening in age-associated diseases,
that is also observed in schizophrenia, can also be directly or indirectly responsible for the high
incidence of comorbidities and premature mortality in schizophrenia patients [22,94].

It has also been suggested that psychological stress plays a role in LTL shortening in schizophrenia.
In studies with a small number of patients and controls, significant telomere shortening is observed
only in female patients with perceived childhood trauma [153] or in situations of not perceived stress
such as in cases of social isolation and loneliness [154], have been postulated to be involved in telomere
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shortening and accelerated ageing in specific groups of schizophrenia patients. These hypotheses are
mutually exclusive. Thus, it has been shown that early-life adverse and stressful events increase the
risk of CMV infection [75]. Therefore, the linkage between psychological stress and CMV infection,
and the subsequent immunosenescence and inflammation underlie the association between early
life adverse and long-term health consequences such as cardiovascular disease and type 2 diabetes
observed in these individuals.

Telomere length has been studied in selected brain areas in schizophrenia. This disease is
characterized by an initial, rapid rate of grey matter loss that slows in middle life, followed by an
appearance of a progressive white matter deterioration [155]. The results show a significant reduction
of telomere length in superior temporal gyrus white matter of patients with schizophrenia as compared
to controls, with no alterations in telomere length in medial frontal gyrus grey and white matter and in
superior temporal gyrus grey matter, supporting cell senescence in white matter temporal brain tissue
in these patients [156]. Furthermore, schizophrenia patients show accelerated brain ageing (based
on the analysis of grey matter density maps), which occurs mainly during the first year after disease
onset [157].

Based on the above observations, it can be suggested that schizophrenia is linked with accelerated
cellular ageing [94,157], possibly involving telomere shortening [135–138,146,148,156].

6. Concluding Remarks

The observation that schizophrenia patients show higher mortality rates than people without
schizophrenia has evidenced that one of the major complications of this mental illness is premature
senescence. The etiology of schizophrenia is multifactorial and involves genetic and environmental
factors. Pre- or perinatal infection by pathogens such as CMV and other herpesviruses and T. gondii,
and a dysregulation of both innate and adaptive immune systems resulting in immunosenescence
and inflammation, have been postulated as environmental factors involved in the pathogenesis of
this disease, with a specific effect promoting short LTL shortening and accelerated cellular aging.
These factors are also associated with the onset of age-associated diseases such as cardiovascular
disease and can be responsible, at least in part, for accelerated ageing and premature mortality in
schizophrenia [129]. Although the effect of telomere shortening on the pathogenesis and co-morbidities
of human mental disorders should be regarded with caution, further studies to better understand the
environmental factors contributing to telomere length attrition will contribute to better understand the
pathophysiology of schizophrenia and other mental disorders and to design novel therapy strategies
targeting pathogen infection and dysregulated immunological and inflammatory responses in these
patients [158].
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