
Education and training 

Ordinal logistic regression in medical research 

ABSTRACT Medical research workers are making 
increasing use of logistic regression analysis for binary 
and ordinal data. The purpose of this paper is to give a 
non-technical introduction to logistic regression models 
for ordinal response variables. We address issues such as 

the global concept and interpetation of logistic 
models, the model building procedure from a practical 
point of view, and the assessment of the model 

adequacy. For illustrative purposes we apply these 
methods to real data of a study investigating the associ- 
ation between glycosylated haemoglobin and retino- 
pathy. We give some recommendations for the use and 
assessment of ordinal logistic regression models in 
medical research. / 

The application of multiple regression models in 
medical research has greatly increased in recent 
years1-2, especially the use of multiple linear regression 
for continuous response, logistic regression for cate- 
gorical response, and Cox's proportional hazards 
model3 for censored response. These models allow 
one to analyse simultaneously the effect of several 
explanatory variables on a response variable. This 
means that adjustments for confounding factors can 
be made. 
The standard logistic regression model is applicable 

only to binary (yes/no) response variables. The analy- 
sis of categorical data with more than two categories 
requires more complex methods1-8. Statistical standard 
software for a part of these models has been available 

for several years. The most poptdar method for 
ordinal data is the 'proportional odds model' 
described by McCullagh4. 

Like all regression models, the proportional odds 
model makes assumptions about the nature of the 

relationship between the response variable and the 

prognostic factors9. If the data do not fulfil the 

assumptions, the results of a regression applied to 
them can be misleading or have no meaning at all. 

Nevertheless, investigating the goodness-of-fit of 
regression models is rarely done in medical research-. 
It is not uncommon for investigators to throw data 
into a computer, select a program more or less at 

random, rummage through the computer output for 
some p values less than 0.05, and present the results 
without being aware of the assumptions, problems and 
pitfalls inherent in the methods used910. On the other 
hand, readers of medical journals freqently do not 

understand the basic concept of multiple regression 
models and are not able to interpret the results. 

In this paper we give a non-technical introduction to 
the proportional odds model for ordinal data. We 
explain the relations between this model, the standard 
binary logistic regression model, and the general 
polytomous logistic model. Special emphasis is given 
to the model building procedure and the assessment 
of goodness-of-fit using standard statistical software. 
We illustrate the application of these methods by 
analysing real retinopathy data. Finally, we give some 
recommendations for the use of logistic regression 
models and reporting of results in medical research 
papers. We hope that our explanations will help 
doctors to understand and assess the results of ordinal 

logistic regression models published in medical 
journals. 

Logistic regression models 

Binary logistic regression 

To understand ordinal logistic regression, one needs 
to understand the standard binary regression model. 
For simplicity, let us first consider the case where the 
effect of one explanatory variable (co-variate) X on 
the response variable Y is investigated. If the measure- 
ment levels of X and Y are continuous, for example if 
X = height and Y = forced expiratory volume in 1 sec- 

ond (FEVI), the simplest relationship between Fand X 
is a straight line given by the simple linear regression 
model 

This model assumes that Y is, at least approximately, 
linearly related to X. If this assumption is invalid, the 

simple linear regression model is not applicable and 
other, more complicated, for example nonlinear, 
models should be considered. 

If Y is not continous but binary (ie only 1/0 type 
responses such as 'dead/alive' or 'dialysis yes/no' are 
possible), the simple linear regression model is invalid, 
because it assumes that Y can take any numeric value 

between minus infinity and plus infinity. Moreover, if Y 
is a binary variable, the usual assumption of homo- 

geneous variance is violated11. The key to describing 
the relationship between Y and A' in a valid way is to 

model the probability of an event, ie /*=P(F=1) instead 
of Yitself. While Fhas only two possible values (1,0), p 
can take any numeric value between 0 and 1. The odds 

p/(\-p) can take any positive value and the logarithm 
of the odds ln[p/ (!-/>)], called the logit, ranges from 
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minus infinity to plus infinity. Therefore, one can 
assume a linear relationship between the logit and X: 

which is mathematically equivalent to the expression 

The term on the right-hand side of this equation is 

called a logistic function and hence the model is called 
a logistic regression model. The extension to multiple 
models is obtained by replacing f5X with the linear 
combination /3,X, + f32X2 +... + P,?Xm of all covariates. 
An important feature of the multiple binary logistic 

regression model is that odds ratios for the association 
between Y and Xp adjusted for all other covariates, can 
be calculated directly from the logistic coefficients by 
OR=exp(i3). However, this simple relationship is true 

only if the relation between the logit and Xf is in fact 
linear and there are no interactions between the 

covariates. Other important issues, such as estimation 
methods, test statistics and numerical algorithms for 

computations, are beyond the scope of this paper. A 

simple introduction to the standard binary logistic 
regression model, and related issues such as odds 
ratios and interactions, is given by Hall and Round12, 
and there are a number of more technical and 

comprehensive reviews13-16. 

Polytomous logistic regression 

If the response variable Y is discrete with more than 

two categories, for example Y=marital status defined in 
the 3 categories 'married, 'divorced, separated or wid- 
owed' and 'single', then the standard binary logistic 
regression model is not applicable. One possible way 
to handle such situations is to split the categorical 
response Y in several ways, for example F,='married 
yes/no', K>='single yes/no', and to apply binary logis- 
tic regression to each dichotomous variable. However, 
this will result in several different analyses for only one 

categorical response. A more structured approach is to 
formulate one model for the categorical response by 
means of so-called generalised logits. Suppose that Y has 
k+l categories and the probability for category i is 

given by P(Y=i)=pi for i= 1,...,/?+1. Then the k generalised 
logits are defined by 

This means that the generalised logits relate the proba- 
bilities j>, for the categories to the reference 

category h+1. 

For m covariates the general polytomous logistic 
regression model becomes 

Note that the polytomous logistic model is given by k 
equations if F has k+\ categories and that we have one 
logistic coefficient for each category/covariate com- 
bination. Hence, it is not possible to summarise the 
effect of a covariate on the response F by a single 
measure such as one odds ratio. Although the poly- 
tomous model offers the advantage of simultaneously 
testing the effect of a covariate on all response 
categories, polytomous logistic regression generates a 
cumbersome amount of statistical information which 

is difficult for physicians to understand. Further expla- 
nations of this class of models are given by Engel17 and 
DeMaris18. 

Ordinal logistic regression 

If the response variable Fis ordinal, the categories can 
be ordered in a natural way such as 'health status 

good/moderate/bad'. The polytomous logistic regres- 
sion model can be applied but does not make use of 
the information about the ordering. One way to take 
account of the ordering is the use of cumulative proba- 
bilities, cumulative odds and cumulative logits. Consider- 
ing &+1 ordered categories, these quantities are 
defined by 

The cumulative logistic model for ordinal response 
data is given by 

Like the polytomous logistic regression model, we 
have li model equations and one logistic coefficient j3;/ 
for each category/covariate combination. Hence, the 

general cumulative logistic regression model contains 
a large number of parameters. However, in some cases 
a more parsimonious model is possible. If the logistic 
coefficients do not depend on i, we have only one 
common parameter for each covariate. It follows 

that the cumulative odds are given by 

which means that the k odds for each cut-off category 
i differ only with regard to the intercepts ain other 
words, the odds are proportional. Hence, McCullagh4 
used the term proportional odds model. The relatively 
stringent proportional odds assumption may be espe- 
cially valid in cases where the ordinal response Y is 
related to an underlying latent continuous variable4, 
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for example if Y is a grouped continuous variable such 
as age groups or money income groups. However, cate- 

gories assessed by an observer are another important 
type of ordinal variables. Such variables frequently 
occur in biomedical research. Anderson"' pointed out 
that for assessed ordinal response variables the propor- 
tional odds model is not flexible enough to cover the 

range of problems. He proposed a general class of 
models for ordinal data called 'stereotype ordered 

regression models' which include the proportional 
odds model as a special case"'. A description of this 
class of models is beyond the scope of this paper. We 
believe that, owing to computational difficulties, it will 
be a long time before the stereotype models are 

applied in medical research. However, it should be 

kept in mind that the proportional odds model is the 
result of the stringent assumption of proportional 
odds, which is not automatically valid for all ordinal 

response variables. 

The proportional odds model is now the most com- 

monly used logistic regression model for ordinal 

response, for two reasons. First, it has the convenient 

feature that the effect of a covariate on Y can be 

quantified by one regression coefficient, and hence 
the calculation of one common odds ratio is possible; 
therefore, the presentation of results is short and 

simple. Second, standard statistical software with 
additional features such as stepwise variable selection 

procedures is now available for calculations19-20. 
Other approaches for logistic regression modelling 

of ordinal response variables can be found in the 

literature6"8-17-21. 

Assessing goodness-of-fit 

A short introduction to what is meant by goodness-of-fit 
will underline the importance of assessing the ade- 

quacy of statistical models. The purpose of any regres- 
sion model is to describe the relationship between a 

response and one or several covariates. Such models 

can be divided into a systematic component (the 
regression function) and an error component (the so- 
called residuals). The error component consists of the 
deviations of the data from the systematic part. If these 
residuals are 'large' then the model does not fit well 
and does not describe the data adequately. In that 
case, any conclusions drawn from this model are 

questionable. Hence, assessing goodness-of-fit plays a 
central role in the model building procedure and 
should be done before any hypotheses are tested. 

Important tools for assessing goodness-of-fit of regres- 
sion models are the residuals and other comparisons 
of the observed response values with the correspond- 
ing predicted values. Assessing goodness-of-fit has two 
major parts: the global and the individual goodness of 
fit. Even when the global goodness-of-fit is adequate, 
there may be still some individual values that do not fit 

well. 

The choice of an appropriate method to assess 

goodness-of-fit depends on the regression model used. 
Harrell et al-- give an excellent overview of issues in 

developing multiple regression models and evaluating 
model assumptions and goodness-of-fit. We refer here 

only to the logistic regression models described above. 
Let us start with the binary logistic model. All good- 
ness-of-fit methods compare the observed conditional 

event probabilities with the corresponding predicted 
probabilities. If there are only categorical covariates, 
and hence a limited number of different covariate 

patterns, the global goodness-of-fit can be examined 

by well known methods such as the Pearson chi-square 
statistic or the likelihood ratio statistic. However, if the 
number of covariate patterns is large, and hence the 
number of replicated measurements is small, these 
methods are invalid because they require a large 
number of replicated measurements7. Note that these 
methods always fail when the model contains a contin- 
uous covariate. Unfortunately, the procedure CAT- 
MOD of SAS23 always prints the results of the chi- 

square and likelihood ratio goodness-of-fit tests 
without giving a warning message in cases when they 
are invalid. 

Many current methods developed for logistic regres- 
sion with continuous covariates are based on pooling 
the observations according to the predicted probabili- 
ties. The most important ones are the goodness-of-fit 
test of Hosmer and Lemeshow24 implemented in SAS2"' 
and BMDP20 and the test of Brown21' implemented in 
BMDP2(). 

Unfortunately, for polytomous and ordinal logistic 
regression models, no global goodness-of-fit test is yet 
available in standard statistical software packages. 
Hence, before the proportional odds model can be 

applied one should investigate the binary logistic 
regression models for each dichotomised response. 
Owing to the stringent model assumption, the propor- 
tional odds model is the wrong method to start a valid 

data analysis8. Only if the separate binary models are 
validated should one proceed and assess the adequacy 
of the proportional odds model. The proportional 
odds assumption can be formally tested by means of a 
score test implemented in SAS19-27- The logistic 
modelling of the dichotomised responses is also 

helpful for assessing the validity of the proportional 
odds assumption2H. 
A variety of other goodness-of-fit methods has been 

proposed in the literature, eg the computation of 
classification rates and graphical methods. To assess 
the individual goodness of fit, Pregibon29 generalised a 
number of methods called regression diagnostics 
developed for linear regression to binary logistic 
regression models. An overview of these methods is 

given elsewhere13-22'30. 

Example 

A 6-year follow-up study of type 1 diabetic patients 
documented the feasibility of translating an intensified 
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insulin treatment and teaching programme from a 

specialised university diabetes centre to general inter- 
nal medicine departments31-32. In this example only a 
small fraction of the data is considered, for demonstra- 
tion purposes. For computations the SAS procedures 
MEANS, UNIVARIATE33, FREQ23, and LOGISTIC1925 
were used. 

In this study, follow-up data for 600 diabetic patients 
(308 men, 292 women) were available for investigating 
the association between their retinopathy status at 
follow up (RSF) and the explanatory variable glyco- 
sylated haemoglobin (HbA,). A complete analysis 
would require the investigation of other important 
covariates such as diabetes duration or blood pressure. 
In order to keep the example simple, only one covari- 
ate, namely HbA,, is considered here. A more detailed 

analysis of the data is given by Muhlhauser et aP- and 
Bender and Grouven34. Retinopathy status at follow-up 
was defined by the three ordered categories 'no 

retinopathy', 'nonproliferative retinopathy' and 
'advanced retinopathy or blind'. Table 1 gives a 

descriptive analysis of the HbA, values in the retino- 

pathy states. We dichotomise the response variable 
RSF by using the variables 'at least nonprolifer- 
ative retinopathy' (RSF1) and 'at least advanced 
retinopathy' (RSF2). 
The first step in the model building procedure 

should be a graphical check whether the logits of each 
dichotomised response are linearly related to the 
covariate HbA,. This is the basic assumption of any 

Table 1. Glycosylated haemoglobin and retinopathy status of 600 type 1 diabetic patients. 

Retinopathy status at follow-up 
None Nonproliferative Advanced/blind Total 

n= 381 /i=114 ri-105 n=6 0 

HbA, (%) 9.6(2.1) 10.2(2.3) 11.0(2.2) 9.9(2.2) 

Data are given as means (SD). 

Table 2. Results of the binary logistic regression models for dichotomised response retinopathy. 

Logistic Standard Odds 

Covariate coefficient error p value ratio 95% CI 

The response 'at least nonproliferative retinopathy' 

Intercept -2.645 0.418 0.0001 

HbA, 0.415 0.086 0.0001 1.23 1.14-1.33 

Hosmer-Lemeshow goodness-of-fit test: p= 0.231 

The response 'at least advanced retinopathy' 

Intercept ?3.932 0.508 0.0001 

HbA, 0.232 0.047 0.0001 1.26 1.15-1.38 

Hosmer-Lemeshow goodness-of-fit test: p-0.466. 

logistic regression model. To produce adequate plots, 
HbA, must be grouped into intervals so that each 
interval contains a sufficient number of observations. 

Unfortunately, such plots are not provided by the stan- 
dard statistical software. Since many computational 
steps are necessary to produce these plots, this impor- 
tant step of the model building process is frequently 
neglected in practice. Figure 1 shows the plots of the 

logits of RSF1 and RSF2 in fotir HbA, groups 
(quartiles) versus the group midpoints. Both are 

Fig 1. Plots of cumulative logits of retinopathy status in four 

HbA! groups versus the group midpoints, to check the 

assumption of linearity. 

? At least nonproliferative retinopathy 
o At least advanced retinopathy 
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Table 3. Results of the proportional odds model using retinopathy as response with three ordered categories. 

Logistic Standard Odds 

Covariate coefficient error p value ratio 95% CI 

Intercept 1 -3.72$ 0.411 0.0001 

Intercept 2 -2.684 0.395 0.0001 

HbA, 0.213 0.038 0.0001 1.24 1.15-1.33 

Score test of the proportional odds assumption: 0.383. 

linear, which means that binary logistic regression is 

applicable for each dichotomised response. What if 
the logits of Fwere not linearly related to X? Then the 
standard logistic regression model would not be 
appropriate and one would have to find either a trans- 
formation Z=g(X) so that the logits are linearly related 
to Z, or one should include quadratic (X2) or cubic 
(X3) effects in the model. In our example, the logits 
are approximately linearly related to HbA! and we 
could apply the standard logistic model to RSF1 and 
RSF2. The results of these models are given in Table 2. 
At first we should look at the goodness-of-fit of the two 
models. The Hosmer-Lemeshow goodness-of-fit test 

yielded />>= 0.231 and />=0.466, indicating that both 
models show no lack of fit. 

As the logistic coefficients and the odds ratio for 
HbA! are not very different between the two binary 
models, it is possible to apply the proportional odds 
model to the ordinal response variable (Table 3). The 
score test for the proportional odds assumption 
yielded f)=0.383, indicating that the model is appropri- 
ate for the data. What if the proportional odds 

assumption were not fulfilled by the data? Then more 

complicated models should be used, which do not 
describe the effect of X on Y by means of a common 
odds ratio27-34-35. In our example, the proportional 
odds model represents a valid description of the asso- 
ciation between HbA, and the ordinal response 
retinopathy. The magnitude of the effect of HbA, on 
retinopathy can be described by the estimated odds 
ratio OR=\.24 (95% confidence interval: 1.1-1.3). The 
two lines shown in Fig 2 represent the continuous rela- 
tionship between the cumulative probabilities of devel- 
oping retinopathy and glycosylated haemoglobin, 
given by the estimated common logistic coefficient of 
the proportional odds model (Table 3). The dots are 
the observed probabilities in the four HbA, groups. 
Figure 2 gives an intuitive impression of how the prob- 
ability of developing retinopathy increases with 
increasing HbA, level. 

Conclusions and recommendations 

Using ordinal logistic regression models in medical 
research in a valid way is not a simple task. A deep 
understanding of both the mathematical and the 
medical background is required. Finding a model that 
adequately describes the main features of the data is 
an interactive time-consuming process consisting of 
initial data analysis, graphical checks, choice and 
selection of covariates, parameter estimation and 
assessment of goodness-of-fit. It is impossible to under- 
stand and assess the results of such complex statistical 
methods when only some p values are reported. 
We recommend that the following information 

should be given when results of ordinal logistic 
regression models are published: 
? a thorough description of the response variable 

and all covariates 

? the measurement scales and codes of all variables 

? a clear description of which model has been used 
with a statistical reference 

? the software used for computations 
? how the covariates and interactions have been 

selected 

? the overall goodness-of-Fit of each dichotomised 
response 

Fig 2. Plot of the cumulative probabilities of retinopathy status 
versus HbA, estimated from the proportional odds model. 

probability of at least nonproliferative retinopathy 
probability of at least advanced retinopathy 
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? a statement of how the main model assumptions 
have been checked 

? a table of the final model, containing the logistic 
coefficients, standard errors, p values, and odds 
ratios with confidence intervals. 

Without this information readers are not able to 
assess the adequacy of the published results and 
conclusions from ordinal logistic regression models. 
Journals should provide enough space for the 
complete presentation of important results. 
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