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lymphoid structures against
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New findings from a
genetic perspective
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Tianchen Zhang1,2, Jianhui Li3, Ye Nie2, Xinjun Lei1,2,
Wen Shi1,2 and Wenjie Song2*

1Xi'an Medical University, Xi’an, China, 2Department of Hepatobiliary Surgery, Xijing Hospital, Fourth
Military Medical University, Xi’an, China, 3Department of General Surgery, The First Affiliated
Hospital of Anhui Medical University, Hefei, China
Background: Tertiary lymphoid structures (TLS) have an effect on hepatocellular

carcinoma (HCC), but the underlying mechanism remains to be elucidated.

Methods: Intratumoral TLS (iTLS) was classified in the Cancer Genome Atlas-

Liver Hepatocellular Carcinoma (TCGA-LIHC) cohort using pathological

sections from the Cancer Digital Slide Archive. Univariate and multivariate

Cox regression analyses were performed to validate the effect of iTLS on

overall survival (OS), relapse-free survival (RFS), and disease-free survival (DFS).

The genes differentially expressed between the iTLS-negative and iTLS-positive

groups were analyzed in combination with sequencing data. Gene set

enrichment analysis (GSEA) was used to explore the signaling pathways

affected by these differentially expressed genes. The random forest algorithm

was used to identify genes with the highest correlation with the iTLS in the

training set. Multivariate logistic regression was used to build a model to predict

iTLS in tissue samples. Spearman’s correlation was used to analyze the

relationship between TLS-associated chemokines and signature genes, and

CIBERSORT was used to calculate immune infiltration scores. Copy number

variation and its relationship with immune cell infiltration and signature genes

were assessed using the gene set cancer analysis (GSCA). The Correlation R

package was used for gene ontology (GO), disease ontology (DO), and gene

mutation analyses. The GSCA was used for drug sensitivity analysis. LASSO

regression was used to build prognostic models, and external data were used

to validate the models.

Results: There were 218 positive and 146 negative samples for iTLS. iTLS was

significantly associated with better RFS and DFS according to Cox regression

analysis. Twenty signature genes that were highly associated with iTLS positivity

were identified. GO and mutation analyses revealed that the signature genes

were associated with immunity. Most signature genes were sensitive to
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immune checkpoint inhibitors. Risk scores calculated using a characteristic

gene-based prognostic model were found to be an independent prognostic

factor for OS.

Conclusions: The improvement of RFS in HCC by iTLS was not limited to the

early period as previously reported. iTLS improved DFS in patients.

Characteristic genes are closely related to the formation of iTLS and TLS

chemokines in HCC. These genes are closely related to immunity in terms of

cellular infiltration, biological functions, and signaling pathways. Most are

sensitive to immune checkpoint inhibitors, and their expression levels can

affect prognosis.
KEYWORDS

tertiary lymphoid structures (TLS), hepatocellular carcinoma (HCC), immunotherapy,
cancer prognosis, immune microenvironment (IME)
1 Introduction

As of 2020, hepatocellular carcinoma (HCC) was the sixth

leading cause of cancer-related deaths, making it one of the world’s

leading public health problems (1). The incidence of HCC

continues to increase annually. According to World Health

Organization estimates, by 2040 the number of new cases and

deaths will exceed 1.4 million and 1.3 million, respectively (2).

Tertiary lymphoid structures (TLS), also known as tertiary

lymphoid organs (TLO) and ectopic lymphoid structures (ELS),

are aggregates of lymphocytes capable of providing ectopic hubs for

the acquired immune response, and can affect various disease

outcomes (3). TLS is acquired and often formed under the

stimulation of chronic inflammation to address the invasion of

various pathogenic factors (4). The first study on TLS was

conducted on non-small-cell lung cancer (NSCLC). Seventy-four

patients were studied using immunohistochemistry in the early

stages (5). Subsequently, the amount of TLS-related literature has

increased annually, and more scientists are involved in the research

of TLS every year.

Most patients with HCC are not diagnosed until in the

advanced stages, thus missing the optimal window for treatment

(6). The insensitivity of HCC to conventional malignancy

therapies has led to the emergence of immunotherapy as one

of the most promising treatments (7). As an immune structure,

TLS is gaining attention from researchers worldwide. There is

growing evidence of its direct and indirect impact on HCC

outcomes. While TLS in cancer is generally protective, two

contrasting effects have been reported in HCC: intratumoral

TLS (iTLS) can be protective against HCC, while peritumoral

TLS (pTLS) can be detrimental for HCC. iTLS may be associated

with sustained and effective anti-tumor immunity (8–12).
02
Additionally, more mature iTLS could help improve patient

prognosis (9). Conversely, there is evidence that pTLS can

promote HCC development (13, 14). TLS found in excised

non-neoplastic liver tissue surrounding HCC is associated with

poor prognosis and increased prevalence (9, 14). In addition,

studies have shown that depletion of TLS in non-neoplastic liver

parenchyma can inhibit cancer progression (14). However, a

recent study showed that patients with HCC and higher pTLS

densities had better overall survival (OS) and relapse-free

survival (RFS) (15).

Few studies have analyzed TLS at the genetic level,

particularly in HCC. Therefore, we performed a bioinformatic

analysis in combination with hematoxylin and eosin (HE)

pathologically stained sections to explore and elucidate the

genetic characteristics of iTLS in HCC and the prognostic

implications of differential expression of genes related to iTLS

in patients. Together with previous studies, we believe that our

study will contribute to further understanding of the role of iTLS

in HCC.
2 Materials and methods

2.1 Data acquisition and processing

XENA (https://xena.ucsc.edu) is an online discovery tool for

public and private multi-omics and clinical/phenotypic data (16).

We used this tool to obtain the liver hepatocellular carcinoma

(LIHC) dataset from The Cancer Genome Atlas (TCGA) in the

RNAseq count format. The data were processed as follows: 1) data

from the same sample but from different tables were averaged; 2)

data from different samples were combined to form a genomic
frontiersin.org
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matrix; and 3) a log2(x+1) transformation was performed on all

data. Data from the International Cancer Genome Consortium

(ICGC) cohort were obtained from the official website. We

downloaded the LIRI-JP data from the ICGC along with the

corresponding clinical information of the cohort. Please refer to

Supplementary Table 1 for a summary of the relevant data.
2.2 Evaluation of iTLS in pathological
sections

We evaluated the density of lymphocyte infiltration by

retrieving HE pathologically stained sections of the corresponding

TCGA samples from the Cancer Digital Slide Archive (CDSA).

Frozen sections and formalin-fixed paraffin-embedded (FFPE)

tissue sections were used. This study used methods based on

Clarice et al. (17) for counting all forms of iTLS as follows: 1)

lymphocyte aggregates (Agg) with lymphocyte infiltration but no

lymphoid follicle formation; 2) primary follicles (FL1), with well-

defined clusters of round or oval lymphocytes or plasma cells (no

germinal centers present); and 3) secondary follicles (FL2), with

well-defined clusters of round or oval lymphocytes or plasma cells

(germinal centers present). Based on the above groupings, two

pathologists independently evaluated iTLS in all HCC samples.

Subsequently, a third pathologist assisted in identifying the

conflicting results. Then, based on the technique of Clarice et al.

(17), samples with at least one occurrence of any form of iTLS (Agg,

FL1, FL2) were categorized as the TLS-positive (TLS+) group and

the samples without any occurrence of iTLS were categorized as the

TLS-negative (TLS-) group for the next analysis.
2.3 Analysis of the impact of iTLS on the
prognosis of HCC

Previously, Li et al. (11) and Calderaro et al. (8) found the

significance of iTLS in HCC for better early stage RFS in

patients, but further validation was needed to support this

conclusion. Therefore, to verify their findings or to discover

new information, we plotted the iTLS grouping status (positive

or negative) in relation to OS, RFS, and disease-free survival

(DFS) to determine the prognostic impact of iTLS after

excluding patients with incomplete follow-up information. OS

was defined as the time from the start of follow-up until the

patient died or was lost to follow-up for any reason, RFS was

defined as the time from the start of follow-up until the patient

experienced a disease recurrence, and DFS was defined as the

time from the start of follow-up until the patient died, was lost to

follow-up, or experienced a disease recurrence for any reason.

Univariate and multivariate Cox regression analyses were

performed to determine whether the iTLS was an independent

prognostic factor. Indicators with significant results (p < 0.05) in

the univariate analysis were included in the multivariate analysis.
Frontiers in Immunology 03
2.4 Analysis of gene expression
differences

To investigate the differential gene expression between the

two groups, we selected intra-tumor pathology samples with

both HE stained sections and RNAseq expression data, and then

performed differential expression analysis using the R package

“edgeR” according to the TLS grouping (TLS+ or TLS-). First,

samples with zero expression were excluded. Differential

expression analysis was performed to explore differences

between the two groups. Finally, gene set enrichment analysis

(GSEA) was performed using the KEGG and Reactome

databases to clarify the signaling pathways in the locations of

the differential genes.
2.5 Identification of key genes associated
with iTLS

The Boruta algorithm was used to identify the key

differential genes affecting iTLS formation. Boruta is a feature

selection algorithm, which is specifically a wrapper algorithm for

random forests that filters out the set of all features correlated

with the dependent variable (18). It can manage a large number

of input variables, evaluate the importance of the variables

during processing, and has been used in many studies in

cancer-causative gene analysis (19, 20). To explore all potential

genes that may have an impact on the formation of iTLS, we

included all genes in which differential expression analysis

showed significant results (p < 0.05) in the subsequent study.

We first used the Boruta algorithm to rank the differential

genes from largest to smallest according to their effects on iTLS.

The top 20 results were selected as iTLS signature genes, which

were later used to build a logistic regression model for predicting

the presence of iTLS. The specific steps were as follows: 1) the

samples were randomly divided into training and test groups;

the training group was used to select the key genes affecting the

formation of iTLS and the test group was used to validate the

results from the training group; 2) all differential gene

expressions in the training group were characterized using the

R package “Boruta” to identify the key categorical variables; 3)

five 10-fold crossover validations were performed using the R

package “caret” to find the most accurate mtry value (mtry refers

to the number of variables randomly sampled when constructing

decision tree branches in random forest modeling, and an

appropriate mtry value can reduce the prediction error rate of

the random forest model); and 4) the final selected model was

extracted and receiver operating characteristic (ROC) curves

were created using the validation set data to verify the prediction

ability of the model situation to establish a multivariate logistic

regression model. ROC curves were plotted for all samples to

further validate the predictive ability of the model. Previous
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studies used several genetic traits relevant to TLS to assess TLS in

tissues. Results showed that these traits had different

combinations, such as the 9-TLS trait (21), 12-TLS trait (22),

40-TLS trait (23), and 50-TLS trait (24). We selected these

chemokines, developed correlation prediction models, and

compared them with our model.
2.6 Immune cell infiltration analysis

iTLS belongs to the immune structure family. Therefore, one

can hypothesize that there is a correlation between iTLS and

immune cell infiltration. Hence, we calculated the immune

infiltration score for each patient’s cancer tissue using

CIBERSORT. The relationship between the signature genes

and the immune infiltration score was then analyzed using

Spearman correlation analysis. Finally, the effect of copy

number variation (CNV) on immune cell infiltration was

explored using gene set cancer analysis (GSCA).
2.7 Biological functional analysis

The R package “clusterProfiler” supports the functional

characterization of thousands of coding and non-coding

genomic data with up-to-date gene annotations (25). It

provides a unified interface for gene function annotations

from a variety of sources and can therefore be applied to a

variety of scenarios. We used this program for gene ontology

(GO) biological processes, GO cellular composition, GO

molecular function, and disease ontology (DO) analysis.
2.8 Single nucleotide polymorphism
(SNP) and CNV analysis

To understand the mutation of signature genes within

tumors, we investigated single nucleotide polymorphism (SNP)

mutations in signature genes using the R package “maftools”,

while exploring the signaling pathways affected by the

mutations. In addition, using GSCALite, a web-based platform

for genomic cancer analysis (26), we investigated the CNV of the

signature genes.
2.9 Drug sensitivity analysis

The ultimate goal of medical research is to facilitate clinical

treatment; therefore, we explored the relationship between

signature genes and drug sensitivity using GSCA. The tool

contains data from both the GDSC and Clinical Trials

Report ing Program (CTRP) databases . GDSC (27)

characterized 1000 human cancer cell lines and screened them
Frontiers in Immunology 04
for more than 100 compounds; CTRP (28) has similar

characterization and screening of data. We further

downloaded gene expression and drug sensitivity data from

CellMiner, a web-based suite of genomics and pharmacology

tools (29). Subsequently, drug sensitivity data were screened by

selecting drugs that were validated by clinical trials and Food and

Drug Administration (FDA) approval. Finally, the expression

data of the characterized genes were subjected to the Spearman

correlation test with the drug sensitivity data to obtain and

visualize the correlation data between them.
2.10 Construction and validation of
prognostic model

To explore the prognostic value of signature genes, LASSO

regression was used to further screen genes from the signature genes

that clearly affect the prognosis of HCC. The optimal signature

model was then constructed based on the Akira pooling

information criterion (AIC), and the result with the lowest AIC

value was used to construct the signature: risk score = expression

(A) × c of (A) + expression(B) × c of (B) +. expression(n) × c of(n).

OS, DFS, and RFS curves were plotted based on risk scores using the

Kaplan-Meier method. The accuracy of the model was verified

using ROC curves. Univariate and multivariate Cox regression

analyses were used to identify the model as an independent

influence on prognosis, and heatmaps of the risk score, relevant

clinical indicators, and characteristic gene expression were plotted.

Finally, we validated the predictive power of the model using the

ICGC data as external data.
2.11 Statistical analysis

All data analysis, data visualization (graphical plots), and

statistical analysis were performed using R Studio Desktop

(version 4.1.2), unless otherwise specified. Logistic regression

analysis was performed using the R software. Gene difference

analysis was performed using R package “edgeR”. The R package

“GSVA” was used for the ssGSEA analysis. Correlation analysis

was performed using the R package “Hmisc”. SNP mutation

analysis was performed using the R package “maftools”. The R

package “Boruta” was used for random forest analysis. Survival

analysis was performed using the R package “survivor”. The R

package “survivalROC” was used to plot the time-dependent

ROC curves. RFS analysis was performed using Kaplan-Meier

plots and log-rank tests. Correlations between the two non-

normal datasets were analyzed using Spearman’s method. The

Wilcoxon signed-rank test was used to evaluate between-group

differences in pathological parameters. The cardinality test was

used to analyze the relationship between the clinicopathological

parameters and characteristics. P values below 0.05 were

considered statistically significant if not otherwise stated.
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3 Results

3.1 iTLS is associated with better RFS and
DFS in patients

A total of 365 samples were observed; 137 samples were

classified as the Agg group, 56 as the FL1 group, and 26 as the

FL2 group. The remaining 146 samples had no lymphocytic

infiltration (Figure 1). There were 218 samples in the final TLS+

group and 146 in the TLS- group (Supplementary Table 2).

Results of OS, RFS, and DFS curves showed that the TLS+ group

was associated with better RFS (p-values less than 0.001 at 1, 2,

and 5 years), DFS (p<0.001, p<0.001, p = 0.004 at 1, 2, and 5

years, respectively), and 2-year OS (p = 0.033) (Figure 2).

Univariate Cox regression results for OS were not

statistically significant (p = 0.064, Figure 3). Univariate and

multivariate Cox regression results for both RFS and DFS

showed that iTLS (TLS+) was a protective factor (Figure 4).

Interestingly, in a slight departure from the results of previous

studies (8, 11), we found that iTLS was not only associated with

early RFS. Rather, at all periods (1, 2, and 5 years), iTLS was

associated with better RFS. This further validates the beneficial

effects of iTLS in patients with HCC.
3.2 Differential genes are associated with
immune-dominated pathways

The results of the differential expression analysis showed that of

the 1057 differential genes, most (625 genes) were downregulated,
Frontiers in Immunology 05
whereas the expression of the other 432 showed varying degrees of

upregulation (Supplementary Table 3).

In the GSEA, the KEGG database showed that the

differential genes were mainly distributed in “cell adhesion

molecules”, “chemokine signaling pathway”, and “cytokine-

cytokine receptor interaction” pathways (Figure 5A).

Conversely, the Reactome database reported that the

differentially expressed genes were mainly enriched in the

“Adaptive Immune System”, “Class A/l (Rhodopsin-like

receptors)”, and “Cytokine Signaling in Immune System”

pathways. Clearly, most of these pathways are closely related

to immunity (Figure 5B).
3.3 iTLS prediction model consisting of
20 genes

Using Boruta, we selected the most suitable mtry values

(Figure 6A) and identified 24 important genes associated with

iTLS (Figure 6B). A 10-fold-5 cross-validation was then

performed on the training set, and the top 20 most important

data points affecting the iTLS profile in the training set were

selected to build the prediction model (Figure 6C). These 20

genes were: SYTL1, TMEM25, ARL4D, PITHD1, CCR7, LCK,

CCDC88B, CCL21, CORO1A, RASAL3, LIMD2, COQ3,

KCNE4, ITPRIP, DBT, CXCR3, SMIM3, CD3D, PSTPIP1,

and PLAU.

The area under the curve (AUC) of the ROC curve obtained

using the model in the validation set was 0.733 (Figure 6D). The

AUC of the ROC curve of the iTLS prediction model built using

multifactorial logistic regression was 0.782 for all samples
FIGURE 1

Observed iTLS images. The green area with the blue border marked in the figure is the iTLS. (A) Lymphocyte aggregation (Agg). (B) Primary
lymphoid follicles (FL1). (C) Secondary lymphoid follicles (FL2).
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(Figure 6E). According to the TLS grouping (positive or

negative), we plotted a gene expression heatmap of the

characteristic genes in all HCC samples (Figure 6F). As the

figure shows, with CCDC88B as the dividing line, the upper

genes were concentrated in the TLS+ group with high

expression, whereas the lower genes were concentrated in the

TLS- group.

We also built prediction models using TLS-related

chemokines to verify the accuracy of our models. The results

showed that the AUCs of the 9-TLS, 12-TLS, 40-TLS, and 50-

TLS prediction models were 0.668, 0.697, 0.771, and 0.792,

respectively. The accuracy of our results is slightly higher than

that of the 40-TLS and slightly lower than that of the 50-TLS.

However, one problem that cannot be ignored is that when using

the 40-TLS and 50-TLS features for logistic regression, the

number of independent variables is too large. Therefore, the
Frontiers in Immunology 06
results may not be accurate. However, considering the above

factors, the predictive ability of our model remains excellent.

3.4 Further exploration around signature
genes

3.4.1 Signature genes are associated with TLS-
associated chemokines

The Spearman correlation analysis using previously reported

expression levels and the expression levels of our signature genes

was performed to further validate our signature genes. The results

showed that most of our signature genes had strong correlations

with the aforementioned features, whether it was the classical 12-

TLS feature or the 9-TLS feature proposed by Feng et al. (21), the

40-TLS feature proposed by Zhou et al. (23), or the 50-TLS feature

used by Wu et al. (24) (Figure 7).
A B

D E F

G IH

C

FIGURE 2

(A) 1-year OS curves of TLS-group vs. TLS+ group. (B) 2-year OS curves of TLS-group vs. TLS+ group. (C) 5-year OS curves of TLS-group vs.
TLS+ group. (D) 1-year RFS curves of the TLS-group versus the TLS+ group. (E) 2-year RFS curves of the TLS-group versus the TLS+ group.
(F) 5-year RFS curves of the TLS-group versus the TLS+ group. (G) 1-year DFS curves of the TLS-group versus the TLS+ group. (H) 2-year DFS
curves of TLS-group vs. TLS+ group. (I) 5-year DFS curves of TLS-group vs. TLS+ group.
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3.4.2 Signature genes are associated with
immune infiltration

We plotted a heatmap of the correlation between the

expression of the signature gene and calculated the immune

score using CIBERSORT (Supplementary Table 4 and

Figure 8A). Using CD4 T cells as the boundary, the level of

immune cell infiltration above the boundary is roughly positively

correlated with the signature gene, whereas the level of immune

cell infiltration below the boundary is roughly negatively

correlated with the signature gene (Figure 8A).

Serendipitously, using the GSCA (http://bioinfo.life.hust.edu.

cn/GSCA/), we found a large number of CNV in the signature

genes, most of which were heterozygous variants (Figure 8B).

Among them, LIMD2 had the most heterozygous amplifications,

whereas SYTL1 had the most heterozygous deletions. Based on the

relationship between signature genes and immunity, we

hypothesized that the CNV of signature genes might affect

immune infiltration. Therefore, we explored the relationship

between CNV and immune cell infiltration (Figure 8C). The

figure shows that both gene amplification and deletion increase

B-cell infiltration, whereas the infiltration levels of CD4_naïve, NK,

andMacrophage are all diminished. The figure also shows that both

amplification and deletion mutations cause a decrease in the

immune infiltration score, which in turn affects immune

infiltration (see infiltration score in Figure 8C).

In addition, we used the immune database ImmPort1 for

further analysis to explore the relationship between signature

genes and immune genes. The results showed that most of the
Frontiers in Immunology 07
immune genes correlated with our signature genes, with the

strongest correlations being ARL4D and CCL (Supplementary

Table 5 and Supplementary Figure 1).
3.4.3 Signature genes are associated with
multiple biological functions and hepatobiliary
diseases

GO enrichment analysis showed that, in terms of biological

processes, the 20 signature genes were significantly associated with

immuneprocesses including “Tcell activation”, “positive regulationof

T cell activation”, and “positive regulation of leukocyte cell adhesion”

(p < 0.001). Additionally, cell composition was associated with

“immunological synapse”, and molecular function was associated

with “C-C chemokine receptor activity”, “C-C chemokine binding”,

and “Gprotein-coupled chemoattractant receptor activity” (p= 0.02).

The results of DO analysis were also associated with “hepatitis”,

“hepatitis C”, and “primary biliary cirrhosis” (Figure 9).

3.4.4 Mutations in signature genes can affect
cancer-related signaling pathways

SNP, mainly DNA sequence diversity caused by variants in a

single nucleotide at the genomic level, can lead to the

development of disease. We further investigated the SNP

profiles of the characteristic genes and mapped the mutations

between samples (Figure 10A).

The close relationship between cancer progression and

signaling pathways is well known. Therefore, we investigated the

signaling pathways affected by relevant signature genes in each

group of samples (Figure 10B). RTK-RAS, a pathway known to

influence cancer progression, ranked first among the affected

pathways; therefore, we mapped the RTK-RAS pathway in terms

of gene mutations (Figure 10C). Methylation is one of the first

identified and most intensively studied epigenetic regulatory

mechanisms that can influence the progression of many cancers.

We explored the correlation between methylation of characteristic

genes and mRNA expression between normal and cancer samples.

The expression of CORO1A, LCK, and ARL4D showed a

significant negative correlation with methylation (Figures 10D–F).

We further explored the relationship between signature

genes and CNV using GSCALite. We also used this tool to

investigate the effect of gene expression differences on pathway

activation, where all mutations affected more than one signaling

pathway (Figure 11).

3.4.5 Signature genes are sensitive to immune
checkpoint inhibitors

Immune checkpoint inhibitors have been approved as

conventional drugs for HCC, and the possibility of immunotherapy

should be further investigated. We explored the correlation of

signature genes with the sensitivity to GDSC and CTRP drugs in

pancreatic cancer using theGSCAwebsite. As seen in Figure 12, both

the GDSC and CTRP databases showed that RASAL3 and COROIA
FIGURE 3

Results of the univariate Cox regression analysis with two-year
OS as the outcome.
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had the highest sensitivity to immune checkpoint inhibitors,

suggesting that these genes may be potential therapeutic targets.

LIMD2, PSTPIP1, CD3D, LCK, and CCR7 were significantly

negatively correlated with the IC50 of most drugs, whereas

CCDC88B, ITPRIP, SYTL1, PLAU, TMEM25, and ARL4D were

correlated with some drugs to varying degrees. PITHD1 is not

presented in the figure because of a lack of relevant data.

Using the CellMiner database, we evaluated the relationship

between signature genes and drug IC50 (Supplementary Table 5).

From this analysis, we selected the portion of the data presented in

the figure with the most significant effect (Figure 13). The results
Frontiers in Immunology 08
showed that 20 signature genes may be promising potential drug

targets for HCC and merit further in-depth study.

3.4.6 Signature genes have a significant impact
on the prognosis of HCC

Given the protective effect of iTLS on HCC prognosis, we

hypothesized that signature genes could be used to predict patient

prognosis. Therefore, we used the LASSO regression to build a

prognostic model based on a 20-trait gene screen (Figures 14A, B).

Twelve genes were eliminated during the screening process and the

final prognostic model was obtained as follows:
A

B

FIGURE 4

(A) Results of univariate and multivariate Cox regression analyses with 1, 2, and 5-year RFS as outcomes; (B) Results of univariate and
multivariate Cox regression analyses with 1, 2, and 5-year DFS as outcomes. Indicators with significant (p < 0.05) results in the univariate Cox
regression analysis are further included in the multivariate Cox regression analysis.
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0.109×exp(PITHD1)+-0.178×exp(RASAL3)+-0.053×exp

(CCR7)+0.171×exp(COQ3)+-0.042×exp(PSTPIP1)+0.045×exp

(KCNE4)+0.224×exp(CCDC88B)+0.106×exp(SMIM3)

After scoring each patient according to the prognostic model,

the patients were divided into high-risk and low-risk groups

according to the median score. The results showed statistically

significant differences in OS, RFS, and DFS between patients in the

high-risk and low-risk groups (p < 0.0001, p = 0.0021, and

p < 0.0001, respectively; Figures 14C–E). The predictive ability of

the model was assessed using time-dependent ROC curves, and the
Frontiers in Immunology 09
AUC was 0.654, 0.717, and 0.718 at 1, 3, and 5 years, respectively

(Figure 14F). Univariate and multivariate Cox regression results

also showed that the risk score was an independent prognostic

factor (p < 0.001; Figure 15A).

To further validate the effect of this model, we performed an

external validation using ICGC data. The results again showed a

statistically significant difference in OS between patients in the

high- and low-risk groups (p = 0.0086; Figure 14G). The time-

dependent ROC curves had 1-, 3-, and 5-year AUCs of 0.723,

0.629, and 0.718, respectively; Figure 14H). Univariate Cox
A

B

FIGURE 5

(A) GSEA enrichment analysis results of KEGG database. (B) GSEA enrichment analysis results of Reactome database.
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regression results (p = 0.009) and multivariate Cox regression

results (p = 0.014; Figure 15B) again showed that the risk score

was an independent influencer of prognosis.

Finally, to explore the relationship between the risk score,

prognostic model gene expression, clinicopathological

parameters, and iTLS, we plotted a heatmap of gene

expression in the prognostic model (Figure 14I). As seen in

the figure, the risk score increases with higher gene expression of

PITHD1, COQ3, KCNE4, SMIM3, and CCDC88B, whereas the

opposite is true for CCR7, which may herald these genes as
Frontiers in Immunology 10
potential promising targets for immunotherapy. In addition, the

figure clearly shows that the chance of iTLS emergence decreases

with increasing risk scores.
4 Discussion

We replicated previous studies based on pathological tissue

sections and survival data from patients with HCC; our findings

differed slightly from that of previous studies. Previously, iTLS
A B

D E

F

C

FIGURE 6

(A) Key genes influencing the presence or absence of iTLS screened by Boruta algorithm, horizontal coordinates are genes and vertical
coordinates are the importance of the genes. (B) Schematic diagram of the screening process for mtry values, red points are the most
appropriate values; horizontal coordinates are mtry values and vertical coordinates are the accuracy of the value. (C) Genes screened by
Boruta’s algorithm with the relative importance of the gene in the horizontal coordinate and the gene in the vertical coordinate. (D) ROC curves
plotted using our proposed prediction model together with the previously reported TLS chemokines. (E) Expression of the 20 TLS signature
genes obtained by screening in each group. Significance marks, ns: p > 0.05; *:p <= 0.05; **:p <= 0.01; ***:p <= 0.001; ****:p <= 0.0001.
(F) Heatmap based on the expression of the 20 TLS signature genes obtained by screening in each sample, from which it can be seen that with
CCDC88B as demarcation, the upper genes are up-regulated in expression in the TLS+ group, and the lower genes are the opposite.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1007426
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jia et al. 10.3389/fimmu.2022.1007426
was thought to be associated with improved RFS in the early

stages of HCC (8, 11). However, we found that this improvement

is not limited to the early stages, but is reflected throughout the

entire period (1, 2, and 5 years). In addition, we found a strong
Frontiers in Immunology 11
relationship between iTLS and improvement of DFS. However,

consistent with our results, other recent studies on iTLS in HCC

did not find improvement in patient OS, and controversy

remains regarding the role of TLS in HCC Further studies are
A B

D

C

FIGURE 7

Heatmap of correlations between the trait genes and other previously reported TLS features; the vertical axis is the signature genes obtained in the
current study, and the horizontal axis is other previously reported TLS signature genes; the magnitude of correlations is indicated by the block color;
significance is shown in the block by symbols: ns: p > 0.05 or the two items tested for correlation are the same item; *:p <= 0.05; **:p <= 0.01. (A)
Heatmap of correlations between trait genes and 9-TLS traits. (B) Heatmap of correlations between trait genes and 12-TLS traits. (C) Heatmap of
correlation between the trait genes and 40-TLS traits. (D) Heatmap of correlations between the trait genes and 50-TLS features.
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A

B

C

FIGURE 8

(A) Relationship between characteristic genes and immune cell infiltration, block colors represent the level of correlation. Significance markers:
*p <= 0.05; **p <= 0.01; ***p <= 0.001. (B) CNV profile of feature genes in HCC; legend meanings are as follows: Hete amp, the percentage of
samples with copy number heterozygous amplification; Hete dele, the percentage of samples with copy number heterozygous deletion; Homo
amp, the percentage of samples with copy number homozygous amplification; Homo dele, the percentage of samples with copy number
homozygous deletion. (C) Relationship between CNV and immune cell infiltration; black dots in the figure represent no effect of CNV on
immune cell infiltration, red dots represent enhanced immune cell infiltration caused by CNV, and green dots represent diminished immune cell
infiltration caused by CNV.
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required to investigate and resolve this controversy. Combined

with the gene expression data, we identified 20 genes that have

an important relationship with iTLS formation in HCC. We

demonstrated that these genes are closely related to the immune

system in terms of cellular infiltration, biological functions, and

signaling pathways. In addition, we found that most signature

genes had some degree of sensitivity to immune checkpoint

inhibitors. Considering these findings, we can speculate that

signature genes may be promising targets for future HCC

treatment and further demonstrate the protective effect of iTLS

on HCC prognosis. However, unlike our results, most previous

reports found that the number of patients in a TLS-positive

group was less than that in a TLS-negative group. We speculate

that these results were due to the inclusion of TIL in the TLS-

positive group. In fact, there is no precise method for
Frontiers in Immunology 13
distinguishing between TLS and TIL, and the boundary

between the two definitions is blurred. Therefore, to maximize

the prognostic impact of TLS, we included TIL in the TLS-

positive group, which may have led to the difference in results.

Clarice et al., used the same method (17).

Our findings showed that the signature genes correlated with

most of the previously reported TLS signatures, highlighting the

accuracy of our signature genes. Additionally, a large number of

immune-related genes were present in the signature genes,

including SYTL1, ARL4D, PITHD1, CCR7, LCK, CCDC88B,

CCL21, RASAL3, CXCR3, CD3D, PSTPIP1, and KCNE4.

Among these, SYTL1, the gene with the highest importance in

the random forest results, may play an important role in

cytotoxic granule cytokinesis in lymphocytes (30, 31). There is

evidence that ARL4D can control T effector function by limiting
A B

DC

FIGURE 9

(A) GO enrichment results for biological processes. (B) GO enrichment results for cellular composition. (C) GO enrichment results for molecular
functions. (D) DO enrichment results.
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IL-2 production (32), and other genes, such as PITHD1, CCR7,

LCK, and CCDC88B, have also been shown to have different

effects on immunity (22, 33–36). These results corroborate the

important influence of immunity on the development of HCC.

To our knowledge, we are the first to report the associations of

TMEM25, COQ3, ITPRIP, DBT, and PLAUwith HCC. TMEM25

has been identified as a member of the immunoglobulin

superfamily, which is a target of pharmacogenomics in oncology

and regenerative medicine (37). PLAU is of great importance in

renal cell carcinoma (38). COQ3 has been shown to have an

important role in the prognosis of esophageal cancer (39). ITPRIP

has also been reported in patients with colon cancer (40). DBT has

been shown to have an important effect on primary biliary

cirrhosis (41).
Frontiers in Immunology 14
As an immune s t ruc ture , the tumor immune

microenvironment to which TLS is directly exposed is

important for its formation. We explored TLS signature genes

within HCC tumors from the perspectives of signaling pathways

and immune cell infiltration using GSEA, CIBERSORT, GSCA,

and GO enrichment analysis. The results of GSEA, using both

the KEGG and Reactome databases, demonstrated that

differentially expressed genes between TLS+ and TLS-group

samples are associated with a large number of immune

pathways, which can be further verified by GO analysis. The

immune infiltration score showed that our signature genes are

closely associated with the infiltration of immune cells, such as

CD8T, Tregs, CD4T, and NK. These cells play different roles in

the progression of the disease during the fight against HCC
A B

D
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C

FIGURE 10

(A) SNP mutations in all samples. (B) Signaling pathways affected by feature genes in all samples. (C) Mutations in RTK-RAS pathway in all
samples, blue font represents cancer-promoting mutations, red font represents cancer-suppressing mutations. (D) Heterozygous CNV
mutations in the TCGA-LIHC cohort for the signature gene. (E) Pure-zygous CNV mutations in the TCGA-LIHC cohort for the signature gene.
(F) Relationship between mRNA expression of the signature gene and methylation.
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(42, 43), which also implies that the signature genes can

influence the development of HCC through immunity. We

found that CNV with signature genes, regardless of type,

caused a decrease in immune infiltration, which may

demonstrate that signature genes have an important role in

immune cell recruitment. Understanding gene mutations in

different samples and exploring the upstream and downstream

signaling pathways affected by mutated genes is important for

the development of targeted cancer therapies. We discovered

that most of the mutations in iTLS-related signature genes were

concentrated in the RTK-RAS pathway, and that overactivation

of this pathway was closely related to HCC (44). After exploring

the drug sensitivity of the signature genes, we found that

RASAL3 and CORO1A had strong sensitivity to most of the

drugs. This finding may lead to potential improvement and/or

new development of targeted therapies.

The purpose of medical research is ultimately clinical, and

our prognostic model may improve the assessment of patient

prognosis. More importantly, this study provides further
Frontiers in Immunology 15
support for the protective role of iTLS in HCC. However, for

several reasons, we were unable to perform basic experiments to

further validate our findings, which is one of the limitations of

this study. Research of iTLS in HCC is currently at an early stage,

and presently a lack of evidence is common. Therefore, more in-

depth study is urgently needed to demonstrate the effect of iTLS

on HCC. iTLS’ positive effect in HCC has been repeatedly

reported and was validated in this study. However, additional

large multicenter studies and emphasis on the importance of

continued investment in research are required to elucidate the

specific functional mechanisms of iTLS. A key issue to consider

before conducting further studies is to unify the evaluation

criteria for TLS. Currently, scholars use different criteria to

define TLS, which inevitably causes errors in research results.

Predictably, in the near future, the development of artificial

intelligence and improved computer technology will make

standardization of TLS identification possible. With improved

standardization, TLS will be a promising tool to add to the

arsenal in the clinical fight against cancer.
A B

FIGURE 11

(A) Characteristic genes affect the activation or inhibition of the pathway, where red represents the pathway being activated and green
represents the pathway being inhibited. (B) Interaction between the characteristic genes and the pathway, where the solid line is the pathway
being activated and the dashed line is the pathway being inhibited.
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A

B

FIGURE 12

(A) Drug sensitivity of signature genes in GDSC. (B) Drug sensitivity of signature genes in CTRP.
A B

FIGURE 13

Top 16 drug effects with the highest correlation in the CellMiner database for characteristic genes, gene and drug names are identified in the
figure by chart title or vertical coordinate. (A) Horizontal axis is gene expression, vertical axis is drug IC50. (B) Horizontal axis is gene expression
along median dichotomous classification, vertical axis is drug IC50. significance markers, ns: p > 0.05; *p <= 0.05; **p <= 0.01; ***p <= 0.001.
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5 Conclusion

We found that the improvement of RFS in patients with HCC

due to iTLS is not limited to the early period as previously reported

but is reflected throughout the entire period. In addition, we found
Frontiers in Immunology 17
that iTLS could improve DFS. Combined with the gene expression

data, we identified 20 genes that have an important relationship

with iTLS formation in HCC.We demonstrated that these genes are

closely related to immunity in terms of cellular infiltration,

biological functions, and signaling pathways. In addition, we
A
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FIGURE 14

(A, B) Schematic diagram of the LASSO regression variable shrinkage screening process. (C) OS of the prognostic model in the TCGA cohort.
(D) RFS of the prognostic model in the TCGA cohort. (E) DFS of the prognostic model in the TCGA cohort. (F) Time-dependent ROC curve of
the prognostic model in the TCGA cohort. (G) OS curve of the prognostic model in the ICGC cohort. (H) Prognostic model in the ICGC cohort
with time-dependent ROC curves. (I) Heatmap of risk scores, clinical features and expression of signature genes.
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found that the majority of the signature genes had some degree of

sensitivity to immune checkpoint inhibitors. Considering these

findings, we speculate that signature genes may be promising

targets for future HCC therapy and further demonstrate the

protective effect of iTLS on HCC prognosis.
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