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ABSTRACT

Characterization of cell type specific regulatory net-
works and elements is a major challenge in ge-
nomics, and emerging strategies frequently employ
high-throughput genome-wide assays of transcrip-
tion factor (TF) to DNA binding, histone modifica-
tions or chromatin state. However, these experiments
remain too difficult/expensive for many laborato-
ries to apply comprehensively to their system of
interest. Here, we explore the potential of elucidat-
ing regulatory systems in varied cell types using
computational techniques that rely on only data of
gene expression, low-resolution chromatin accessi-
bility, and TF–DNA binding specificities (‘motifs’). We
show that static computational motif scans overlaid
with chromatin accessibility data reasonably approx-
imate experimentally measured TF–DNA binding. We
demonstrate that predicted binding profiles and ex-
pression patterns of hundreds of TFs are sufficient
to identify major regulators of ∼200 spatiotemporal
expression domains in the Drosophila embryo. We
are then able to learn reliable statistical models of
enhancer activity for over 70 expression domains
and apply those models to annotate domain spe-
cific enhancers genome-wide. Throughout this work,
we apply our motif and accessibility based approach
to comprehensively characterize the regulatory net-
work of fruitfly embryonic development and show

that the accuracy of our computational method com-
pares favorably to approaches that rely on data from
many experimental assays.

INTRODUCTION

Describing gene expression and its regulation remains one
of the grand challenges of biology today. Scientists gen-
erating gene expression measurements are eager to under-
stand the regulatory mechanisms governing their observa-
tions both at the molecular level and at the organismal level.
Specific aims of their enquiry typically include identifying
transcription factors (TFs) that regulate gene expression in
a cell type as well as locating and characterizing relevant en-
hancers responsible for specific regulatory activity, e.g. driv-
ing expression in a particular spatio-temporal pattern. A va-
riety of genome-wide technologies have been developed to
answer these types of questions. ChIP-seq assays are used to
profile whole genome transcription factor (TF)–DNA bind-
ing and epigenomic states involving histone modifications,
DNase-seq, FAIRE-seq, etc., are used to characterize DNA
accessibility, and chromatin capture methods such as Hi-C
identify physical interactions between different parts of the
genome (1).

Combinations of these emerging technologies have al-
lowed groups to study gene regulation more comprehen-
sively than previously possible. However, for the over-
whelming majority of biologists, especially those studying
cell types or species that are not included in the ENCODE
and modENCODE projects, many of these assays remain
expensive and/or challenging (e.g. due to requirement of
unrealistic quantities of sample) to apply to their system
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of choice. Computational methods that help uncover reg-
ulatory networks and elements of gene expression from se-
quence and limited experimental data are thus in demand
and the subject of this study.

There has been significant investment in generating cata-
logs of genome-wide TF–DNA binding, via ChIP-chip and
ChIP-seq assays, in various cell types. TF-ChIP assays have
been successfully used by some groups (2–7) to characterize
TF roles and predict enhancer activity. However, such as-
says require substantial numbers of cells and high-quality
antibodies, making them difficult to scale to large numbers
of TFs and cell types. On the other hand, various recent
studies (8–12) have shown the feasibility of predicting cell
type-specific TF–DNA binding profiles by utilizing experi-
mentally characterized TF–DNA binding specificities (‘mo-
tifs’) and chromatin accessibility data. This ‘motif + accessi-
bility’ strategy has a practical appeal: it produces TF–DNA
binding predictions for hundreds of TFs by combining com-
putational scoring of genomic sequence for TF motifs with
a single accessibility assay to reflect cell type specific regu-
latory information.

Far more TFs have had their motifs characterized with
in vitro assays than have had adapted for ChIP-seq analysis
(13). For example, while about 60% of the nearly 1400 hu-
man TFs have motifs available today (14), <10% of human
TFs in the ENCODE project (15) have ChIP data available
in a limited number of cell types/lines. It is reasonable to
expect that in the near future, most TFs in human and cer-
tain model organisms will have characterized motifs either
from direct experimental assay or by imputation via homol-
ogy. Initial work (16,17) demonstrates the possibility of us-
ing these motif collections to perform regulatory analysis
on less studied organisms. In other words, from a practical
point of view, a strategy for reconstructing regulatory re-
lationships based on motif and accessibility data can have
widespread impact if it has demonstrated predictive value.

In this paper, we present and comprehensively evaluate a
method that is systematically designed for its ability to iden-
tify regulatory networks and elements that control gene ex-
pression in poorly characterized cell types using only TF
motifs and limited experimental data. We confirm previous
reports that motifs and accessibility data can be used to ef-
fectively predict TF–DNA binding potential genome-wide.
We then show that (a) the predicted TF binding potentials
can be used together with TF expression data to identify
relevant TFs playing major roles in specific cell types, and
(b) the relevant TFs thus identified can be used to predict
enhancer activities. While the general predictive framework
outlined above is intuitively appealing, we are not aware of
work that tests its potential and limitations systematically
and comprehensively.

There have been studies (8,9,11,12,18–22) exploring how
well motifs and/or accessibility data can predict ChIP-
based occupancy profiles, but those studies have not gone
on to assess where these approaches stand vis-à-vis the ul-
timate goal of identifying relevant TFs and predicting en-
hancer activities. Several studies (2–4,6,7,23) have utilized
cell type-specific ChIP data to characterize TFs involved
in a transcriptional network, while others (24–27,28) have
demonstrated motif based computational approaches to in-
fer binding and then gene expression. These studies have

typically been limited to very few, well characterized cell
types and regulatory networks, where much prior knowl-
edge exists in the form of relevant TFs, genetic knockdowns,
validated enhancers, etc. In this work, we show that compu-
tational methods using motifs and accessibility can be suc-
cessfully applied in a number of different cell types without
requiring extensive prior knowledge.

There has been exciting progress recently in terms of iden-
tifying enhancers active in a cell type using chromatin state
data (29) and in identifying the associated gene based on
spatial organization maps of the chromatin (30). However, it
remains challenging to determine the exact regulatory out-
put of an enhancer –– genes frequently have multi-faceted
expression patterns and harbor multiple enhancers in their
intergenic regions, each of which may correspond to some
facet of the expression pattern. It has been suggested that
dynamic chromatin states paint broad brushstrokes of the
regulatory landscape, while transcription factors help set
up more nuanced, cell type-specific expression programs
(10,31). Thus, the emerging strategy of assigning enhancer
driven expression based on chromatin states is expected to
lead to ambiguities. In this work, we assess the extent to
which this is the case, and to what extent the ambiguities in
activity prediction may be reduced by utilizing additional
information on TF expression and binding potentials.

We chose to perform this study in the context of embry-
onic development in Drosophila melanogaster, because of
the relatively mature status of the data types involved. We
found that experimentally characterized fruitfly TF motifs
along with developmental stage-specific accessibility data
can accurately predict ChIP-based TF–DNA binding pro-
files in those stages, as reported previously (9,12), and that
the predictions are more accurate when combining motif
scores from multiple Drosophila species. This analysis re-
vealed motifs whose scores correlate very strongly with ac-
cessibility, consistent with recent studies (32), and also mo-
tifs that are strongly anti-correlated with accessibility, which
to our knowledge is a novel observation.

We next evaluated whether our motif score profiles
can identify putative regulators of sets of genes expressed
in ∼200 distinct spatial expression domains in the early
Drosophila embryo. Through systematic testing, we identi-
fied a strategy for identifying TFs associated with an ex-
pression domain that best agrees with data on the TF’s
expression in that domain. Using this strategy, we built a
compendium of TF–domain associations involving 195 TFs
and 88 expression domains, and made this data available
through an easy-to-navigate online interface [http://veda.cs.
uiuc.edu/B1H GRN]. Analysis of the new compendium re-
vealed TFs and expression domains with systematic biases
for regulatory regions that are gene-proximal or distal. Im-
portantly, we found this motif-based strategy for TF func-
tion assignment to be as accurate as an identical approach
that uses ChIP data in place of motif scores.

Finally, we annotated candidate enhancers, defined as de-
velopmental stage-specific open chromatin regions, for the
likely expression pattern they produce. This was done us-
ing a regression model that incorporated predicted TF bind-
ing, TF expression, and the results of our functional asso-
ciations. Without using any prior knowledge to train our
models, we were able to recover accurately enhancers for
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over half of the 40 separate expression domains with ex-
isting data that allows evaluations. In summary, we show
how motifs, DNA accessibility and expression data may be
integrated computationally to characterize gene regulatory
networks, and find that this can be done often with compa-
rable accuracy as with ChIP data.

MATERIALS AND METHODS

Creating scoring profiles

We created motif score profiles from a collection of motifs
for 325 distinct fruitfly TFs that were characterized with the
bacterial 1-hybrid (B1H) technology (33) and made these
available through the Genome Surveyor interface [http://
veda.cs.uiuc.edu/gs]. Our motif score profiles were calcu-
lated with the Stubb tool (34), which integrates any num-
ber of strong or weak predicted sites to estimate a score
of TF–DNA binding for each 500 bp-long window in the
genome with 50 bp shifts. We also computed multi-species
averages of these motif profiles by using a phylogenetically
weighted averaging (24) of motif scores from orthologous
segments in 12 Drosophila genomes (additional details in
Supplementary Methods SM1). To evaluate the accuracy of
these computational profiles, we collected 69 ChIP data sets
(Supplementary Table S1), representing 40 TFs during early
development, from the ModENCODE consortium (35) and
other studies (2,36–38) (SM2). The raw ChIP data was con-
verted into averaged values for each of our 500 bp genomic
windows by averaging the maximum read scores from each
50bp subsegment of the window. We transformed our mo-
tif scores into ‘motif + accessibility’ scores by integrating
DNaseI-seq chromatin accessibility data from BDTNP (39)
from five stages of embryonic development (5, 9, 10, 11 and
14). The raw accessibility data was also averaged for each of
our 500 bp genomic windows and only the top 10% of win-
dows within each developmental stage (18) were considered
accessible and their original motif scores reported (SM3).

Identifying TF–domain associations

We created a ‘gene expression atlas’ based on data from the
Berkeley Drosophila Genome Project (BDGP) (40). This at-
las comprises 7212 genes organized into 195 non-exclusive
‘expression domains’, i.e. tissue or cell types and develop-
mental stage describing the gene’s expression pattern. These
domains span four developmental stages labelled ‘4–6’, ‘9–
10’, ‘11–12’ and ‘13–16’ (SM5, Supplementary Table S5,
and Figure S4). We predicted sets of genes potentially reg-
ulated by a TF (‘TF target set’) as genes whose regula-
tory regions had the strongest evidence of motif occurrence
from our chromatin accessibility filtered multi-species mo-
tif scans (SM6 and Supplementary Note 2). The TF target
set was tested for overlap with genes expressed in an expres-
sion domain, and a significant overlap was used as evidence
of the TF’s broad role in specifying the expression domain.
We call such a statistical finding a ‘TF - domain associa-
tion’. We utilized three different definitions of gene regu-
latory regions to use when predicting TF targets: 1 kb up-
stream (‘p1K’) or 5 kb upstream (‘p5K’) of the transcrip-
tion start site, or a regulatory region that extends for up to

50 kb on either side of the gene unless terminated by insula-
tor marks (‘IG’, see SM7). A TF target set was constructed
by each of these three definitions of regulatory region, P-
values of TF–domain associations were computed, and the
region definition producing the lowest P-value was selected.

Modelling enhancer activity

We defined our set of candidate enhancers as non-
overlapping 500 bp windows that were in the top 10%
of accessible windows in any of the four embryonic de-
velopmental stages and had comparable motif content to
known REDfly enhancers (SM12). We used gene proxim-
ity, gene expression annotations, and accessibility profiles
of enhancers to create a preliminary assignment of puta-
tive enhancers to specific genes and expression domains for
training our enhancer models. For each expression domain,
D, we created a model positive training set of up to 500 open
regions that were within 5 kb of their neighboring gene an-
notated with D, accessible during the developmental stage
of D, and did not overlap any REDfly enhancers. We then
selected a matching number of negative examples (open re-
gions whose neighboring genes are not annotated with D,
accessible during the developmental stage of D, and did
not overlap any REDfly enhancers). We used 75% of the
data for training and left out the remaining 25% for eval-
uation of the model. For 40 expression domains with suf-
ficient data, we additionally created ‘REDfly versus Open
Regions’ (RFVO) evaluations which only use open regions
overlapping the REDfly enhancers as positives examples for
training and testing (SM13).

Our domain specific enhancer models were designed
to capture relevant properties including motif and chro-
matin accessibility scores as well as TF expression levels
and the TF–domain associations determined above. The
activity-prediction model (henceforth called the ‘complete’
enhancer model) for a domain D can be described as:

yr =
325∑

m=1

αm Zr
m SD

m ED
m RD

m +
4∑

s=1

γs Ar
s + β

where yr is the prediction indicating whether region r is in
the positive set; m is one of the 325 motifs; s is one of the
four developmental time points (stage 5, 9, 11 and 13); αm,
γ s and β are the domain-specific parameters; Zr

m is the non-
negative multi-species motif scores for region r for the mth
motif; SD

m is the negative logarithm of the P-value of asso-
ciation between the expression domain D and the TF rep-
resented by the mth motif; ED

m indicates whether the TF re-
lated to the mth motif is expressed in D or in a related ex-
pression domain; RD

m is the ‘fragments per kilobase of exon
per million fragments mapped’ (FPKM) reported from (41)
for the TF related to the mth motif in the developmental
stage related to expression domain D; and Ar

s is the chro-
matin accessibility score for region r for the sth developmen-
tal stage. For expression domains with reasonably perform-
ing trained models, we were able to refine our crude, pre-
liminary assignment of putative enhancers to that domain
to those with model support.

http://veda.cs.uiuc.edu/gs
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RESULTS

Motifs and DNA accessibility together accurately predict
genome-wide TF–DNA binding

We first examined the pairwise correlation among 69 ChIP
data sets from early development covering 40 TFs (SM2).
Consistent with previous studies (35,42), we observed that
most pairs of TFs have highly correlated binding profiles
(Supplementary Figure S1). This is commonly attributed
to the strong influence of chromatin accessibility on TF
binding (18) and supported by Supplementary Figure S2.
Given this observation, our ‘motif + accessibility’ scoring
method only keeps the computationally predicted motif
scores (SM1) that fall within the most highly (above 90th
percentile) accessible genomic segments (SM3). It combines
the static sequence-encoded information about TF-binding
potential with the dynamic, tissue or stage-specific data
from chromatin accessibility. Figure 1A shows an example
where four major ChIP peaks of the TF Biniou (BIN) in a
genomic locus are clearly predicted by this method.

Our ‘motif + accessibility’ scoring method was evalu-
ated as previously described (12), using the strongest 1000
ChIP peaks and 1000 randomly selected non-coding seg-
ments (SM4). We noted a very high level of agreement be-
tween our predicted scores and ChIP profiles––the aver-
age Pearson correlation coefficient (PCC) over the 69 data
sets was 0.66 (Figure 1B), with 61 of the 69 data sets ex-
hibiting PCC > 0.5 (P-value of such a PCC on 2000 data
points is <1E−127). We showed that incorporating multi-
species information into our scores provides an advantage
over single-species in predicting TF binding profiles (Fig-
ure 1B), an intriguing observation since the ChIP data re-
flects binding specific to D. melanogaster (see ‘Discussion’
section). Importantly, our predictions were highly informa-
tive of TF binding levels, even when we restricted our eval-
uations to only accessible regions (Figure 1B and Supple-
mentary Note 1). Figure 1C and Supplementary Figure
S3 show that in most cases the score predictions from the
corresponding motif exhibits greater concordance with its
ChIP data set than the predictions from motifs of differ-
ent TFs. Our results support the premise that TF motifs to-
gether with accessibility data can be used to approximate
TF–DNA binding profiles in instances where ChIP assays
on multiple TFs may be impractical.

Several motifs are strongly correlated or anti-correlated with
accessibility

We hypothesized that some of our predicted motif scoring
profiles of TFs might significantly correlate with accessibil-
ity, as might be anticipated for pioneer factors that estab-
lish a permissive chromatin state (43). In fact, several mo-
tifs showed strong positive correlation (Figure 1D); includ-
ing known pioneer factors such as Trithorax-like (TRL)(44)
and Vielfaltig (VFL)(45), also called Zelda, as well as basic
helix–loop–helix TFs such as Medea (MED), and Mothers
against dpp (MAD) (SPCC ≥ 0.25 over 2000 windows, P-
value ≤ 1E−31). Surprisingly, many of these correlations
are comparable to or even better than the correlations be-
tween the motif based scores and their corresponding ChIP
profiles (Supplementary Table S4). We observed clear trends

in time-dependent roles of motifs in predicting accessibil-
ity, e.g. VFL is correlated primarily at the earliest stages
of development and TRL increases in importance during
later stages (Figure 1D), as has also been reported previ-
ously (12,45). Interestingly, there were also several home-
odomain TFs, including Bicoid (BCD), Caudal (CAD), En-
grailed (EN) and Invected (INV) that are anti-correlated
(SPCC ≤ −0.35 over 2000 windows, P-value ≤ 1E−56) with
chromatin accessibility, a phenomenon for which we are un-
aware of any suggested mechanisms in the literature. Over-
all, our analysis of accessibility data strongly suggests the
potential of a motif-based computational method to ap-
proximate accessibility profiles, as long as the relevant mo-
tifs can be identified for the cell type of interest.

Identification of TFs regulating spatio-temporal expression
domains

A hallmark of modern regulatory genomics is the ability to
use TF binding profiles to investigate a gene’s cis-regulatory
logic (46), and conversely, to determine biological processes
(e.g. tissue types in various developmental stages) that are
controlled by a TF (e.g. (47)). We consider the latter appli-
cation here, asking if motif score profiles can be used, as
ChIP profiles might be, to assign functional roles to indi-
vidual TFs. To this end, we created a pipeline for quanti-
fying TF–domain associations (Figure 2A). We extracted
gene sets from 195 distinct expression domains as defined
by the gene expression atlas of Drosophila embryonic de-
velopment (SM5). We scored a TF–domain association by
the most significant overlap between the expression domain
gene set and the three different TF target sets created from
the TF’s multi-species motif profile, the stage specific chro-
matin accessibility, and one of our possible gene regulatory
region definitions (p1k, p5k, IG) (see SM6 and SM7).

To evaluate our TF–domain association pipeline, we col-
lected 3412 (TF, domain) pairs to use as a proxy for the
ground truth where the TF gene is specifically expressed
in the domain. We then evaluated our pipeline by compar-
ing its (TF, domain) pair predictions to the ground truth
and reporting the area under receiver operator curve (AU-
ROC). We found that our pipeline using ‘multi-species mo-
tif + accessibility’ scores (AUROC = 0.67), was (a) slightly
better than when using motif scores from D. melanogaster
only (AUROC = 0.66), and (b) significantly better than
when ignoring accessibility information (AUROC = 0.605)
(Figure 2B). Additionally, the strategy of opportunistically
taking the best of three regulatory region definitions (p1K,
p5K, IG) was found to be slightly superior to considering
any one definition alone (Supplementary Figure S5).

At a P-value threshold of 1E−7 (Bonferroni corrected P-
value < 0.0064), 5716 (TF, expression domain) pairs were
designated as significantly associated, with a true positive
rate of 24% and a false positive rate of 8% based on the
TF presence in that domain. The low false positive rate in-
dicates that if a TF–domain association is not supported
by the TF’s expression, our method mostly does not predict
that association. Overall, our method predicted that 24% of
the time, a TF expressed in a domain plays a significant role
in regulating that domain. This is expected since we sought
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Figure 1. Motifs and DNA accessibility together accurately predict TF–DNA binding. (A) Scoring profiles around a typical Drosophila gene locus. The
positions of the genes (light blue) are shown in this 15 kb browser view. The scoring profiles depicted are, from top to bottom, the chromatin accessibility
from DNaseI-seq of the stage 11 embryo, the multi-species motif scores of BIN within accessible regions (top 10% of accessible windows), and finally the
DNA binding of BIN from a ChIP-seq experiment in the stage 11 embryo. (B) Inverse cumulative frequency distributions for four evaluations. Each line
plots for a given correlation value (x-axis), the percentage of the 69 ChIP sets (y-axis) that are greater than that correlation value. The evaluations using
multi-species (single-species) scores are solid blue (dotted red) lines. The darker lines represent evaluations between ChIP scores and ‘motif + accessibility’
scores, while the lighter lines represent evaluations comparing ChIP scores to ‘motif only’ scores in only accessible regions. (C) Pairwise correlation between
ChIP scores and motif scores within accessible genomic regions. The columns of the heatmap represent the 69 ChIP named for the assayed TF, laboratory
source, and developmental stage. The rows represent the experimentally determined motifs of the 40 corresponding TFs. Each cell is colored for the Pearson
correlation between 2000 windows selected to have 1000 non-coding, accessible ChIP profile peaks and 1000 non-coding, accessible random regions. In a
cell where the motif and ChIP profile represent the same TF, the rank (or star if rank>3) of that motif by correlation among the 40 TFs is enumerated. (D)
Correlation of accessibility scores with motif only scores from different motifs. Similar to (C) except instead of using scores of ChIP profiles we used the
four DNaseI-seq chromatin accessibility profiles named for their developmental stage. The Spearman correlation is calculated on 2000 windows selected
to have 1000 non-coding accessibility peaks and 1000 non-coding random regions.

primarily to identify TFs with broad regulatory roles span-
ning several target genes of the domain.

We then asked how the predicted associations compare to
similar associations that are inferred if we use ChIP data in
place of motif scores. We analyzed ChIP data sets from early
embryonic development that span 35 distinct TFs (Supple-
mentary Table S1), and predicted TF–domain associations
among all possible 35 × 195 = 6825 pairs, using the same
approach as for motif scores. Using TF expression anno-
tations as ground truth, we were surprised to find that the
AUROC of ChIP-based predictions (0.698) was comparable

to the motif-based method (AUROC = 0.704, Figure 2C),
all other aspects of the evaluation being the same. We noted
the ChIP-based method to have increased sensitivity at high
levels of specificity, while the motif-based method recovered
more true TF–domain relationships at a 50% false positive
rate. The TF–domain associations predicted by these two
approaches overlap significantly, with 53% of the 567 ChIP-
based associations being recovered from 710 motif-based
associations (P-value < 1E−162) (Supplementary Figure
S6). This analysis suggests that motif-based approximations
of TF–DNA binding profiles are not only strongly similar
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Figure 2. Identifying TF regulators of developmental expression domains. (A) Method for discovery of TF–domain associations. The association tests are
performed between 195 gene sets defined by BDGP expression annotations and gene sets formed from motif scans of 325 transcription factor motifs filtered
by chromatin accessibility from four developmental stages with three different regulatory region definitions. The best regulatory region definition is chosen
and the associations are evaluated by the expression of the transcription factors in the expression domains. Additional details of the procedure are found
in the text and Supplementary Methods (SM5–SM8). (B) Comparison of association methods by area under receiver operator curves (AUROCs). The best
method ‘MultiSpec + Acc + BestReg’ of calculating TF–domain associations uses multi-species motif scans instead of single species, an accessibility filter
instead of none, and merges best results across three different regulatory region definitions (‘p5K’, ‘p1K’, ‘IG’). The three ROC curves are calculated using
domain specific expression of the TF as the ground truth and the region of low false positive rate is plotted. The AUROC is reported in the legend and is
0.674 for our best method. The gray dotted line shows the expected ROC. (C) Comparison of best association method using multi-species scores filtered
by accessibility to equivalent ChIP-based method. This analysis is the same as above, but is restricted to 35 TF/motifs for which we have ChIP data.
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to ChIP-based profiles, but also that they may be as use-
ful as ChIP data for assigning TFs their regulatory roles in
specific expression domains.

We next focused our attention on those significant TF–
domain associations (identified above) that were supported
by TF expression data. We considered the expression sup-
port of the TF in the specific domain, in related domains
defined from the anatomical term hierarchy from FlyBase
(48), and by ubiquitous TF expression in the particular de-
velopmental stage (SM8 and Supplementary Note 3). This
compendium included 1232 TF–domain associations (Ta-
ble 1), with about 14 candidate regulators per domain (Sup-
plementary Table S8), while each TF is assigned to about
six expression domains (Supplementary Table S9). Table 2
shows a selection of TFs with the most domain associ-
ations per developmental stage within this compendium.
These include known pioneer factors VFL and TRL. Our
method also identifies Zeste (Z) and Adh transcription fac-
tor 1 (ADF1) as important regulators of many expression
domains in multiple developmental stages; both TFs have
been linked to regulating polycomb group complexes by
binding to polycomb response elements throughout the
genome (49,50). Many of our TF–domain associations,
such as Brinker (BRK) regulating embryonic ventral epi-
dermis, Twin of eyeless (TOY) regulating embryonic brain,
and Serpent (SRP) regulating embryonic/larval fat body,
are supported through phenotypic data of mutant alleles
curated by FlyBase (Supplementary Table S10).

The above compendium of TF–domain associations is
made available through an easy-to-navigate online inter-
face at [http://veda.cs.uiuc.edu/B1H GRN] and described
in Supplementary Note 4. Navigation of the compendium
allows us to describe the development of a tissue type over
time in terms of the main TFs involved in the regulatory
process. Figure 3A and Supplementary Figure S9 illustrate
this with the predicted regulatory network of clypeolabrum
(larval feeding organ) development through the stages ‘an-
lage in statu nascendi (stages 4–6)’, ‘primordium (stages 9–
10)’, ‘primordium (stages 11–12)’ and the mature clypeo-
labrum (stages 13–16). The networks show transcription
factors that are predicted to be related to all developmental
stages (TRL, ADF1), primarily early stages (e.g. Adult en-
hancer factor 1 (AEF1), Sister of odd and bowl (SOB), VFL)
or only later stages (Tinman (TIN)), based on motif analysis
as well as expression data.

We next show that motif-based TF–domain associa-
tions can provide systems-level insights into cis-regulatory
architecture. Recall that the TF–domain associations are
based on motif scans involving three different definitions
of regulatory regions––1 kb upstream (‘p1K’), 5 kb up-
stream (‘p5K’) and intergenic with insulator site bound-
aries (‘IG’)––and opportunistically using the definition that
gives the strongest association for each TF–domain pair. We
noted that ∼56% of all significant associations were derived
from the p1K definition, while for ∼28% of associations
the strongest signal came from the ‘IG’ definition (Supple-
mentary Table S11), suggesting that the compendium is not
dominated by promoter signals or distal signals only.

We asked if certain TFs tend to have stronger regu-
latory signals in one of these classes of regulatory re-
gions versus others (51,52). If a TF–domain association

was significant when examining one class of regulatory re-
gions and not significant in a different class, we deemed
the association to be specific to the former class (SM10).
Each of the TFs, TRL (Supplementary Figure S10), Zeste
(Z), ADF1, Deformed epidermal autoregulatory factor-1
(DEAF1), CG4360, Klumpfuss (KLU), MAD and MED,
were found to have p1K-specific associations, i.e. associ-
ations seen only in promoter scans, with over 50 expres-
sion domains but no IG-specific associations, i.e. associa-
tions seen only in broader scans around the gene (Supple-
mentary Table S12). Zeste has been demonstrated to fre-
quently bind proximally to a gene and facilitate commu-
nication with distal enhancers (53). Additionally, Discon-
nected (DISCO), Extradenticle (EXD), Goosecoid (GSC)
and BCD showed IG-specific associations with tens of ex-
pression domains (Figure 3B), but few or no p1K-specific
associations, thus pointing to dominance of distal regula-
tory signals for these TFs. Overall, we found that as a class,
homeodomain TFs have a preference for acting via distal
regulatory regions, consistent with (51). We also found sev-
eral predominantly late-stage expression domains that pre-
fer TF associations with proximal regulatory signals (Fig-
ure 3C, Supplementary Table S13) and several early stage
domains that are skewed toward distal signals, pointing to
an architectural difference between early and later develop-
mental regulation that had not been previously appreciated.

Enhancers associated with expression domains

High throughput chromatin state (e.g. DNaseI hypersen-
sitivity) data has been used to identify putative enhancers
in the genome (4,6,10,27,29,54,55). However, these ap-
proaches typically do not associate enhancers with genes
and expression domains. We sought to predict the target
gene and expression domain of putative enhancers using en-
hancer activity models that incorporate the predicted TF
motif profiles and TF–domain associations from above.

We evaluated several types of genome-wide assays to
identify the best method for locating putative enhancers, us-
ing 684 non-overlapping REDfly enhancers (56) as a bench-
mark (SM11). Open chromatin, as indicated by high acces-
sibility scores, was found to be the best method with an
AUROC of 0.789 (Figure 4A). Occupancy profile of the
general transcriptional co-activator CREB Binding Protein
(CBP), as well as histone marks associated with enhancer
and promoter regions (H3K4Me3, H3K4Me1, H3K9Ac,
H3K27Ac) were also predictive (Supplementary Figure
S11), while phastCons scores of evolutionary conserva-
tion (57) and methods based on combining motif scores
(58) were considerably worse at discriminating REDfly en-
hancers. These observations motivated our decision to de-
fine our set of putative enhancers as those non-overlapping
500 bp segments that are among the top 10% most acces-
sible regions in any of the four developmental stages 5, 9,
11 and 14. (See SM12 for additional criteria used to further
restrict this set.) We henceforth refer to this set of accessible
segments as ‘open regions’.

As a preliminary assignment of regulatory activity, we an-
notated each open region as a potential enhancer of its two
nearest neighboring genes and all of their expression do-
mains, discarding open regions for which neither neighbor-

http://veda.cs.uiuc.edu/B1H_GRN
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Figure 3. Applications of TF–domain association discovery. (A) Clypeolabrum network (66) example. Four expression gene sets from BDGP related to
clypeolabrum development in the early embryo are shown as blue nodes ordered counter clockwise from the top left. Grey nodes indicate TFs. Edges are
drawn when the corresponding TF–domain association is significant (<1E−7). TF nodes are colored from light to dark by the number of association edges
they have. Edges are colored by the type of expression support indicated in the legend and have been filtered to remove TFs with similar motifs (SM9). TFs
are clustered by the set of clypeolabrum expression domains they regulate. Below the network are in situ images of three different TFs at different stages
whose clypeolabrum associations are supported with consistent expression. The clypeolabrum (black circle) emerges from the procephalon (red circles).
(B) Distribution across binding domains families for TFs with greatest regulatory region biases. Each bar represents a different TF colored by its DBD
family and height indicting the statistical strength of the bias between the proximal ‘p1K’ regulatory region and the more distal, insulator defined ‘IG’
regulatory region. The starred transcription factor is shown in detail in the inset plot with the P-values of the two methods for all TF–domain pairs in blue
and for the 195 DISCO–domain pairs in red. Only points outside of the green lines are considered to be significantly biased. (C) Distribution across stages
for expression domains with the greatest regulatory bias. Same as (B) with inset plot showing 325 TF associations with embryonic dorsal epidermis (stage
13–16).
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Figure 4. Modeling expression domain enhancers. (A) ROCs for methods of detecting 684 REDfly enhancers from 684 negative sequences. Using the chro-
matin accessibility score from embryonic DNaseI-seq data (AUROC 0.789) is the best method. It is more discriminative than using scores for the presence
of chromatin mark H3K4Me3, the binding of transcriptional co-activator CBP, or the maximum of 325 multi-species motif scores. (B) Comparisons of
four different models. For each type of model, we calculated the AUROC using the RFVO test set on each of the 40 expression domains (SM13). The
distribution of these forty values is visualized with the x-axis showing a particular value of the AUROC and the y-axis indicating the percentage of the
domains with a stronger AUROC. Of the four models compared, the best model, ‘Motif * Express + Access’, combines 325 motif based features with four
accessibility based features in a linear model (see panel C). The ‘Motif * Express’ and ‘Access’ models use a subset of features from the best model, and
the ‘ChIP * Express’ model (SM14) uses one feature from each of the 69 downloaded ChIP data sets. (C) Training domain specific models of enhancer
expression. Our linear model combines each putative enhancer’s accessibility features with TF features that are the product of the motif score, the im-
portance from our compendium of the TF in regulating the domain, and the TF’s expression from in situ annotations and from RNA-seq data. ‘Good’
models (RFVO AUROC > 0.7 or Test AUROC > 0.6) are applied to every accessible window in the genome. The top 5% of windows that predict the given
domain expression that are within the regulatory region of a gene expressed in that domain are predicted as domain-specific enhancers. We evaluate these
predictions by their agreement with REDfly enhancers.
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Table 1. Most significant TF–domain associations

The top TF–domain associations are listed with the negative log of their significance ‘nlog pval’ and the type of expression support; specific expression
support ‘ED Spec Exp’, specific expression support in a related domain ‘Rel ED Spec Exp’, or stage-specific ubiquitous expression support ‘Stage Spec
Ubiq’.

Table 2. Table of shared regulators

For each developmental stage, the regulators that are expressed in and significantly associated with the most number of expression domains (in parenthesis)
are listed.

ing gene is annotated with one of the 195 expression do-
mains of interest. This defined a set of ∼24 000 open re-
gions as candidate enhancers, each with one or two genes
defined as its potential targets and one or more expression
domains corresponding to those genes as its potential do-
mains of activity. On average, about 14 expression domains
were tentatively assigned to each enhancer.

To further refine these tentative domain assignments, we
learned computational models (classifiers) capable of pre-
dicting expression driven by an enhancer. This requires
training sets of ‘positive’ and ‘negative’ examples, i.e. open
regions known to drive or not drive expression in a par-
ticular domain. Reliable training sets of this type are rare
for most expression domains. Enhancers from the REDfly
database may be used for training models, but this would
limit the model training to relatively few expression do-
mains. Instead, we chose to train models on the numerous
open regions putatively assigned to each domain, so that
the positive (negative) training sets are likely to be enriched
in (depleted of) enhancers of an expression domain (SM13,
Supplementary Figure S14). Use of these ‘noisy training

sets’ also allowed us later to treat REDfly enhancers as ‘un-
seen’ test data for evaluating the models.

For each expression domain, we trained a ‘complete’ lin-
ear model to discriminate positive and negative open region
examples using features that correspond to each of the 325
TFs in our collection and each of the four stages of devel-
opment (see ‘Materials and Methods’ section). Each TF-
related feature was the product of four quantities: the multi-
species motif score of the TF in the open region, the strength
of statistical association between the TF’s motif and the
expression domain, the expression annotation of the TF’s
gene in the given expression domain, and the RNA-seq ex-
pression level of the TF’s gene in the appropriate develop-
mental stage. Accessibility scores of the open region in each
of the four developmental stages were also included as fea-
tures describing the open region (Figure 4C).

While a separate model was trained for each of the 195
expression domains, we first focused on evaluating our ap-
proach on 40 domains for which there were at least 10 RED-
fly enhancers annotated with that expression domain, af-
fording us a reasonable test of the model on unseen data.
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For these domains, we created ‘REDfly versus Open Re-
gions’ (RFVO) test sets comprising open regions that over-
lap REDfly enhancers annotated with the domain and those
that do not overlap any REDfly enhancers nor have ei-
ther neighboring gene annotated with the domain. (A more
stringent test set is described in Supplementary Note 5.)

Our ‘complete’ linear models using the above-mentioned
features exhibited an AUROC of at least 0.7 on RFVO test
sets from 21 of the 40 expression domains. For the remain-
ing 155 expression domains, REDfly evaluations were not
possible and AUROCs were obtained using ‘left-out’ test
sets from the noisy training sets described above. Fifty-six
of these expression domains exhibited a test AUROC of at
least 0.6, a level of discrimination observed on only 3 of
155 domains in negative controls (Supplementary Note 6).
Thus, we learned accurate models for 77 of the 195 expres-
sion domains overall (Supplementary Table S15). We used
the same evaluation framework to compare the ‘complete’
model to simpler variants that ignored certain types of fea-
tures. For instance, we found the complete model to accu-
rately predict more expression domains than analogous lin-
ear models that use only motif features or only accessibility
features (Figure 4B). The advantage of using motif features
was most conspicuous for expression domains prior to de-
velopmental stage 13 (Supplementary Figure S15). We also
compared the linear classification method to other classifi-
cation schemes such as logistic regression and support vec-
tor machines, and found it to be marginally better (Supple-
mentary Figure S16).

Since our approach uses computationally predicted TF–
DNA binding, it is reasonable to compare it to a baseline
that utilizes TF–DNA binding data from ChIP experiments
in a similar manner. To this end, we trained an alterna-
tive classifier where TF-related features utilized 69 publicly
available genome-wide ChIP profiles rather than the 325
motif profiles computed by us (SM14). Surprisingly, motif-
based models performed accurately on more expression do-
mains than the ChIP-based models (Figure 4B, Supple-
mentary Figure S17), suggesting that the use of computa-
tionally characterized TF–DNA binding features spanning
more TFs is better than relying on experimentally charac-
terized occupancy for fewer TFs. On closer examination, we
noted that an improved performance of motif-based mod-
els over ChIP-based models frequently corresponded to ex-
pression domains from developmental stages 13–16 (Fig-
ure 5A). This may be because of poor temporal resolution
of these stages in the available ChIP data or because the cru-
cial TFs of these later stages have not yet been subjected to
ChIP assays.

We next attempted to assign expression activity to pu-
tative enhancers using the motif-based models trained as
above, focusing on the 77 expression domains for which
such models were assessed to be accurate. We attributed an
expression domain to an open region if one of the neighbor-
ing genes is annotated with the domain and the complete
model for the domain scored the open region in the top 5%
of all 23 529 open regions genome-wide. This resulted in
a compendium of 7824 high-confidence enhancer activity
predictions spanning 4197 open regions. Over 30% (2354)
of these predictions involved putative enhancers located >5
kb away from the target gene.

A large number of activity predictions corresponded to
annotated REDfly enhancers, even though these enhancers
had not been used in training models. We used these REDfly
enhancers to further evaluate the accuracy of genome-wide
enhancer activity prediction. For each REDfly enhancer, we
examined the strength of its association with each possible
expression domain (as predicted by the appropriate model)
and found that the experimentally annotated expression do-
main ranked first significantly more often than expected
by chance (Figure 5B). This result was stronger with pre-
dictions by the motif-based models than with equivalent
predictions by ChIP-based models (Supplementary Figure
S18). One successful example of our enhancer activity as-
signment procedure comes from the string (stg) gene locus
(Figure 5C). In this region, there are a number of REDfly
enhancers annotated to drive expression in the ventral nerve
cord and the ventral epidermis. We highlight five open re-
gions in this locus whose predictions for domain specific ex-
pression agree with the known expression patterns of over-
lapping REDfly enhancers.

DISCUSSION

We have demonstrated here the utility of a comprehen-
sive collection of TF motifs in annotating the regulatory
genome of an organism at multiple levels of resolution:
binding loci of a TF, identities of major regulators of expres-
sion domains, and enhancer activities. At each level, we as-
sessed our methodology with independent experimental ev-
idences. We validated our computationally predicted bind-
ing profiles by direct comparison to ChIP within a locus
(Figure 1A) and by having them separate ChIP peaks from
non-peaks (Figure 1B and C). We demonstrated our ability
to identify TF regulators of an expression domain by com-
paring to manual annotations of experimentally determined
TF expression (Figure 2B), as well as relying on ontology-
based spatial-temporal relationships among domains (Sup-
plementary Figure S7). Finally, we evaluated our ability to
predict the domain specific activity of putative enhancers
with annotations of known enhancer activity from in situ
hybridization experiments curated by the REDfly database
(Figure 5B and C).

In light of available data in D. melanogaster, we assessed
multiple methodological choices and adopted the best avail-
able strategy for each level of cis-regulatory annotation. Im-
portantly, we noted that the estimated accuracy of these an-
notations using our motif-based approach is comparable to
those using ChIP data sets available today. This observa-
tion has major practical implications, as it relies on a sin-
gle accessibility assay per cell type as an alternative to the
popular paradigm of characterizing ChIP binding profiles
for every TF in the cell type of interest. Our work goes be-
yond an exploration and demonstration of methodology, to
actually create a comprehensive regulatory map, pertaining
to dozens of cell types in the developing D. melanogaster
embryo. This map, made available through an easy-to-use
online interface, can be used by biologists studying specific
aspects of embryonic development at a transcriptional level.
In constructing this map, we also identify several interesting
trends and reported systems-level insights into regulation in
development.
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Figure 5. Enhancers model comparison to ChIP and genome-wide predictions. (A) Comparison of the RFVO AUROCs. One point is plotted for each of
the 40 expression domains with the color indicating its developmental stage. The x-axis (y-axis) is the AUROC of the ‘Motif * Express + Access’ (‘ChIP
* Express’) model. Off diagonal points (labeled) are expression domains that find better models using one set of features instead of the other. Motif and
accessibility features show greatest advantage over ChIP-based ones for stage 13–16 expression domains. (B) Evaluation of 406 open regions that overlap
REDfly enhancers. Each open region (x-axis) is near genes annotated with a number of possible expression domains (lower plot, blue dots). We order the
possible expression domains by the predictions of our ‘Motif * Express + Access’ models and identify the rank of the ‘true’ expression domain annotated
for the enhancer in REDfly. We plot a statistic (upper plot, red line) that achieves a maximum possible value of 1 when the REDfly domain is the best of
all possible expression domains of that open region. (C) Genome browser view of enhancer predictions near stg gene. The position and structure of genes
is shown at the top. At the bottom, the chromatin accessibility from DNaseI-seq of four developmental time points is shown as colored profiles. Each
possible expression domain of stg is shown (‘Gene Expression Domains’) and color-coded. The ‘REDfly enhancers’ are shown with the fill and border
color matching their annotated gene expression domains. Finally, the ‘Open Region Assignments’ show which expression domains are likely driven by each
500 bp open region. The color and size of the open region box indicate the driven expression domain and the significance of the prediction. Five different
open regions are circled where the most significant expression domain prediction is consistent with the annotation of an overlapping REDfly enhancer.

Our first analysis involved the use of motifs to predict TF
binding profiles. Unlike previously reported methods that
trained free parameters from ChIP data, (9,12,21), our pre-
diction approach was completely free of hand-tuned param-
eters. Consistent with our findings in (24) on only six TFs,
we noted that evolutionary conservation, measured by a
phylogenetically weighted average score of motif presence in
orthologous segments, provides substantial improvements
in the accuracy of occupancy prediction for dozens of tran-
scription factors. We speculate that this is because evolu-
tionary conservation serves as a proxy for the contextual
information that is necessary for in vivo TF binding.

We noted above that the paradigm of using motif-based
computational predictions will rely upon cell type-specific
accessibility profiles, obtained using experimental methods
(59–61). Additionally, we noted very strong positive and
negative correlations between motif presence and accessi-
bility. The informative motifs were often stage-specific, e.g.
VFL correlated strongly in the earliest stage analyzed and
poorly in the last stage, consistent with its temporal expres-
sion profile. Thus, in principle, future methods may be able
to utilize expression data on TFs along with their motif pro-
files to predict approximate accessibility profiles in a stage-
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specific manner, which then may be utilized to predict stage-
specific occupancy profiles for each TF.

Our second goal was to use motifs to create a large com-
pendium of statistical associations between regulatory TFs
and their target tissues and cell type-specific programs. We
noted that our motif-based approach has roughly the same
accuracy as a ChIP-based approach, again arguing for the
proposed alternative paradigm at the heart of this work.
The compendium, with its separate predictions for the same
tissue in different stages of its development, also allowed us
to observe temporally changing gene regulatory networks,
such as the one for clypeolabrum development (Figure 3A)
through the four stages. We found that the best strategy for
predicting associations was to examine all three classes of
control regions (1 kb upstream, 5 kb upstream, and broad
intergenic territory) rather than to limit ourselves a priori
to one of these classes as is typically done in the litera-
ture. This also enabled us to identify biases exhibited by
certain TFs and expression domains for either proximal or
distal cis-regulation on its target genes. We noted that TFs
with widespread regulatory functions were the ones with a
proximal bias, while biases for the broader control region
tended to be exhibited by Homeodomain TFs. Several late-
stage domains were found with a bias for proximal con-
trol regions in the compendium (Supplementary Table S13),
pointing to the possibility that later stages of development
are less dependent on distal enhancers, compared to earlier
stages.

With high throughput technologies becoming the norm
(46) for predicting enhancer locations, the challenge of the
day has shifted to annotation of enhancer function. As one
of the most ambitious attempts to date at tackling this chal-
lenge, a major contribution of our work is the construction
of models for assigning activity to enhancers for as many
as 77 of the 195 expression domains. Prior work in the field
has attempted this with one (24–26) or a handful (2,3,27,28)
of domains. These earlier models are constructed from suit-
able training sets of validated enhancers experimentally as-
sociated with that expression domain (2,6). As such train-
ing data sets are generally not available for most tissues, we
considered the possibility of defining ‘noisy’ training sets of
enhancers active in an expression domain based on their ac-
cessibility and the distance and expression of their nearby
gene. This pragmatic choice allowed us to successfully build
regulatory maps for many domains beyond the handful with
validated enhancers.

We found our motif-based approach to annotate en-
hancer activity to be as effective as an analogous approach
based on ChIP data. This is not a fair comparison since one
method uses motifs for 325 TFs and the other relies on ChIP
data for 69 TFs. However, the comparison should be inter-
preted in light of the costs of generating equivalent data for
the two methods, a single accessibility profile for the domain
versus hundreds of ChIP-seq experiments.

Our work demonstrates that understanding of cell type
specific regulatory networks and elements can be obtained
from combining only gene expression and chromatin ac-
cessibility data with computationally predicted profiles of
TF binding. We have previously applied a motif-based ap-
proach to identify major TFs involved in transcriptional
programs to systems outside of Drosophila development

where chromatin structure data was not available, includ-
ing other insect genomes (16,62), and vertebrate genomes
such as mouse (63), zebra finch (64) and stickleback fish
(65). The results in this paper suggest that with the increas-
ing availability of accessibility data, the efficacy of a motif-
based approach is expected to improve, especially for ver-
tebrate genomes where such data can greatly reduce the
search space for cis-regulatory signals. The methods pre-
sented here, which attempt to reconstruct the maximal reg-
ulatory network from minimal experimental requirements
will be particularly useful to biologists who study non-
model organisms or specific cell types that are not inves-
tigated by well-funded projects such as ENCODE.
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