
Journal of Biomedical Research，2010，24(3):207-214

JBR
Research Paper

www.jbr-pub.org

Weighted Markov chains for forecasting and analysis 
in Incidence of infectious diseases in jiangsu Province, China☆

Zhihang Penga, Changjun Baob, Yang Zhaoa, Honggang Yia, Letian Xiac, Hao Yua, Hongbing Shena, 
Feng Chena*

Received 3 February 2010

INTRODUCTION
Mathematical models of any natural phenomenon 

should rest  on some basic knowledge of the 
phenomenon and the data collected to track and 
understand it. Many years ago, J.L.Doob had defined a 
"stochastic process" as the mathematical abstraction of 
an empirical process whose development is governed 

by probabilistic laws. It is important to note that the 
term "stochastic process" refers to the mathematical 
abstraction, model, or representation of the empirical 
process and not to the empirical process itself. During 
recent years, the theory of stochastic process has 
developed very rapidly and has found application in a 
large number of fields[1].

In particular, a class of stochastic processes termed 
Markov chains or processes has been investigated 
extensively. Markov chains are one of the richest 
sources of models for capturing dynamic behavior 
with a large stochastic component[2,3].  It is of 
great importance in many branches of science and 
engineering and in other fields, including physics[4,5], 
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industrial control[6,7], reliability analysis[8], optimality 
analysis[9], economics[10,11], etc. The Markov chains 
theory is a method of making quantitative analysis 
about the situation in which the system transfers 
from one state to another, hence predicting future 
tendencies. This provides a basis for making strategic 
analysis.

In the field of medicine and public health, the 
occurrence, development and prognosis of a disease 
will inevitably be affected by external factors and 
the human body factors. As these factors are closely 
interrelated with one another, it is difficult to explain 
them in a structural causal model. However, it is the 
interdependent relation between these data that is 
the most important and useful characteristic of the 
research objectives[12]. Here, it will be an effective 
way for us to establish a dynamic model in time order 
according to the change law of the disease.

In the past, many scholars have applied the Markov 
chain theory to forecast the incidence of infectious 
diseases, and established some corresponding 
mathematical models. In this way, various types 
of infectious diseases can be analyzed and studied 
comprehensively using the Markov chain theory. 
Markov processes have been applied in the study of 
the AIDS[13-15], contraceptives[16], ecology[17], cancer[18] 

and other diseases[19,20]. Depending on the particular 
conditions of each study, different methodologies have 
been used. At the same time, different Markov models 
have been used in biomedical data analysis, especially 
for epidemiology research[21-25].

In this paper we will look at the use of Markov 
models for forecasting and analysis in the specific 
field of incidence of infectious diseases. These 
methods of quanti tative analys is  enjoy wide 
popularity because they are less dependent on 
historical data, have comparatively high accuracy 
and extensive adaptability. However, this kind of 
forecasting analysis based on the traditional Markov 
chain theory is destined to have defects and flaws. 
The homogeneity of the Markov chain has yet to 
be proved. There is enormous difficulty associated 
with adjusting the transition probability matrix, and 
the accuracy of the forecast is affected by objective 
factors.

This art icle attempts to overcome all these 
difficulties, and to establish a mathematical model to 
forecast the infectious diseases based on the weighted 
Markov chain theory. The authors will both leverage 
the advantages of the traditional Markov chain theory, 
and using the correlation analysis approach and 
historical data, seek more in-depth analysis of the 
usual characteristics that exist in the occurrence of the 

infectious diseases. These characteristics include long-
term trends, seasonal characteristics, periodicities, 
short-term fluctuations and irregular variations.

The remainder of the paper proceeds as follows. 
The method of sequential cluster is described in 
Section 2. In Section 3 we describe the idea of 
weighted Markov chains. Markov chain Monte 
Carlo (MCMC) methods are considered in Section 
4. Section 5 presents an application using real data 
from Jiangsu Province, and Section 6 contains some 
concluding remarks.

ONE-DIMENSIONAL SEQUENTIAL 
CLUSTER ANALYSIS

Cluster analysis involves techniques that produce 
classifications from data that are initially unclassified, 
and should not be confused with discriminant analysis, 
where the number of existing distinct groups and 
corresponding data are known. There are two basic 
ways to search for clusters. These two methods are 
differentiated and categorized as either hierarchical or 
nonhierarchical in nature[26]. A variety of hierarchical 
clustering techniques have been implemented 
and successfully used to analyze or cluster one-
dimensional and high-dimensional data[27-29]. Based on 
the characteristic of infectious disease incidence data, 
this paper attempts to only use the one-dimensional 
sequential cluster analysis algorithm to measure off 
the incidence data by SAS software.

To classify the one-dimensional sequential samples, 
partition points in the sequential series of samples 
are identified and the samples are then divided into 
several sections. Each section is unique, and this kind 
of classification can be called partitioning. Fisher 
proposed an algorithm for the optimum classification, 
namely the optimum partition method. The basic idea 
is based on the variance analysis: to look for a partition 
which can achieve minimum difference between the 
samples in the same section, and maximum difference 
between samples in some various sections. This is the 
optimum partition. Fisher suggests that the variation 
sections be divided by means of ordered cluster, and 
the data structure of the number of incidences can be 
fully taken into account so that the partition can be 
more reasonable.

Let any kind of variants  x1 , x2 ,…, xn  be {xi , xi+1 ,…, 
xi}, j > i , i , j = 0,1,2...,n  and define the mean vector

                                                           
Define the total difference (the index is the sum of 

squares of deviations) of the samples in one kind as 

(1.1)
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the diameter of that section, denoted as D (i , j):

Divide n sequential variants into k kinds, and any 
partition can be
P(n,k):{i1,i1+1,…,i2-1},{i2,i2+1,…,i3-1},…,{ik,ik+1,…,n}

Define the error function, namely the objective 
function of this partition, and let it be the total sum of 
squares of deviations in this kind:
                    

                                 
When n and k are fixed, the smaller the error 

function L[P(n,k)] is, the smaller the sum of squares 
of deviations within each kind, and this proves the 
reasonability of the classification. It can be proved 
that the so-called optimum partition is to make the    
L[P(n,k)] smallest. k can be calculated according to 
the relation curve of L[P(n,k)] and k . The value at the 
turn of the curve is the optimum partition number.

WEIGHTED MARKOV CHAIN
A stochastic process X={X(t),t∈T} is a collection 

of random variables. That is, for each t in the index 
set T, X(t) is a random variable. We often interpret 
t as time and call X(t) the state of the process at 
time t. If the index set T is a countable set, we call 
X(t) a discrete-time stochastic process, and if T is a 
continuum, we call it a continuous-time stochastic 
process. The collection of possible values of X(t) 
is called state space. This general model has been 
described, from a theoretical analysis, by Chiang[30] 
and others[31].
Markov chain

Markov chain is a branch of Markov process. If 
the present state of the system is given, then the past 
and future are (conditionally) independent. Such a 
behavior is called the Markov property of the system. 
A Markov chain evolves in a discrete (countable) state 
space with respect to discrete or continuous time.

A stochastic process X={X(t),t∈T} is defined on 
a probability space (W, F, P), where parameters set 
T={0,1,2,…} , and state space E={0,1,2,…}. It is 
called a Markov chain if for any positive integers l,m,k 
and jl > … > j2 > j1 (m > jl ) , im+k ,im ,ijl ,…,ij2,ij1∈E,
P{X(m+k)=im+k | X(m)=im,X(jl)=jl ,…,X(j2)=j2,X(j1)=j1}                                                                                                                            
                 =P{X(m+k)=im+k | X(m)=im}                   (2.1)
For the aperiodic Markov chain, we have

where jj denote the mean recurrence time to state 
j , and j is the limiting probability. The preceding 
identity shows that one way to find the limiting 
probability is by taking the reciprocal of the mean 
recurrence time. A simple way to find { i} will be 
given shortly.

When an irreducible Markov chain is aperiodic 
and positive recurrent, the chain is called an ergodic 
Markov chain. The limiting distribution { j} of an 
ergodic chain is the unique nonnegative solution of 
Equations:

                                                   

    
Now j may be interpreted as the long-run 

proportion of time that the Markov chain is in state j . 
Thus it is easily seen to satisfy (2.2). The solution of 
these equations, sometimes, is not straightforward, and 
the MCMC methods may be used to solve them[32], 
which is considered in the next Section.

There are many properties and relative conclusions 
about Markov chain, and some other mathematical 
expressions (e.g., recurrent, limit theorems, periodic, 
etc.) are described by Freedman[33] and Kendall and 
Montana[34].
Weighted Markov chain

Because the monthly (or yearly, weekly) incidence 
of infectious disease are a series of correlative random 
variables, self-correlation coefficients depict various 
disease incidence data relationships. The past several 
months' incidence of infectious disease can be 
considered in advance to predict the present month 
incidence data. Then the weighted average can be 
made according to the incidence of the past several 
months infectious diseases compared with the present 
month's. Therefore the prediction purpose to make full 
and rational use of information is reached. That is the 
basic thought of weighted Markov chain prediction.

Based on the above discussion in this paper, the 
specific method of weighted Markov chain prediction 
is expressed as follows:

① Set up a classification standard of the monthly 
incidence of infectious disease according to the length 
of material series and the requirement of the specific 
problems. For instance, we can classify incidence 
of infectious disease as one-dimensional sequential 
cluster analysis in section 2 (corresponding to state 
space E={1, 2, 3, 4, 5,6}) and so on.

② Determine every month's incidence of infectious 

(1.2)

(2.3)

 (1.3)

(2.2)
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disease state according to the classification standard of 
"①".

③ Compute various self-correlation coefficients rk, 
k∈E,
   
                                                                           
where rk indicates  k  months sel f -correlat ion 
coefficient, xl (l=1,2,…,n) indicates the lth months 
infectious disease incidence, x indicates the mean 
value of xl , n indicates the length of monthly incidence 
of the infectious disease series.

④ Standardize various self-correlation coefficients. 
In other words, that is take

as weights of various (steps) Markov chain (m is the 
maximum step according to prediction).

⑤ According to statistical results of "②", we can get 
various steps of Markov chain transition probabilities 
matrixes, which decided the probability law when 
incidence of infectious disease states transited.

⑥ The past several months incidence of infectious 
disease can be initial states respectively, the state 
probability of the present month's incidence of 
infectious disease Pi

(k),i∈E  can be predicated and 
combined with relative transition probabilities matrixes, 
k indicates the step of Markov chain, k=1, 2, …, m.

⑦ Take the weighted average of various predicting 
probabilities of the same state as predicting probability 
of the plum rains intensity index, that is

   
                          
   If Pi =max{Pi , i∈E}, i is the predicting state of 
the present month incidence of infectious disease. 
After the present month's incidence of infectious 
disease is determined, we can add it to the original 
series, repeating steps "①-⑦", and the next month's 
incidence of infectious disease can be predicted.

⑧The f ur ther  analysis  of  Markov chain's 
characteristics (ergodic property, stationary distribution, 
etc.) also can be carried out[35,36].

MCMC METHODS
In this section we will describe MCMC methods 

for the weighted Markov chains. Our approach is 
analogous to the one used for solving the equations 
(2.3) in the previous section. Since there has been 
extensive research conducted and written about 
MCMC methods, we will be brief[37]. However, it 
should be noted that the full posterior distribution over 
all parameters in the model is unwieldy.

One standard method for constructing a Markov 
chain with the correct limiting distribution is via a 
recursive simulation of the so-called full conditional 
densities: that is, the density of a set or block of 
parameters. Each of the full conditional densities in 
the simulation is then sampled either directly (if the 
full conditional density belongs to a known family of 
distributions) or by utilizing a technique such as the 
Metropolis-Hastings (M-H) method. An important 
and crucial point is that these methods do not require 
knowledge of the intractable normalizing constant of 
the posterior distribution.

In the present case, we applied MCMC methods 
to solve the above equations(2.3), iterative and 
computational details are described in the recent papers 
of Chib and Winkelmann[38] and Covington et al[39].

APPLICATION
In order to explain specific applications of this 

method and to conduct testing, this research is based 
on the samples of the monthly surveillance data of 
Hepatitis B patients in the period of January 1980 
to October 2006 in Jiangsu Province. The weighted 
Markov chain theory was used to make a forecast and 
other related analysis of the incidents of the disease in 
November and February 2000.

Liver cancer is one of the most life-threatening 
cancers, and is the third-leading cause of death 
from cancer in China, and the top leading cause in 
the Province of Jiangsu. There are some 260,000 
new cases of liver cancer each year throughout the 
world. Of all these cancer sufferers, about 42.5% 
are from China, and 90% of all liver cancer patients 
have previously been infected by Hepatitis B virus 
(HBV). A collection of data we gathered and analyzed 
suggests that about 25% of all those infected with 
HBV will eventually die of chronic severe hepatitis, 
cirrhosis of liver and liver cancer. Moreover, both 
acute and chronic Hepatitis B patients are the main 
source of infection for HBV. China is densely 
populated with Hepatitis B patients. According 
to a nationwide hepatitis epidemiological survey 
conducted in 2004, the average HBV infection rate 
of China is 70%-90% (including people infected and 
being infected). Therefore, the forecasting research of 
the incidence of HBV has far-reaching implications.

Our forecasting and analysis study is as follows:
① Set up a classification standard of the monthly 

incidence of infectious disease according to the one-
dimensional sequential cluster analysis algorithm by 
SAS 9.1.3 software. The value at the turn of the curve 
is k = 4 (see, e.g., Fig. 1).

②  As Table 1 shows, the incidence data of 

(2.5)

(2.6)

(2.4)



211　Z.Peng et al. / Journal of Biomedical Research, 2010, 24(3): 207-214

infectious disease can be classified into 6 grades 
(corresponding to 4 states of weighted Markov chain), 
so various months' incidence of infectious disease 
states can be determined.

③ According to the Table 1 classification standard, 
various self-correlation coefficients and Markov chain 
weights of various steps can be computed (Table 2).

④ After statistical computation, various one-step 
transition probabilities matrices with step's length 1, 2, 
3, 4, 5 and 6 respectively were constructed:

⑤ We took the infectious disease incidence of July 
1999 - Dec 1999's series to predict the Jan 2000's 
infectious disease incidence state. The results are 
shown below in Table 3.

5.3e+06

4.1e+06

2.8e+06

1.5e+06

263256
2          3         4         5          6         7          8         9        10

Fig. 1  L[P(n, k)]~k curve

Table 1 Classification of incidence of infectious 
disease for Jiangsu Province

State
1
2
3
4
5
6

Incidence interval
x≤1029

1029 ＜ x ≤ 1369
1369 ＜ x ≤ 1641
1641 ＜ x ≤ 1777
1777 ＜ x ≤ 2071

X ＞ 2071

Table 2  The weights of various steps Markov chain and various self-correlation coefficients

        k
rk与wk

rk

wk

0.4145
0.3570

1                              2                          3                               4                              5                               6

0.36038
0.3104

0.1122
0.0967

-0.08095
 0.0697

-0.09406
 0.0810

-0.09895
 0.0852
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⑥ As Table 3 shows, max{Pi , i∈E} = 0.3734, then 
i = 3, and the infectious disease incidence state of Jan 
2000 is 3. Corresponding infectious disease incidence 
data x satisfies: 1369 < x ≤ 1641. The actual infectious 
disease incidence state of Jan 2000 in Jiangsu Province 
is 1390, and the intensity state is 3. The prediction is 
correct.

Similarly, the Aug 1999 - Jan 2000 month series can 
be used to predict the infectious disease incidence state 
for Feb 2000. This forecasting process is just a repeat 
of "①-⑤". The prediction results are listed below in 
Table 4.

⑦ Further analysis of this weighted Markov chain's 
characteristics can be carried out as in Table 5.

From Table 5, we may infer that the return period 

of the state j is Tj . The return period of each state 
will be T1 = 17.14(months), T2 = 7.5(months), T3 = 
4.14(months), T4 = 5(months), T5 = 3.43(months), 
and T6 = 13.33(months) respectively. Thus it can 
be seen that, according to the classifying criteria 
determined in this article, the state of the number of 
incidents of Hepatitis B is most probable to appear 
about 3.43 months per time on average, and at 0.2917 
percentage rate. The state 3 is the second, about 4.14 
months per time on average, and the percentage is 
about 0.2417. States 4 and 2 are much less probable 
than the above; and the state 6 and 1 are least 
probable to appear, about 13.33 and 17.14 months 
respectively, with percentages of 0.0750 and 0.0583, 
respectively.

Table 3  Infectious disease incidence state prediction in Jan 2000

Dec 1999
Nov 1999
Oct 1999
Sept 1999
Aug 1999
Jul 1999

1
2
2
3
4
4

1                     2                     3                     4                     5                     6

1
2
3
4
5
6

0.3570
0.3104
0.0967
0.0697
0.0810
0.0852

0
1/14

0
0

3/22
4/21

0.0495

0
1/14
4/13
7/29
3/11
4/21

0.1071

0
1/7

2/13
3/29

0
2/21

0.0745

0
1/14
2/13
1/29

0
1/21

0.0435

5/8
2/7
0

8/29
3/11
5/21

0.3734

3/8
5/14
5/13

10/29
7/22
5/21

0.3520

P(1)

P(2)

P(3)

P(4)

P(5)

P(6)

Initial year State Step
(month)

Probability
source

Pi (weighted average)

Weight
State

Table 4  Infectious disease incidence state prediction in Feb 2000

Jan 2000
Dec 1999
Nov 1999
Oct 1999
Sept 1999
Aug 1999

3
1
2
2
3
4

1                     2                     3                     4                     5                     6

1
2
3
4
5
6

0.3570
0.3104
0.0967
0.0697
0.0810
0.0852

1/30
0
0
0

2/29
4/21

0.0337

1/3
5/7

4/13
0

5/29
4/21

0.4007

1/10
1/7

2/13
5/13

10/29
2/21

0.1578

0
0

2/13
1/13

0
1/21

0.0243

1/3
1/7
0

4/13
4/29
5/21

0.2162

1/5
0

5/13
3/13
8/29
5/21

0.1673

P(1)

P(2)

P(3)

P(4)

P(5)

P(6)

Initial year State Step
(month)

Probability
source

Pi (weighted average)

Weight
State

Table 5.  Stationary distribution and recurrence period of various states

State(j)
j

Tj = 

1
0.0583
17.14

2
0.1333

7.5

3
0.2417
4.14

4
0.2000

5

5
0.2917
3.43

6
0.0750
13.33

CONCLUDING REMARKS
The mathematical statistics tool is an important 

method for the prediction and forecast of infectious 
diseases. Historically, forecasting methods such 
as multivariate statistics analysis, Monte-Carlo 
simulations, spectrum analysis, that rely heavily on 
historical data have been used to infer future trends. 

But the accuracy of these non-subjective forecasting 
methods needs much improvement. In relation to these 
non-subjective forecasting methods, the weighted 
Markov chain theory introduced in this paper has the 
follow distinguishing characteristics:

① The key to the success of the forecast based 
on the weighted Markov chain theory in this article 
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is the scientific classification, determination of the 
initial state of the system, and the ensuring of the state 
transition probability matrix.  In contrast, previous 
forecasting methods have been heavily reliant on 
historical data, and largely affected by differences 
between historical and future environments.

② Since the weighted Markov chain is weighted 
with autocorrelation coefficient of various steps, the 
sum of the chain can be used to forecast the number 
of the infected. Therefore, it is more reasonable and 
sufficient in using data, and the Markov chain theory 
and the related analysis are well integrated. In the 
meantime, to calculate the limit distribution of the 
sequence applying the ergodic theorem reflects much 
more information of the sequence of the incidents of 
the disease in order to make a much more qualitative 
and quantitative description of the sequence calculated.

③ To determine the classifying criteria applying 
the ordered cluster, the data structure of the sequence 
of the patients can be taken full account of in the 
weighted Markov chain model, and the increase and 
decline in the historical data will be fully reflected. 
In this way, we are able to describe the status of 
the disease more accurately, so as to describe the 
internal distribution in a more effective way. Various 
methods in the multivariate statistics and the theory 
of fuzzy mathematics can be used to classify the 
state of the samples. The appliers should have a good 
understanding of the characteristics of the actual data, 
and accumulate experience in order to find more 
suitable classifying criteria.

④ With the continual increase of time sequence 
length, the representativeness of the historical data 
will be increased accordingly. The autocorrelation 
coefficient, transition probability matrix and the 
weight of various steps will change too, and this kind 
of change is also the process of improvement of the 
forecast and analysis theory. The forecasting model 
is not fixed, so the real number of the patients in 
every period of time should be added to the sequence 
of historical data. Therefore, the autocorrelation 
coefficient, transition probability matrix and the 
weight of the forecast can be adjusted online, and the 
accuracy of the forecast and analysis will be further 
improved. Moreover, the epidemic report of the 
disease forecast should have the same criteria in order 
to minimize the error and failure of reporting, and the 
disease information should be accumulated in the real 
practice.

⑤ With the development of the omy and culture, 
the improvement of hygiene conditions, and the 
strengthening of the prevention and control of 
epidemic diseases by the government, the epidemic 

diseases are controlled effectively, and the number 
of patients is declining year after year in China. In 
determining the structure of the model, all these 
changes should be paid attention to in order to make 
the statistical model more consistent with the life 
environment. Furthermore, as the number of the 
patients is able to reflect the change of the population 
and developing trend of the disease when the total 
population does not fluctuate too much, the paper 
applies the number of the patients to predict the future 
condition of the incidents of Hepatitis B in the coming 
year.

⑥ This forecasting method is effective when 
the spread and the prevention and control measures 
have not changed fundamentally. However, if 
preconditions are not met, the forecast will lose its 
value. Meanwhile, it is still challenging to calculate 
the actual number of the incidents of patients based on 
the state percentage calculated. It is very practical to 
see the occurrence and development of an epidemic 
disease as a stochastic process. The forecast and 
analysis method put forward in this article organically 
combines stochastic process theory, correlative 
analysis, ordered cluster analysis and epidemiology. 
Using an easy calculation and clear concepts, it 
provides a very good way to explore and discuss the 
forecast and prediction of epidemic diseases.
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