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Human-robot collaboration is gaining more and more interest in industrial settings, as
collaborative robots are considered safe and robot actions can be programmed easily by,
for example, physical interaction. Despite this, robot programming mostly focuses on
automated robot motions and interactive tasks or coordination between human and robot
still requires additional developments. For example, the selection of which tasks or actions
a robot should do next might not be known beforehand or might change at the last
moment. Within a human-robot collaborative setting, the coordination of complex shared
tasks, is therefore more suited to a human, where a robot would act upon requested
commands.In this work we explore the utilization of commands to coordinate a shared
task between a human and a robot, in a shared work space. Based on a known set of
higher-level actions (e.g., pick-and-placement, hand-over, kitting) and the commands that
trigger them, both a speech-based and graphical command-based interface are
developed to investigate its use. While speech-based interaction might be more
intuitive for coordination, in industrial settings background sounds and noise might
hinder its capabilities. The graphical command-based interface circumvents this, while
still demonstrating the capabilities of coordination. The developed architecture follows a
knowledge-based approach, where the actions available to the robot are checked at
runtime whether they suit the task and the current state of the world. Experimental results
on industrially relevant assembly, kitting and hand-over tasks in a laboratory setting
demonstrate that graphical command-based and speech-based coordination with
high-level commands is effective for collaboration between a human and a robot.

Keywords: collaborative robot (cobot), human-robot interaction, task coordination, knowledge-based, speech
recognition

1 INTRODUCTION

Collaborative robots (cobots) are at increasing rate being deployed in industrial environments,
sharing tasks and the work space with humans (Villani et al., 2018a). Tasks can be individually
configured in a human-robot team setting, where the operator demonstrates task sequences and skills
for the robot, and the robot repeats them (Ogenyi et al., 2021). This avoids having to go through a
development phase, considerably speeding up integration time. Cobots are crucial for this, as they are
small, light-weight and can be safely moved around by a human operator (Kumar et al., 2021).

However, this programming of tasks is typically targeted only for independent robot motions, and
task execution usually does not include human-robot interaction or physical collaboration. This
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implies that programming is still done offline, while the robot and
the tasks are being prepared, and the actual execution phase is
mostly autonomous execution of the robot. While applications
can be found (Sadrfaridpour and Wang, 2017; Johannsmeier and
Haddadin, 2017; Darvish et al., 2021) that integrate coordinated
actions (e.g., waiting for human input or trigger), still this is pre-
programmed and planned to happen at certain specified
occurrences. Coordination is thus planned in advance and
both agents (i.e., human and robot) act as decided by a fixed
protocol. If and when problems occur, or when changes need to
be made in the collaboration, the work flow is disrupted and has
to be restarted when problems get fixed or when changes are
implemented. This limitation affects the natural collaboration
and fluency between human and robot (Hoffman, 2019), as no
spontaneous actions are allowed besides simply halting the robot
and the action plan. While exceptions exist (see e.g., (Darvish
et al., 2021), which takes into account last-minute changes of task
allocation), task plans are typically short, to avoid a large task plan
network that is complex to model and track.

To allowmore natural and fluent human-robot interaction, we
believe collaboration between human and robot should be
coordinated by the human, assisted by the robot and its
knowledge and reasoning capabilities. At any given time
during the collaboration, the human worker should be able to
select suitable actions from the robot to assist the shared task. The
robot verifies that the action is suitable and possible, based on its
current state of the world and capabilities. Such knowledge is
incorporated in a knowledge base that is updated at regular
intervals by observations and human instructions. The
selection of actions for the robot thus requires human
commands to allow for intuitive instructions. Speech and text-
based commands are most suitable as, similar to human-human
communication (Rocci and Saussure, 2016), semantics can be
included.

In this work, we present the developments to allow human
coordination in shared human-robot collaborative tasks. The
main contributions of this paper are:

• A knowledge-based system architecture that supports
reasoning, planning and knowledge integration

• Shared task coordination by human commands, either by a
graphical interface or by speech

• Industrially relevant use case scenarios that evaluate the
approach

The paper is organized as follows. Section 2 reviews the state
of the art in human-robot collaboration and verbal
communication in robotics. Section 3 presents the proposed
system, with the knowledge and reasoning architecture
(Section 3.2) that describes the state of the world, the actors
present within it and the capabilities and properties each contain.
Then, in Section 3.3 the selection of robot actions is enabled by
both a graphical command-based and speech-based user interface
that is connected to the knowledge base for reasoning over
capabilities and actions. Results of the approach are presented
in Section 4 by evaluation of human-robot collaborative tasks
inspired from real industrial use cases. Section 5 presents a

discussion on the work, including its limitations. Finally,
Section 6 concludes the work.

2 RELATED WORK

2.1 Human-Robot Collaboration
Collaboration between human and robot within industrial
environments has received considerable attention in recent
years (Villani et al., 2018a; Kumar et al., 2021). Clear
distinctions are made between different categories of
collaboration, for example, whether tasks and the environment
are shared and which agent takes which task (Kolbeinsson et al.,
2019). This allocation of tasks requires careful planning and
depends on several (in)dependent factors, such as the
capabilities of the robot, the difficulty of re-programming and
re-configuring the setup, complexity of the task, among many
others. Cobots are well suited to be integrated in such
environments, due to their light weight, integrated safety
functions and human-centered robot programming interfaces
(Villani et al., 2018a,b). Industrial integration requires
adherence to international standards that assess the safety
aspects (i.e., (ISO-10218-1/2:2011, 2011), for industrial robots
and systems, and (ISO-15066:2016, 2016), for collaboration) by a
formal risk assessment, where, besides the robot itself, additional
systems (Halme et al., 2018) can be incorporated to guarantee
safety of the human worker. Additional trends in collaboration
between human and robot take the fluency of interaction
(Hoffman, 2019) or human factors (Chen and Barnes, 2014)
into account. This implies that the user experience (Chowdhury
et al., 2020) and user acceptance (Müller-Abdelrazeq et al., 2019)
is considered by design of the interaction, with suitable
technology that improves, instead of hinders, the outcome.

Even though much research and development is ongoing to
accelerate the uptake and deployment of collaborative robots,
there is no universal solution that fits all. This is perhaps best
exemplified by the variety of modalities available for interaction
and the magnitude of differences in industrial environments,
tasks and contexts. Several different modalities have been utilized
for communication, as demonstrated for gestures (Liu andWang,
2018), augmented and virtual reality (Dianatfar et al., 2021),
verbal and non-verbal communication (Mavridis, 2015) and
physical interaction (Ogenyi et al., 2021).

The mentioned works on human-robot collaboration
demonstrate that communication is crucial in achieving the
goals of the interaction. Depending on the modality, this
information exchange can take many forms, such is robot
goal poses, safety zones, basic commands, task messages, etc.
Non-verbal commands, however, typically transmit different
information, as compared to verbal commands. Human to
human communication, for example, thrives in verbal
communication (Rocci and Saussure, 2016), as information
can be shared efficiently and with different nuance and
meaning. Enriching robots with the capabilities to
interpret, understand and react to verbal commands, or
even natural language, is, however, still in early stages of
development.
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2.2 Verbal Communication in Robotics
Verbal interaction between humans and robots has seen success
in many different cases (Mavridis, 2015; Marin Vargas et al.,
2021). Often, literal commands provide the robustness for
communication, as the commands are known, and only basic,
short sentences are utilized. The step of going beyond literal
command-based instructions aims at extending communication
to include semantic annotations of commands (Dukes, 2013) or
purely natural language (Williams et al., 2015). One advantage of
natural language, as compared to literal commands, is the
inclusion of semantics, enabling similar expressions in
different ways, such that it is most convenient and
comfortable for the human. Moreover, higher-level (cognitive)
concepts, such as intention, emotion and action, can be (in)
directly included in a phrase, as typically present in everyday
human language. The extraction of such information for a
Natural Language Processing (NLP) system is, however, not an
easy feat. State of the art approaches, utilizing deep neural
networks (Otter et al., 2022) or other learning based
techniques (Sharma and Kaushik, 2017), have shown real-time
conversational skills, as, for example by IBM’s Watson (High,
2012) or GPT-3 (Brown et al., 2020).

With respect to robotics, the understanding and
acquisition of language can take advantage of the
situational nature of a robot, as it is placed in a dedicated
environment where tasks and context are known (Taniguchi
et al., 2019). Research works have focused on specific contexts
for extractions and interpretations of robot instructions, such
as manipulation (Misra et al., 2016), grasping (Chen et al.,
2021), intention recognition (Mi et al., 2020; Sun et al., 2021)
and grounding (Misra et al., 2016; Shridhar et al., 2020; Vanzo
et al., 2020). Other approaches interpret natural language
through human-robot dialog (Thomason et al., 2015), or
utilize additional sensor modalities, such as vision (Sun
et al., 2021; Chen et al., 2021). Research has also targeted
semantics, both to understand the world and to execute robot
actions within it (Ramirez-Amaro et al., 2019). Approaches
specific to learning or assigning the semantics of assembly
tasks can be found in (Stenmark and Malec, 2014;
Savarimuthu et al., 2017).

Most of the presented works consider the tasks as fixed, with
little variation in task allocation (Johannsmeier and Haddadin,
2017) or with a low number of total tasks to be executed (Darvish
et al., 2021). The reason for this is that with increasing variation in
tasks, the task models easily become too large to manage and
track. However, when considering Industry 4.0, the trend of
smart manufacturing pushes production processes to include
wide variations in products, which are to be completed at
irregular and unknown time instances. Collaboration between
human and robot is suitable to achieve this with higher efficiency
than robots (i.e., full automation) or humans (i.e., full manual
labour) alone, as it avoids large and complex task plans that
include all possible product variations, and avoids large robot
programming efforts. The problem then becomes how to
command and coordinate robots effectively and efficiently.

In this work, we address the collaboration between human and
robot from the point of view of coordination. In order to enable

fluent collaboration, human coordination decides when and
which robot actions should be executed. This is done by
human command phrases (actions and targets), that can be
communicated by speech or via a graphical user interface, at
any given time during the shared task. Reasoning over the
knowledge base that holds an up-to-date world model, then
ensures that robot tasks are executed at the correct time (e.g.,
when the robot is free) and with the correct functionalities (e.g.,
robot is capable to reach an object). Command phrases, in
combination with a dedicated knowledge representation of the
world, has the advantage of including semantic annotation to all
knowledge, making the system customizable to the user (e.g., by
preferred phrases) and to the tasks (e.g., no predefined task plan,
but the user decides who does what and when).

3 MATERIALS AND METHODS

The methodology of the proposed approach and its materials are
explained by the system architecture and its contents, which
includes the knowledge base and reasoning, action planning and
the different interaction modalities, i.e., graphical command-
based and speech-based.

3.1 Terminology
The terminology, used throughout the work is clarified as follows:

Coordination-the act of managing actions towards a common
goal, while handling problems, conflicts and collaboration.

Communication-the exchange of information by different
modalities.

Command-a word that the robot knows and reacts to.
Natural Language Processing (NLP)-refers to the

computational approach of analyzing, understanding and
manipulating natural language text or speech.

Automated Speech Recognition (ASR)-converts spoken
language to text.

Semantic annotation-is a process of attaching relevant (meta)
data.

In context of the human-robot collaborative tasks, our
contributions lie in the human coordination of robot actions
by utilizing commands, which are known in the system.
Automated Speech Recognition (ASR) tools capture the
spoken commands and convert them to text. Natural
Language Processing (NLP) takes the text and matches them
to existing or related phrases by semantic information that is
annotated to the contents of the knowledge base. To reduce the
complexity in modelling and tracking shared task plans, the tasks
commanded to the robot are short (only few actions) and are not
integrated in a higher level goal. This implies that a (shared) goal
is only taken into account by the human, who coordinates the
actions of him/herself and the robot. Nevertheless, as the world
and the low-level tasks are represented in an ontology, this allows
for their evaluation, before a robot action is executed. Practically,
the current state of the world and the task, and the requested
commands are evaluated for matching conditions and
capabilities. For example, whether the robot can reach a
destination or is holding an object for placement.
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3.2 System Architecture
The architecture of our system is based on previous developments
on knowledge-based planning for human-robot collaborative
tasks (Angleraud et al., 2018). One crucial difference is that no
high-level planner is utilized and autonomous robot actions, as
inferred from the knowledge base and reasoning, are excluded.
Instead, human coordination decides which actions are selected
and executed, verified by the reasoning module. The system is
depicted in Figure 1 and the individual modules are explained in
detail, as follows.

3.2.1 Knowledge Base and Reasoning
Knowledge on the world and its content is represented by
ontologies, and referred to as the Knowledge base (KB). As
main advantage, ontologies offer a structured description of
knowledge, its domain and the relationships that hold between
its contents. The KB contains the objects and agents present, and
includes relevant information for the tasks and the goals, such as
their location, pose, status, etc. Executable actions of the robot, such
as end-effector motion, grasping and object placement are
expressed as an < action,target > -pair that can be called
by the human at any requested instance. The KB and its knowledge

representation allow for relationships to be defined between
actions, targets and the world state, such that dependencies and
conditions can be checked in order to update the KB. Moreover,
relationships enable verification of conditions for robot action
execution. Reasoning over the KB, therefore, serves two functions:

World update -Observations external and internal from robot
and the world are utilized to update the KB. For example, the state
of the robot, such as end-effector pose, gripper state, and its
actions being executed. Moreover, human commands (i.e., <
action,target > -pairs) are used to update the KB.

Action execution checks-Relationships between entries of the
KB are checked when robot actions are queried. These pre-
conditions verify and enable the execution of robot actions.

Table 1 lists a subset of < action,target > -pairs present
in the KB, which is utilized for updating the KB and for
coordination of the shared human-robot collaborative tasks.

3.2.2 Action Planning
Robot action plans are constructed from mid-level action
sequences that execute requested tasks. At a higher level,
human coordination guides the collaboration, in order to
achieve a shared goal. Action plans are represented by

FIGURE 1 | The system architecture is divided in several blocks as follows. The knowledge base (KB) holds all knowledge of the world in form of ontologies, which
are updated by reasoning and human input. Action planning generates shared plans in form of hierarchical task networks (HTN), which take input from the KB. Robot
capabilities are integrated via a separate robot application programming interface (API) where skills and motion primitives are defined. Automated speech recognition
(ASR) and natural language processing (NLP) are separate modules that provide the human input for coordinating the collaborative tasks.

TABLE 1 | Coordination of shared tasks is commanded by <action,target>-pairs that specify an action to be executed by the robot, with an accompanying target.
Specific details of the architecture are as follows: Pre-conditions-checks whether certain conditions of the world and its content prior to execution are met (e.g., object
location, state/capabilities of the robot). Signature-specifies onto which the action/target acts; object, robot and/or human. Semantics-lists the different commands that can
be used for triggering the same action/target. Format-describes the underlying knowledge format. Explanation-provides details of the action/target and its specific (sub)
tasks.

Action Pre-conditions Signature Semantics Format Explanation

moveTo isWithinReach isReady Object Come Go move action Move robot end-effector
graspObject gripperEmpty isReady holdsObject Object Robot Pick Take motion action gripper action Grasps object
placeObject isWithinReach isReady Object Robot Place Deposit motion action gripper action Places object
handOver isWithinReach isReady humanPresent Object Robot Human Give Hand motion action gripper action Hand-over object
kitParts isWithinReach isReady Object Robot Kit Stock motion action gripper action Pick and place objects

Target

Parts isWithinReach canBeGrasped Object Robot Human Bolt Bolts Tool 3D Pose Location of parts
Box isWithinReach isReady isEmpty Object Robot Box Kit Container 3D Pose Location of box
Table isWithinReach isReady isEmpty Object Robot Storage Kit_store Back 3D Pose Pose on table
Human isWithinReach isReady humanPresent Object Human Here Me 3D Pose Human hand-over pose
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Hierarchical Task Networks (Georgievski and Aiello, 2015),
which take input from the KB to generate a plan. On a
practical level, this implies that at each action plan node, the
state of the robot and the human is checked (e.g., whether the
human is active or not, represented by the is Ready state). When
the robot is ready, additional pre-conditions of the world are
verified that assess whether the actions can be executed (e.g., end-
effector pose can be reached: is withinReach, object present: can
Be Grasped, gripper empty: gripper Empty; see Table 1, pre-
conditions column). When verified correct, the actions are
executed. One example explains this planning concept. A
robot grasping task is planned as a sequence of actions
(i.e., robot motion, gripper motion), where each node in the
plan represents the different steps in between the robot actions.
At each node, pre-conditions are checked, towards the state of the
world and the actions requested, prior to execution. A high level
understanding of the shared task is therefore not present in the
KB, but only the actions that can be requested from the human.
This simplifies the formal planning definition and leaves the high-
level coordination towards the shared goal to the human.

3.2.3 Semantic Annotations
Ontologies are well suited to incorporate (semantic) annotations
to knowledge. Properties, relations and dependencies can be
easily connected to individual entities and link entities
together to form (chains of) relationships. Table 1 lists few
examples in the pre-conditions column that represent relations
and attributes in the world. In regards to the interpretation of
semantics towards robot commanding, our system offers the
incorporation of semantic annotations, as selected commands
can be assigned to address specific actions and targets (see
Semantics column in Table 1). Integration of such additional
semantics requires the requested commands to be included in the
NLP dictionary and the planning domain ontology.

3.3 Interaction Modalities
Interaction between human and robot can be divided into modalities
utilized for programming robot actions and modalities utilized for
task coordination. Physical interaction, such as hand-guiding a robot
motion, demonstrates an end-effector pose and is part of a set of
robot capabilities developed by the robot manufacturer (i.e., gravity-
compensated hand-guiding). Here, we focus on the core interaction
modalities of ourwork, i.e., a graphical command-based interface and
a speech-based interface.

3.3.1 Graphical Command Interface
The graphical command-based interface enables a human to instruct
actions to the robot, by an<action,target> -pair selected from
a graphical user interface (GUI). Based on the current state of the
world, a single action can be selected, followed by a suitable target (see
Table 1). It has to be noted that the semantics of the actions and the
targets are not fixed and can be arbitrarily chosen by the human, by
simply changing the terminology in the specific ontology.

3.3.2 Speech Interface
An ASR module enables the shared human-robot collaborative
tasks to be coordinated by verbal commands. This essentially relies

on the same functionality as the command interface but now,
speech has to be interpreted and connected to individual actions
and targets to form < action,target > -pairs. While ASR
depends on an external software tool, several NLP steps and filters
are included to our proposed system. To reduce the complexity of
the NLP steps, several additional requirements are set for the
acceptance of the command phrases. These are explained as follows.

Word exclusion-Common words are removed from a phrase,
such as articles (e.g., ‘the’, ‘a’, ‘an’)

Word limit-A maximum of two words are accepted for
processing.

As general rule, from a command phrase, the NLP system accepts
only the words that are defined in the dictionary, and a command
phrase should only contain one action and one target. In other cases
(e.g., multiple actions/targets or one action/target missing), the
command is not accepted. Following, it is checked whether there
exist properties of the action and the target, such that a meaningful
task can be extracted for the robot. This is done by reasoning and
verification over the knowledge base, where all actions and targets are
described by suitable properties and relationships.

3.3.3 Knowledge Integration
Integrating new knowledge into the system can be done in various
ways, depending on the type of knowledge and its format, as
summarized in Table 2. Robot actions to be included are divided
in primitive actions, such as single motions or gripper actions,
and tasks, which are a list of actions. In both cases the action is
demonstrated by the human or programmed in the action library
of the robot and linked to the ontology by suitable function call
definition. As part of the ontology, conditions should then be
defined that will be evaluated before action execution.

Targets, which can be locations in 3D space and target objects to
grasp (see Table 1), are defined as 3D poses in the world space, to be
utilized for the robot, and defined by either hand-guiding the robot or
by hard-coding the pose into the KB. This means objects and robot
motion are not predefined, but are taught to the system before the
execution of the shared task. Annotations to the target in the ontology
can be included to provide additional and sufficient information to
the target pose. For example, objects such as boxes, into which objects
can be placed, require a pose that denotes the location within the box,
instead of the pose of the box itself.

Direct inclusion of alternative words (synonyms) for existing
commands in the ontologies can be easily done via an ontology
editor, such as Protégé (Musen, 2015). This enables semantics to be
added to all knowledge, by taking advantage of the functionalities of
the OWL2 language. Similarly, new reasoning rules can be added by
defining new rules in the SWRL language1.

4 EXPERIMENTS

In this section we present the results of our work, by describing
and evaluating two use case scenarios that are representative for
industrial human-robot collaboration.

1https://www.w3.org/Submission/SWRL
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4.1 Implementation
The system architecture and interaction modalities are developed
in Python3, utilizing ROS for robot communication and control.
The graphical user interface (see Figure 2) is developed inQt and is
launched as single interaction mechanism, enabling also the speech
module to pass commands to the system. The Google Speech
Recognition engine2 enables spoken words to be converted to text.
Ontologies are defined using OWL2 standard3 with owlready24

and Protégé (Musen, 2015) as ontology editor. Reasoning over the
knowledge is done by evaluating rules in the SWRL language1.

Use case scenarios are demonstrated with the Franka Emika
Panda5 collaborative robot that provides robust motion profiles
and control actions for object pick-and-place and hand-over
tasks. Industrial parts and tools from a local Diesel engine
manufacturer are utilized to demonstrate the capabilities of the

proposed system, which includes (collaborative) tasks for the
assembly of Diesel engine components and human-robot hand-
over tasks for robot assistance. The work environment consists of
two tables; one for the robot and parts/tools to be placed, and one
for the human operator and the Diesel engine assembly. Both tables
are accessible for the human operator and the robot, implying that
the whole environment is a shared work space. For the robot, two
separate supportive tasks, and thus experiments, are defined:

1. human-robot hand-overs of parts/tools-enables the robot to act
as a support to workers, while they are engaged in a Diesel engine
(dis)assembly task. Hand-over actions from robot to human
and from human to robot are coordinated with industrial parts,
such as bolts and tools. Human actions include assembly
operations of parts to a Diesel engine and the handling of tools.

2. Robot assisted kitting-enables the robot to group individual
items into relevant kits. This assists the human operator in a
Diesel engine disassembly procedure, for example by
collecting and keeping track of all parts. As a separate
activity, kitting occurs alongside the human disassembly
procedure. Parts to be handled are bolts and hand-tools.

TABLE 2 | Procedure for integrating new knowledge into the system.

Action Format Modality Explanation

Primitive Robot action Software integration Python and ontology Primitive robot actions can be included by function call from ontology to action
library

Task List of robot actions Software integration Python and ontology Higher level tasks can be included by defining a list of robot actions

Target

Pose/object 3D pose Robot hand-guiding New targets are defined by hand-guiding the robot to a desired pose. This target is
then recorded in the ontology

Other

Reasoning rule SWRL Software integration Python and ontology New reasoning rules are defined in the SWRL language and integrated to update
the ontology

Synonym Words Ontology population Synonyms to all actions and targets can be included by creating new ontology
instances

FIGURE 2 | The graphical command interface enables actions and targets to be selected from a drop-down menu. Left: available actions. Right: available targets.

2https://pypi.org/project/SpeechRecognition
3https://www.w3.org/TR/owl2-syntax
4https://pypi.org/project/Owlready2
5https://franka.de
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Both tasks are evaluated by the graphical and speech
command interface. A video of the experiments can be seen
here: https://youtu.be/SzIuLHzLYpA. In addition, the hand-over
task is compared to two baseline methods (i.e., strict turn taking
and fast robot cycle), from which clear objective metrics can be
extracted that assess the fluency of coordination (Hoffman, 2019).
The metrics are human idle time (H-IDL), robot idle time
(R-IDL), functional delay (F-DEL) and concurrent activity
(C-ACT). For all experiments metrics were calculated with a
resolution of 15 sec. This was chosen to be coherent with all
experiments and their analysis. In practice, these results were
obtained from analyzing the videos of the experiments and
finding a common resolution between the different robot and
human actions. Experiments were repeated five times. The
experimental scenarios are as follows.

4.2 Use Case Scenario 1: Command-Based
Collaboration
To evaluate human-robot collaboration by commands, a scenario
is defined where a human operator selects robot actions (in form
of < action,target > -pairs) from a graphical user interface
(GUI). The list of actions and targets can be selected from a drop-
down menu in the GUI, as depicted in Figure 2. Both tasks,
i.e., human-robot hand-over and kitting, are demonstrated as
follows.

Figure 3 depicts different stages of the human-robot hand-
over scenario by graphical command-based coordination.
Figure 4 depicts a task assignment chart, which visualizes

when different agents, i.e., robot or human, are active and with
what activity. The commands requested by the human and
utilized for robot coordination are depicted as well, and
demonstrate the variation in robot actions and how they
can be requested. In this case, commands are utilized for
object picking and placing (i.e., give and take), robot
motion (come) and hand-over tasks from robot to human
and human to robot. Parts and locations are described by
tool, bolt and here.

Figure 5 depicts different stages of the kitting scenario by
graphical command-based coordination. Figure 6 depicts a task
assignment chart, which visualizes when the robot is active and
with what activity. The commands requested by the human and
utilized for robot coordination are depicted as well, and
demonstrate the variation in robot actions and how they can
be requested. In this case, commands are utilized for object
picking and placing (pick, place, kit and take) and
robot motion (go). Parts and locations are described by
tool, box, back, bolts, kit and kit_store.

4.3 Use Case Scenario 2: Speech-Based
Collaboration
To evaluate human-robot collaboration by speech, a scenario is
defined where a human operator requests robot actions (in form
of < action,target > -pairs) by speech. A list of actions and
targets are available, which are known by the human operator.
Again, both tasks, i.e., human-robot hand-over and kitting, are
demonstrated as follows.

FIGURE 3 | Different stages of the hand-over scenario by graphical command-based coordination. Left: 00:00 - command <give,tool>is send, which instructs
the robot to hand-over the wrench from the table to the person. Middle: 01:30 - commands <come,here>and <take,bolt>are used to instruct the robot to receive a
bolt from the person. Right: 01:45 - command <give,bolt>is used to instruct the robot to pick up and hand-over a bolt from the table to the person.

FIGURE 4 | Task assignment chart for hand-over tasks by graphical command-based coordination. The chart depicts the actions of the human (blue) and the robot
(green) in the shared collaborative scenario. The fluency metrics indicate a relatively low human and robot idle time (H-IDL and R-IDL) and high concurrent activity
(C-ACT). Functional delay (F-DEL) is avoided completely.
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Figure 7 depicts different stages of the human-robot hand-
over scenario by speech-based coordination. Figure 8 depicts a
task assignment chart, which visualizes when different agents,
i.e., robot or human, are active and with what activity. The

commands requested by the human and utilized for robot
coordination are depicted as well, and demonstrate the
variation in robot actions and how they can be requested. In
this case, commands are identical to the graphical command-

FIGURE 5 | Different stages of the kitting scenario by graphical command-based coordination. Left: 00:00 - commands <pick,tool>and <place,box>are
send, which instructs the robot to pick and place the tool from the table to the kit. Second left: 01:00 - command <kit,bolts>is used to instruct the robot to place all
bolts from the table into the kit. Second right: 02:00 - command <take,kit>is used to instruct the robot to pick up the kit from the table. Right: 02:15 - command
<place,kit_store>is used to instruct the robot to place the kit on the other table.

FIGURE 6 | Task assignment chart for the kitting task by graphical command-based coordination. The chart depicts only the actions of the robot (green), as it
acts alone.

FIGURE 7 |Different stages of the hand-over scenario by speech command-based coordination. Left: 00:00 - command <give,tool>is spoken, which instructs
the robot to hand-over the wrench from the table to the person. Middle: 01:30 - commands <come,here>and <take,bolt>are spoken to instruct the robot to
receive a bolt from the person. Right: 01:45 - command <give,bolt>is spoken to instruct the robot to pick up and hand-over a bolt from the table to the person.

FIGURE 8 | Task assignment chart for hand-over tasks by speech command-based coordination. The chart depicts the actions of the human (blue) and the robot
(green) in the shared collaborative scenario. The commands requested by the human to the robot are identical to the graphical command-based scenario. The fluency
metrics indicate a relatively low human and robot idle time (H-IDL and R-IDL) and high concurrent activity (C-ACT). Functional delay (F-DEL) is avoided completely.
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based hand-over scenario, i.e., object picking and placing
(i.e., give and take), robot motion (come) and hand-over
tasks from robot to human and human to robot. Parts and
locations are again described by tool, bolt and here.

Figure 9 depicts different stages of the human-robot hand-
over scenario by speech-based coordination. Figure 10 depicts a
task assignment chart, which visualizes when different agents,
i.e., robot or human, are active and with what activity. The
commands requested by the human and utilized for robot
coordination are depicted as well, and demonstrate the
variation in robot actions and how they can be requested. In
this case, commands are utilized for object picking and placing
(take, deposit and stock) and robot motion (go). Parts and
locations are described by tool, container, back, bolts,
container and storage.

In all cases, robot actions are requested at an instance as
decided by the human operator and are executed without major
delay, if the robot is not active in other tasks. If the robot is busy,
the action is executed as soon as the robot becomes
available again.

4.4 Baseline Comparison
In order to assess the fluency of collaboration between the human
and the robot, resulting from our coordination approach, we
devised two baseline approaches as comparison:

1. Strict turn taking-each action is immediately followed by the
next action of the other teammate, implying that tasks are
done sequentially, instead of parallel. Exceptions are the hand-
over actions as they require both agents to complete.

2. Fast robot cycle-each robot action is executed as fast and as
soon as possible, irrespective of the actions of the human.

In both baseline approaches the actions of the robot are not
commanded by a human, but executed according to a predefined
protocol, as could be found in a factory automation setting. From
the objective fluency metrics the following conclusions can be
drawn. In strict turn taking (see Figure 11) the human idle time
(H-IDL) is relatively high (0.46 or almost half of the time), as
concurrent activity (C-ACT) is avoided. Exceptions are the
handover tasks that require both agents to collaborate.
Similarly, the robot idle time (R-IDL) is also relatively high
(0.31 or almost a third of the time), due to the similar reason.
The functional delay (F-DEL), however, is avoided, as the agents
are never waiting for the completion of each other’s action and are
never idle at the same time. In the fast robot cycle approach (see
Figure 12) the idling time of both the human (H-IDL, 0.30 or a
almost a third of the time) and the robot (R-IDL, 0.20 or one fifth
of the time) are low, indicating an efficient utilization of
resources. Moreover, the concurrent activity (C-ACT) is high
(0.5 or half of the time). The functional delay (F-DEL) is, again,
avoided. Following, we compare the baseline approaches to the
proposed coordination approaches.

5 DISCUSSION

Based on the experiments presented in Section 4, here we discuss
and compare their outcome, and present limitations and
future work.

5.1 Comparison to the Baselines
Human-robot collaboration fluency can be compared in detail
according to the metrics of human and robot idle time (H-IDL
and R-IDL), functional delay (F-DEL) and concurrent activity

FIGURE 9 | Different stages of the kitting scenario by speech command-based coordination. Left: 00:00 - commands <take,tool>and
<deposit,container>are spoken, which instruct the robot to pick and place the tool from the table to the container. Second left: 01:00 - command
<stock,bolts>is spoken to instruct the robot to place all bolts from the table into the container. Second right: 02:00 - command <take,container>is spoken to
instruct the robot to pick up the kit from the table. Right: 02:15 - command <deposit,storage>is spoken to instruct the robot to place the kit on the other table.

FIGURE 10 | Task assignment chart for kitting by speech coordination. The chart depicts only the actions of the robot (green), as it acts alone. The commands
requested by the human to the robot are different from the graphical command-based scenario.
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(C-ACT). In all cases functional delay is avoided, as the agents are
never waiting for the completion of each other’s action and are
never idle at the same time. In both command-based approaches
the fluency metrics are roughly the same, as the commands are
requested at similar time instances during the collaborative task.
This indicates a relatively high rate of concurrent activity
(C-ACT, almost half of the time) and a relatively low human
and robot idle time (for all cases almost a third of the time or less).
Compared to all other approaches (fast robot cycle baseline and
both command-based approaches) the strict turn taking baseline
has the worst performance, with higher idling times (H-IDL and
R-IDL), a lower concurrent activity (C-ACT) and the longest
scenario execution time. The baseline approach of fast robot cycle
has a very close performance compared to the command-based
approaches, with minor differences in when actions are executed.
This indicates that the proposed command-based approaches are
very efficient as the robot has a high utilization rate. However, the
most important benefit, which cannot be measured by the fluency
metrics, is not possible for both baseline approaches. That is, the
flexibility to coordinate and command the actions of the robot at
any time and any rate.

5.2 Coordination by Commanding
Coordination by commands gives control to the human operator
to direct at his/her level of interaction and pace. This implies that
its not determined beforehand which tasks are shared and in what
level of interaction, leading to an inherently flexible system that
suits a wide variety of collaboration. This level of flexibility is not
present in the baseline approaches, which assume a predefined
sequence of actions, at a fixed pace. Both coordination scenarios
demonstrate fluent collaboration between human and robot that
is not predefined by a fixed task sequence. High-level robot tasks
that contribute to the shared goal (assembly) are object pick and

placement and physical interaction for human-robot hand-overs
(haptic cues). During each shared task (2.5 minutes), multiple
robot commands are requested, i.e., pick and place, and hand-
over actions, all while the human operator is engaged, and not
disturbed, in the (dis)assembly procedure.

However, a graphical user interface (GUI), even if it
approaches the capabilities of a speech recognition system, can
be unsuitable for industrial environments. The main reasons
identified for this are as follows. First, a GUI takes attention
away from the task and the shared environment. Even though this
does not necessarily imply danger, it could halt the work or even
lead to a reduction in work quality and efficiency. Second,
industrial tasks, such as assembly, often require manual
handling or manipulation, which cannot be interrupted at
random. Collaborative actions would need to be halted and
parts would need to be put down in order to interact with
the GUI.

Despite these limitations, supportive functions to the GUI can
be included to enhance and simplify the interaction. The selection
of tasks can be narrowed down by reasoning assistance on the
current state of the world (what robot actions are possible) and
the actions commanded by the human (what actions are most
likely to be needed). This means that only the actions that are
suitable at the current moment are available to command and
other actions are removed from the selection list.

5.3 Commands Vs Speech
To humans, speech is one of the dominant modalities for direct
communication (Rocci and Saussure, 2016). In a collaborative
work scenario, where manual tasks are taking most attention,
speech can be utilized for directing actions and queries to co-
workers and, as demonstrated in this work, to robots. However, in
industrial environments background noise is very likely to

FIGURE 11 | Task assignment chart for the baseline approach of strict turn taking, where each action is immediately followed by the next action of the other
teammate. The fluency metrics indicate a relatively high human and robot idle time (H-IDL and R-IDL) and low concurrent activity (C-ACT). Functional delay (F-DEL) is
avoided completely.

FIGURE 12 | Task assignment chart for the baseline approach of fast robot cycle, where each robot action is executed as fast and as soon as possible. The fluency
metrics indicate a relatively low human and robot idle time (H-IDL and R-IDL) and high concurrent activity (C-ACT). Functional delay (F-DEL) is avoided completely.
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interfere with the reliable recognition of speech. The graphical
command interface is one alternative that can replace the
recognition of speech, while still ensuring the same
functionality of the system. Unfortunately, and unsurprisingly,
the graphical interface is less convenient than speech, as it
requires manual operation and takes attention away from the
task at hand. As a result, robot commanding by GUI takes more
time leading to less efficient operations. A disadvantage of the
speech interface is it reliability in recognizing correct speech
commands and connecting them to the correct action or target
phrase. Speech can be misinterpreted and strict guidelines need to
be in place that specify how phrases are verbalized. This issue is
not present in the GUI interface, as only existing <
action,target > -pairs can be selected.

One matter that holds for both interface modalities, is the
number and format of commands. As robot skills are plentiful, a
limit should be set to how many commands (actions and targets)
are available to be executed. In practice, the number of commands
to be memorized by the human operator should be limited, as
looking up commands from a cheat-sheet has negative effects to a
desired fluent collaboration. Likewise, scrolling through a long list
of commands from a GUI has the same negative effect.
Commands should be intuitive, such that they are directly
understandable by the human operator, thereby representing
their functionality.

5.4 Limitations and Future Work
As demonstrated by the use cases, the system is currently limited
by the low number of robot actions and their complexity.
However, additional actions, such as motion trajectories,
advanced controllers and compound actions are readily
available for most collaborative robots and can be added to
the knowledge base (see Section 3.3.3 and Table 2). The
integration of such new actions involves populating the
ontology with instances and creating new relationships and
conditions between them. Unfortunately, this is still a manual
activity requiring core expertise on ontologies and their
properties.

Recent and future developments in speech recognition might
offer promising solutions to the mentioned problems in noisy
environments. Neural networks and the utilization of other bio-
signals (Schultz et al., 2017) are being developed with increasing
recognition quality for individual words, as well as for natural
language. This includes other sensor systems besides standard
microphones, such as throat microphones, or neural devices.

Future work will combine computer vision and speech
recognition for collaborative tasks. This allows for tasks that
are more descriptive and can be better explained than pre-
programmed. For example, a human operator could command
the robot to hand over a tool with a red handle from a table with
multiple colored tools. Such communication is well-suited to
human cognitive skills, as it does not require much cognitive
effort for object detection and requesting a command. For robots,
on the other hand, such knowledge needs to be integrated
beforehand by semantic annotation to the ontology and visual
processing of camera images. In addition, feedback from speech
recognition canmake the systemmore explainable.Whenever the

recognition of speech fails, incorrect words are used or an
incorrect combination of words, a suitable command returned
to the human would help in improving the collaboration. Similar
troubleshooting procedures can be utilized for the reasoning over
knowledge as well. Finally, future work will focus on user studies
to analyse whether the collaboration is fluent and what concepts
contribute to this, specifically targeting concepts such as
efficiency, commitment and trust (Paliga and Pollak, 2021).

6 CONCLUSION

Coordination of shared tasks between a human and robot
requires interaction modalities that are convenient, do not
interfere with the task and can be adapted to new or changing
situations. As including all possible scenarios and their outcomes
into a robot action plan becomes easily intractable, this work
enables a human to coordinate when and which robot actions are
executed. Directing the robot is achieved by both a graphical user
interface and a speech interface that takes known commands, in
form of < action,target > -pairs, and transforms them into
low-level actions. All information on actions, tasks and the
world is stored in a knowledge base, which is utilized to track
the actions and check whether selected actions are suitable or
possible at the requested instance. The proposed system is
evaluated by several industrial use cases, tested in a laboratory
environment, where human-robot collaborative tasks require
human coordination by command or speech. Results
demonstrate that human coordination with simple commands
is suitable to achieve and fulfill collaborative tasks in a fluent
manner. Compared to the graphical interface, commanding by
speech is preferred, as it does not require physical contact and
attention stays with the shared task. On the other hand, noise and
faulty speech recognition might prove to be problematic in real
industrial environments. A thorough evaluation in real industrial
environments, with tasks of similar complexity is, therefore,
planned as future studies.
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