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In humans, oxytocin (OT) enhances prosocial behaviour. However, it is still unclear how the prosocial
effects of OT are modulated by emotional features and/or individuals’ characteristics. In a
placebo-controlled design, we tested 20 healthy male volunteers to investigate these behavioural and
neurophysiological modulations using magnetoencephalography. As an index of the individuals’
characteristics, we used the empathy quotient (EQ), the autism spectrum quotient (AQ), and the
systemising quotient (SQ). Only during the perception of another person’s angry face was a higher SQ a
significant predictor of OT-induced prosocial change, both in the behavioural and neurophysiological
indicators. In addition, a lower EQ was only a significant predictor of OT-induced prosocial changes in the
neurophysiological indicators during the perception of angry faces. Both on the behavioural and the
neurophysiological level, the effects of OT were specific for anger and correlated with a higher SQ.

H
umans are social creatures, and prosocial behaviour is crucial for the interaction of individuals with their
environment. Oxytocin (OT) has attracted attention regarding the neurological basis of prosocial beha-
viours that facilitate interpersonal relationships (e.g., perceptions of trustworthiness, attractiveness and

approachability). OT is a hormone that is primarily synthesised in the central nervous system and plays an
important role in the regulation of the development of prosocial behaviour and in various reproductive effects,
such as parturition and lactation1. In animal models, OT is essential for social interactions2,3, and these animal
studies have led to a number of human studies to investigate the mechanisms of this prosocial effect4–16.
Intriguingly, recent human studies have shown that the administration of OT facilitates temporary attachment
between strangers, increasing trust, reciprocity, generosity13–15, and positively modulate sociality1,10–12,17,18. In
addition, the amygdala is rich in OT receptors19,20, and OT acts as an anxiolytic by reducing activity in the
amygdala21. This anxiolytic-like effect may contribute to human prosocial behaviour by reducing anxiety in
personal relations11.

Although the above-mentioned studies suggest the potential of OT to facilitate sociality, a minority of pub-
lished studies indicated the opposite result, i.e., antisocial effects, such as increased feelings of envy22, mistrust23,
attachment insecurity24, or outgroup derogation25. Thus, a recent review suggested that the positive effects of OT
on sociality may depend on context or individual factors26. With regard to OT’s effect on prosociality, no previous
study has demonstrated either how contextual and individual differences factors modulate the effects of OT on
neural responses to social stimuli or how the neural effects of OT parallel its nuanced prosocial behavioural
effects. This is the first study that addresses the individual-dependent effects of OT on prosocial behaviour.

There is accumulating evidence that OT has critical implications for autism spectrum disorder (ASD), in which
deficits in social behaviour are common27. For example, children with autism have lower plasma OT levels
compared with age-matched controls28, and polymorphisms of multiple OT-related genes are associated with
ASD4,29. Thus, ASD is a good candidate for treatment with OT, and several symptoms of ASD can be ameliorated
by OT administration5,30. Considering the association between OT and ASD, we speculated that individuals with
autistic-like traits would benefit from OT. Traits of ASD have been characterised using the following three
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dimensions31–33: the empathy quotient (EQ)33, the autism spectrum
quotient (AQ)31, and the systemising quotient (SQ)32. These three
dimensions can be used to assess milder variants of autistic-like traits
(i.e., low EQ, high AQ and high SQ) in typically developing indivi-
duals34–36. Empathy is an essential part of normal social functioning
that allows us to understand the intentions of others, predict their
behaviour, and experience an emotion triggered by their emotion.
EQ is a self-report questionnaire for use with adults of normal intel-
ligence that focuses purely on this domain33. Systemising is the drive
to analyse the variables in a system and derive the underlying rules
that govern the behaviour of a system. The SQ is a self-report ques-
tionnaire for use with adults of normal intelligence that focuses
purely on this domain across the range of different system classes32.

Magnetoencephalography (MEG) is a neurophysiological tech-
nique that records the magnetic sources generated from simultan-
eous firing of groups of pyramidal cells37. Unlike indirect measures
such as functional magnetic resonance imaging (fMRI), which
records aspects of blood flow, MEG directly records neuronal activity
and thus records real-time neural activity. In addition, MEG provides
not only excellent temporal resolution (on the order of milliseconds)
but also good spatial resolution with appropriate source modelling
methods. Recent advantageous source analysis methods based on the
adoptive beamformer approach38 enable the estimation of source
current power changes in an arbitrarily chosen voxel (e.g., amygdala)
within the whole brain at high resolution. Using such methods,
recent studies demonstrated that gamma band (30 – 50 Hz) event-
related synchronisation (ERS), which is defined as a localised
increase in oscillatory power39, was predominant in the amygdala
compared to other parts of the brain, especially during the perception
of negative facial emotions (e.g., angry or fearful)40,41. This gamma
ERS in the amygdala is a candidate for the neurological underpinning
of brain responses to emotionally negative stimuli40–45.

OT has critical implications for ASD2–5,27,28,30, attenuates stress
from negative stimuli6,7,46,47, and is associated with modulation of

the brain response in the amygdala9–12,18. Thus, we examined
whether, even in healthy individuals, higher SQ or AQ scores and/
or lower EQ scores (i.e., personality traits often found in ASD) would
be significant predictors of an OT-induced reduction in the hostility
detection ratio (i.e., the percentage of hostile responses among all
responses) during the perception of others’ angry and/or ambiguous
facial expressions and in the OT-induced attenuation of gamma ERS
in the amygdala. From the perspective of functional lateralisation in
the amygdala, the involvement of both the left and the right amygdala
in response to emotional faces has been reported using fMRI48,49;
however, the reason why individual studies report greater lateralisa-
tion for one side or the other remains unclear. Then, in the present
study, we analysed gamma ERS in the amygdala in each hemisphere.
From the perspective of diversity in facial expression, as shown in
Figure 1B, we employed ambiguous facial expression in addition to
the conventional facial expressions (anger, happiness and neutral)
because one recent study suggested that increased amygdala react-
ivity is associated with behavioural responses to ambiguous facial
expression48. In this study, we defined ambiguous facial expression
as follows: it is difficult to infer the emotions although some facial
expressions are present.

Results
As shown in Figure 2, the experimental sessions were conducted in a
single-blind, placebo-controlled, within-subject, crossover design,
with an interval of at least two weeks. The order of the two conditions
(OT or placebo) was counterbalanced across subjects by random
selection. We excluded one subject from the neurophysiological ana-
lysis because of unrecoverable magnetic noise caused by a dental
bridge. Thus, in the statistics for the physiological data, subjects
consisted of 19 men (10 started with the OT condition, and 9 started
with the placebo condition), whereas all subjects were included in the
statistics for behavioural data (10 started with the OT condition, and
10 started with the placebo condition).

Figure 1 | Task paradigm. A, Each trial started with a fixation cross presented for a random duration of 1000–2000 ms (1000, 1200, 1400, 1600, 1800, and

2000 ms). After the fixation cross, the face of a stranger was presented. The participants then replied whether they detected hostility in the face by pressing

the button held in the right or left hand. The next trial was started immediately after pressing the button. A total of 148 pictures were presented in random

order, and the total time of the task was approximately 7–10 min. All faces showed direct gaze and were presented on a black background. We defined the

periods of interest as 200-ms windows starting 100 ms after onset of stimulus. B, Representative facial pictures of four different facial expressions

(happiness, anger, ambiguity, and neutrality). ERS, event-related synchronisation.
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Correlation between oxytocin-induced behavioural changes and
autistic traits (n 5 20). In the present study, our main concern was
to evaluate how prosocial effects are constrained by individuals’
personality in each emotional condition. We performed multiple
linear regressions to predict the placebo-subtracted changes after
OT treatment in the hostility detection ratio or reaction time (i.e.,
dependent variables) using AQ, EQ, and SQ scores as predictors (i.e.,
three independent variables) for each emotional condition. Statistical
significance was defined as P,0.05.

There were no significant correlations among independent vari-
ables (correlation coefficients 5 20.190, 20.085, and 0.207 when
comparing AQ and EQ, AQ and SQ, and EQ and SQ scores, respect-
ively).

For the hostility detection ratio, the multiple regression model
revealed that a high SQ score was a significant predictor of the pla-
cebo-subtracted changes in the hostility detection ratio for facial
emotions after OT treatment only in the anger condition (n520,
b520.334, P50.032), whereas AQ (n520, b520.368, P.0.05)
and EQ scores (n520, b520.306, P.0.05) did not reach statistical
significance (Table 1). In other emotional conditions (i.e., happiness,
ambiguous, or neutral), no independent factors were significant pre-
dictors of the placebo-subtracted behavioural changes after OT treat-
ment (P.0.05) (Table 1).

For reaction time, no independent factors (i.e., AQ, EQ and SQ)
were significant predictors of the placebo-subtracted changes in reac-
tion time after OT treatment for any facial emotion (P.0.05).

Correlation between oxytocin-induced neurophysiological changes
and autistic traits (n 5 19). We performed multiple linear regressions
to predict the placebo-subtracted changes after OT treatment in
neurophysiological variables (i.e., dependent variables) using AQ,
EQ, and SQ scores as predictors (i.e., three independent variables)
for each emotional condition. Statistical significance was defined as
0.025 for neurophysiological variables (in the left and right region of
interests (ROIs).

For the right amygdala, the multiple regression model revealed
that lower EQ (n519, b50.729, P,0.001) and higher SQ (n519,
b520.550, P50.002) scores were significant predictors of placebo-
subtracted neurophysiological changes (i.e., decreased gamma ERS
in the right amygdala) for facial emotion after OT treatment only in
the anger condition, whereas the AQ score (n519, b520.136,
P.0.025) did not reach statistical significance (Table 2). In other
emotional conditions (i.e., happiness, ambiguous, or neutral), no
independent factors were significant predictors of placebo-sub-
tracted neurophysiological changes after OT treatment (P.0.025)
(Table 2).

For the left amygdala under all emotional conditions (i.e., hap-
piness, anger, ambiguous, or neutral), no independent factors were
significant predictors of the placebo-subtracted neurophysiological
changes after OT treatment (P.0.025) (Table 3).

A two-way ANCOVA (emotion3drug) for behavioural changes
after treatment (n520). For behavioural changes (pre-treatment

Figure 2 | Design of this study.

Table 1 | Standardised regression coefficient b and t values for the
multiple regression models with the placebo-subtracted beha-
vioural changes for each facial emotion after OT treatment as the
dependent variable. AQ, EQ, and SQ scores were utilised as the
independent variables

AQ EQ SQ n R2

Happiness b 20.167 0.246 0.002 20 0.104
t 20.692 1.001 0.008

Anger b 20.368 20.306 20.457 20 0.425 *
t 21.904 21.553 22.356 *

Ambiguity b 0.001 20.029 20.334 20 0.116
t 0.003 20.119 21.388

Neutrality b 20.245 0.069 –0.300 20 0.140
t 21.038 0.285 21.264

n: number of subjects, * P , 0.05
OT, oxytocin; AQ, autism quotient; EQ, empathy quotient; SQ, systemising quotient.

Table 2 | Standardised regression coefficient b and t values for the
multiple regression models with the placebo-subtracted gamma
ERS changes in the right hemisphere for each facial emotion after
OT treatment as the dependent variable. AQ, EQ, and SQ scores
were utilised as the independent variables

Right
amygdala AQ EQ SQ n R2

Happiness b 0.058 20.234 0.497 19 0.257
t 0.257 21.015 2.182

Anger b 20.136 0.729 20.550 19 0.706 **
t 20.956 5.032 ** 23.842 **

Ambiguity b 20.161 20.304 0.269 19 0.148
t 20.667 21.234 1.103

Neutrality b 20.052 0.091 0.406 19 0.196
t 20.219 0.378 1.714

n: number of subjects, * P , 0.025, ** P , 0.0025
ERS, event-related synchronisation; OT, oxytocin; AQ, autism quotient; EQ, empathy quotient; SQ,
systemising quotient.

Table 3 | Standardised regression coefficient b and t values for the
multiple regression models with the placebo-subtracted gamma
ERS changes in the left hemisphere for each facial emotion after
OT treatment as the dependent variable. AQ, EQ, and SQ scores
were utilised as the independent variables

Left amygdala AQ EQ SQ n R2

Happiness b 20.409 0.087 0.284 19 0.274
t 21.831 0.381 1.101

Anger b 20.131 0.045 20.417 19 0.178
t 20.553 0.187 21.738

Ambiguity b 0.036 20.090 20.381 19 0.172
t 0.150 20.368 21.583

Neutrality b 0.198 0.117 0.259 19 0.137
t 0.811 0.715 1.056

n: number of subjects. These results did not reach significance (P.0.025).
ERS, event-related synchronisation; OT, oxytocin; AQ, autism quotient; EQ, empathy quotient; SQ,
systemising quotient.
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values were subtracted from post-treatment values) in the hostility
detection ratio or reaction time, a two-way ANCOVA was performed
(emotion3drug) using the AQ, EQ and SQ scores as covariates. All
factors were within subjects for emotion effect (happiness vs. anger
vs. ambiguity vs. neutral) and drug effect (OT vs. placebo). Statistical
significance was defined as P,0.05.

For behavioural changes in the hostility detection ratio after treat-
ment, there were no significant emotion effects (df53, F51.04,
P.0.05) or drug effects (df51, F51.28, P.0.05), and there were
no significant interactions between these two factors (df53,
F51.00, P.0.05). There were no significant interactions between
these two factors and covariates (P.0.05).

For behavioural changes in reaction time after treatment, there
were no significant emotion effects (df53, F51.69, P.0.05) or drug
effects (df51, F50.03, P.0.05), and there were no significant inter-
actions between these two factors (df53, F50.37, P.0.05). Among
these factors and covariates, only one significant interaction was
found between an emotion effect and the AQ score (df53, F54.79,
P50.017).

A three-way ANCOVA (emotion3hemisphere3drug) for changes
in gamma ERS (n519). For changes in neurophysiological variables
after treatment (i.e., gamma ERS in the amygdala), a three-way
ANCOVA was performed (emotion3hemisphere3drug) using the
AQ, EQ and SQ scores as covariates. All factors were within subjects
for an emotion effect (happiness vs. anger vs. ambiguity vs. neutral),
hemisphere effect (left vs. right), and drug effect (OT vs. placebo).
Statistical significance was defined as P,0.05. A three-way ANCOVA
revealed no significant emotion effect (df53, F51.39, P.0.05),
hemisphere effect (df51, F50.81, P.0.05), or drug effect (df51,
F50.02, P.0.05). There were no significant interactions among
factors, i.e., emotion 3 hemisphere (df53, F51.40, P.0.05),
hemisphere 3drug (df51, F50.21, P.0.05), emotion 3 drug (df53,
F50.55, P.0.05), or emotion3hemisphere 3drug (df53, F51.23,
P.0.05). Among these factors and covariates, only one significant
interaction was found between emotion, drug and SQ score (df53,
F54.81, P50.018).

Validation of the facial emotional pictures. To validate the facial
emotional pictures used in our visual task, a group of another healthy
volunteers (n 5 15) was asked to evaluate whether the facial
emotions indicated happiness, neutrality, or anger according to the
emotion expressed by the photographic subject. As shown in

Figure 3, all 37 pictures categorised as showing ‘‘happy’’, ‘‘angry’’,
and ‘‘neutral’’ facial emotion were identified correctly by an average
of more than 70% of all healthy volunteers. On the other hand, 37
pictures categorised as ‘‘ambiguous’’ were not recognised as happy,
angry, or neutral by an average of more than 40% of the healthy
volunteers.

A two-way ANOVA (emotion3hemisphere) for gamma ERS in
the amygdala (n519). To confirm the neurophysiological (i.e.,
gamma ERS) responses in the amygdala during the perception of
various facial emotions, a two-way ANOVA was performed without
any covariates (i.e., AQ, EQ and SQ scores) for the conditions before
placebo administration. Two factors were analysed within subjects
for the emotion effect (happiness vs. anger vs. ambiguity vs. neutral)
and the hemispheric effect (left vs. right). Statistical significance was
defined as P,0.05. A two-way ANOVA revealed a significant
emotion effect (df53, F52.938, P50.041) but not a significant
hemispheric effect (df51, F50.814, P.0.05) (Figure 4). There was
no significant interaction between these two factors (df53, F50.922,
P.0.05). Post-hoc analyses (Bonferroni/Dunn procedure) showed
that gamma ERS in the amygdala was larger for the anger condition
than the happiness condition (P50.005). These results indicate that
gamma ERS in the amygdala during face perception depends on the
emotional condition (i.e., gamma ERS is higher in the anger
condition) regardless of the hemisphere (Figure 4).

Discussion
We examined how the effects of OT on human behaviour and under-
lying brain activity are constrained by the features of emotional

Figure 3 | Validation of the facial emotional pictures in other subjects
(n515).

Figure 4 | A, ROI analyses for gamma ERS before placebo administration.

A two-way ANOVA revealed a significant emotion effect (df53, F52.938,

P50.041) but no significant hemispheric effect (df51, F50.814, P.0.05).

There was no significant interaction between these two factors (df53,

F50.922, P.0.05). Post-hoc analyses showed that the gamma ERS in the

amygdala was larger for the anger condition than for the happiness

condition (P 5 0.005). Error bars indicate 1 standard error.
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situations and/or individual characteristics. As we hypothesised,
higher SQ scores and lower EQ scores were significant predictors
of OT-induced attenuation of gamma band ERS in the right amyg-
dala during angry facial perception (Figure 5B). In addition, a higher
SQ score was a significant predictor of the OT-induced decrease in
the hostility detection ratio during angry facial cognition
(Figure 5A). Unexpectedly, during ambiguous facial cognition, no
individual factors (i.e., EQ, AQ and SQ) were significant predictors of
the behavioural changes after OT treatment both in behavioural and
physiological results. These findings suggested that, in case of indi-
viduals with higher SQ and obvious negative emotional cognition,
the OT tends to suppress brain activities in the right amygdala and
decrease the emotional discomfort that can be associated with hos-
tility detection.

As shown in the results of a two-way ANCOVA (emotion 3 drug)
for the behavioural data, we did not find any significant main effect of
drug (i.e., OT or placebo) or drug-related interactions. Thus, we
found no significant prosocial effect of OT, whereas two previous
behavioural studies indicated that it had prosocial effects in facial
cognition6,16. These differences may be due to dissimilarities between
the participants within the different samples. For example, one pre-
vious study recruited subjects from universities16, whereas we
recruited subjects from the general population. Most of the subjects
in the present study were workers in non-technical fields which is
different from mathematically intensive fields (mathematics, engin-
eering, computer science, and physical sciences) in which popula-
tions could have deviated traits (e.g., high systemising and/or low
empathising traits)36. Furthermore, our results were consistent with
the recent suggestion that the effect of OT is not prosocial in every-
one26.

Recent fMRI studies in male subjects demonstrated the suppress-
ive effects of OT on the amygdala response to negative facial emo-
tions10,11,18, whereas our MEG study, as a whole, did not demonstrate
a significant effect of OT in the amygdala. These differences could be
explained by different methodologies (i.e., fMRI vs. MEG). There are
essential differences in the time scale and meaning to which these two
imaging modalities are applied. MEG records neuronal activity
directly; thus, in the present study, we could record real-time neural
activity with 200-ms time windows starting 100 ms after stimulus
onset, whereas fMRI measures the brain haemodynamic response
that occur a few seconds after the start of the stimulus and is an

indirect measurement of neuronal activity50. In addition, these dif-
ferences may also be due to dissimilarities between participants of the
different samples, as mentioned above. In terms of the diversified
effect of OT administration on amygdala and the individuals’ char-
acteristics, one suggestive study demonstrated that female subjects
showed enhanced haemodynamic response in the amygdala during
the perception of negative emotional face after OT administration9.
This result is at odds with the previously reported suppressive effects
on amygdala found in men10,11,18. This diversified effect of OT on
amygdala in previous studies may be explained by the opposing
empathising and systemising trends observed between men and
women (i.e., men tend to show high systemising and/or low
empathising traits compared with women)36.

Significantly higher SQ and lower EQ scores have been reported in
ASD subjects with normal intelligence32. In addition, recent studies
reported that several symptoms of ASD can be ameliorated by OT
administration5,30. These facts are consistent with the hypothesis that
healthy individual with high SQ and low EQ (i.e., ASD traits) may
also be beneficial responders to OT administration (i.e., that OT will
suppress the amygdala).

To confirm the neurophysiological (i.e., gamma ERS) responses in
the amygdala during the perception of various facial emotions, a two-
way ANOVA was performed without any covariates (i.e., AQ, EQ
and SQ scores) before placebo administration. In the present study,
we confirmed the emotion-dependent gamma band (30–50 Hz) ERS
in the amygdala, which was predominant during the perception of
negative facial emotion (e.g., anger) (Figure 4) and largely replicated
the results of previous MEG studies40,41. A number of neurophysio-
logical studies have suggested that gamma band synchronisation
plays a crucial role in integrating distributed neural processes into
highly ordered cognitive functions51–54. With regard to emotional
processing, gamma band oscillation has been associated with nega-
tive emotional face processing within the amygdala40–42. Therefore,
we hypothesised that the observed higher gamma ERS in the present
study indicated the brain emotional responses to the negative facial
emotions.

There were some limitations in the present study. First, the sample
of 20 participants was rather small and consisted only of male sub-
jects. It will be important to replicate the findings in a larger sample
that includes both sexes with a greater age range. Second, the phe-
nomenon that decreases of the hostility detection ratio after OT

Figure 5 | A, Scatter plot of the hostility detection ratio in the anger condition (placebo-subtracted per cent change after OT treatment) and the SQ score

(r520.489). B, Scatter plot of the gamma ERS in the right amygdala in the anger condition (placebo-subtracted per cent change after OT treatment) and

the EQ (#) or SQ (.) score (r50.637, 20.387, respectively). Solid line; regression line for SQ, broken line; regression line for EQ, SQ; systemising

quotient, EQ; empathy quotient.
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administration could be explained by either ‘‘deterioration of cog-
nitive performance’’ or by ‘‘prosocial effect’’. Further study with fine
evaluation of OT effect on facial cognition is necessary to distinguish
between these explanations. Third, relative to previously published
studies in males without ASD, our participants had relatively lower
SQ and AQ scores (e.g., 114 healthy males in previous study32 showed
a mean scores (6SD) of 30.3 6 11.5 on the SQ and 38.8 6 12.4 on the
EQ; 76 healthy males in a previous study31 showed a mean scores
(6SD) of 17.8 6 6.8 on the AQ). We cannot exclude the possibility
that these differences in the characteristics of participant have an
impact on our results. Fourth, because substance administration
was executed in a single-blind manner (i.e., the experimenter knew
the composition of the groups but the participants did not), this
strategy does not allow us to firmly exclude the possibility that the
experimenter involuntarily influenced the findings. This possibility
is unlikely because (a) the verbal contact with the experimenter was
limited (all instructions during the task were given by the computer),
and (b) instructions were fully standardised.

This is the first study indicating how empathising and systemising
traits modulate the effects of OT in the amygdala during the percep-
tion of social stimuli and how the neural effects of OT parallel its
nuanced prosocial behavioural effects. We characterised the emo-
tion- (i.e., anger) and individual- (i.e., low EQ and/or high SQ score)
dependent nature of the prosocial effects of OT, which may enable
refined theorising on the social effects of OT in humans. Viewing the
effects of OT in this way sheds new light on existing and emerging
experimental data and has crucial implications for more individua-
lised use of OT as a therapeutic agent for ASD and/or other psychi-
atric disorders.

Methods
Participants. Twenty right-handed adult men participated in the experiment. The
participants had a mean age of 31.4 years (20–46). The mean scores (6SD) of the
AQ31, EQ33 and SQ32 were 13.964.7, 37.369.8 and 21.6612.7, respectively. All
subjects were native Japanese and had no previous or existing psychiatric,
neurological, or medical illnesses. Subjects were screened with a structured clinical
interview for DSM-IV (SCID-I/NP)55 to exclude a personal history of psychiatric
illness. Subjects were not on any medication at least 6 weeks prior to testing and
reported a normal sleep/wake cycle. Written informed consent was obtained prior to
enrolment in the study. The Ethics Committee of Kanazawa University Hospital
approved the methods and procedures, all of which were performed in accordance
with the Declaration of Helsinki.

Experimental design. The experimental sessions were conducted in a single-blind,
placebo-controlled, within-subject, crossover design, with an interval of at least two
weeks. The order of the two conditions (OT or placebo) was counterbalanced across
subjects by random selection. Thereafter, participants completed the AQ31, EQ33, and
SQ32. Participants were randomly assigned to receive either a single intranasal dose of
either 24 IU OT (Syntocinon; Novartis, Basel, Switzerland) or the placebo control
during the first experiment. Following published pharmacokinetics56, 45 minutes
after substance administration, we investigated the effects of OT on the social
interpretation of emotional faces and amygdala activity using an automatic computer
visual task.

Visual task procedures. Prior to this study, facial images of 37 Japanese volunteers
(17 male and 20 female) with four different facial expressions (angry, happy, neutral,
ambiguous; see Figure 1) were taken under controlled conditions with a digital
camera (DMC-TZ7; Panasonic Osaka, Japan). All faces showed direct gaze and were
presented on a black background. Details of the validation of these facial emotional
pictures are presented in the supplemental information.

Subjects lay supine on a bed, facing a tilted white screen measuring 24316 cm that
was fixed above the bed in a dark magnetically shielded room (Daido Steel, Nagoya,
Japan) in which the MEG apparatus was set. Using a video projector (PG-B10S;
Sharp, Osaka, Japan) with a refresh rate of 60 Hz, a computer placed outside the
magnetically shielded room projected a picture through a small window of the wall of
the shielded room onto the screen above the head position of the bed. The distance
from the subject’s nasion to the centre of the screen was approximately 30 cm.
Therefore, the visual angle of the picture projected on the screen was approximately
42u334u. Visual tasks were generated using SuperLab 4.0 software (Cedrus
Corporation, P.O. Box 6309, San Pedro, CA 90734 - USA). A total of 148 pictures
were presented in random order. After the onset of each facial picture, the partici-
pants were instructed to judge whether they sensed hostility in each face by pressing a
button on a two-button device. The presentation of each face was replaced by a central
fixation cross just after each judgment (i.e., button press action). The interstimulus

interval (i.e., during the presentation of the central fixation cross) was randomised
between 1000 and 2000 ms. All participants were unfamiliar with the faces used in
this task.

MEG recordings. Magnetic fields were measured in a whole-head-type system for
adults at the Laboratory of Yokogawa Electric Corporation in Japan. This system
(MEGvision PQA160C; Yokogawa Electric Corporation, Yokogawa, Japan) consisted
of 160 channels. Sensors were configured as first-order coaxial gradiometers with a
baseline of 50 mm; each coil of the gradiometers measured 15.5 mm in diameter.
Magnetic fields were sampled at 1000 Hz per channel (band pass 0.16–200 Hz).
Using a Signa Excite HD 1.5-T system (GE Yokogawa), all subjects underwent T1-
weighted magnetic resonance imaging (MRI) study with spherical lipid markers
placed at the 5 MEG fiduciary points to enable us to superpose the MEG coordinate
system on the MRI data. The MRI consisted of 166 1.2-mm sequential slices, with a
resolution of 5123512 points in a field of view of 2613261 mm. After reconstructing
the three-dimensional MRI, the best-fit sphere was determined for each participant’s
head.

MEG data analysis for the gamma band ERS in the amygdala. On the basis of
previous studies40,41,45, the magnetic field data of each subject and each emotional face
condition were refined into one frequency band of interest, i.e., gamma band
oscillation (30–50 Hz). The current density for each voxel was then calculated by
adaptive spatial filtering using a single spherical volume conductor-model based on
the individual MR images. Power changes in the current density between the active
and baseline periods for each voxel were calculated with 5-mm grid spacing. The
baseline period was defined as the time between 200 and 0 ms before stimulus onset,
and the active periods of interest were defined as 200-ms windows starting 100 ms
after stimulus onset40–42,45. Adaptive spatial filtering is a spatial filtering approach to
source reconstruction that can estimate neuromagnetic activities with high spatial
resolution by forming a linear combination of sensors that can suppress the signals
from environmental noise or other brain areas without attenuating the power from
the target voxel. The approach is optimised for time frequency source reconstructions
from MEG/EEG data57,58. Details of the adaptive spatial filtering in this study are
presented in the supplemental information. The functional images were normalised
relative to template brain images created by the Montreal Neurological Institute
(MNI) template (in SPM8; Wellcome Department of Cognitive Neurology, London,
UK; http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). Region-of-interest (ROI)
analysis was performed for amygdala gamma band ERS. Data extraction for ROI
analyses was performed using MarsBaR provided with a sophisticated template for
ROIs on SPM-normalised images [MARSeille Boı̂te À Région d’Intérêt59]. The details
of this ROI procedure have been reported previously60.
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