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Summary

Female reproductive capacity declines dramatically in the fourth

decade of life as a result of an age-related decrease in oocyte

quality and quantity. The primary causes of reproductive aging

and the molecular factors responsible for decreased oocyte

quality remain elusive. Here, we show that aging of the female

germ line is accompanied by mitochondrial dysfunction associ-

ated with decreased oxidative phosphorylation and reduced

Adenosine tri-phosphate (ATP) level. Diminished expression of

the enzymes responsible for CoQ production, Pdss2 and Coq6,

was observed in oocytes of older females in both mouse and

human. The age-related decline in oocyte quality and quantity

could be reversed by the administration of CoQ10. Oocyte-

specific disruption of Pdss2 recapitulated many of the mitochon-

drial and reproductive phenotypes observed in the old females

including reduced ATP production and increased meiotic spindle

abnormalities, resulting in infertility. Ovarian reserve in the

oocyte-specific Pdss2-deficient animals was diminished, leading

to premature ovarian failure which could be prevented by

maternal dietary administration of CoQ10. We conclude that

impaired mitochondrial performance created by suboptimal

CoQ10 availability can drive age-associated oocyte deficits caus-

ing infertility.
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Introduction

Female fertility is one of the first physiological functions adversely

affected by aging. Female fecundity starts declining at age 32 and

decreases more rapidly after age 37 (O’Connor et al., 1998). This

decrease in the probability of conception occurs in spite of continuing

ovulatory cycles (te Velde & Pearson, 2002). Although neuroendocrine

and uterine factors contribute to the age-related decline of successful

pregnancy, the consistent live-birth rate of pregnancies from oocyte

donation in aging women suggests that the decline in oocyte quality is

the major contributing factor responsible for infertility with aging.

Maternal aging is known to trigger a series of molecular alterations that

drive the defects in chromatid separation (Chiang et al., 2011) and

chromosome decondensation, as well as spindle detachment causing

chromosomal misalignment (Battaglia et al., 1996; Liu & Keefe, 2002).

However, only a few targets responsible for these changes have been

identified, and no treatment thus far has been successful in improving

the chances of a live birth in women of advanced maternal age.

Decline in female reproductive capacity with aging is accompanied by

depletion of ovarian reserve. In human, progressive loss of ovarian

follicles is nonlinear and becomes accelerated with age, especially after

38 years of age (Faddy, 2000). Molecular pathways behind increased

loss of germ cells in aged ovaries are poorly understood. Increased DNA

damage due to less active DNA repair machinery is one possible trigger

for oocyte loss (Titus et al., 2013). The complex process of oocyte

maturation prior to ovulation involves nuclear, cytoplasmic, and epige-

netic changes culminating with the formation of the meiotic spindle. All

of these processes require energy, which is provided by mitochondria

mostly via oxidative phosphorylation – OXPHOS (Dumollard et al., 2007),

as the alternative energetic process of glycolysis in the oocyte is limited

due to low expression of phosphofructokinase (Leese & Barton, 1984).

The bioenergetic state of the oocyte influences its developmental

competence with correlations between implantation potential, ATP

content (Van Blerkom et al., 1995), and mitochondrial membrane

potential (Wilding et al., 2001). Furthermore, interference with OXPHOS

or with mitochondrial function leads to arrest of oocyte maturation,

chromosomal misalignment, and compromised embryo development

(Takeuchi et al., 2005; Thouas et al., 2006; Wyman et al., 2008).

ATP production via OXPHOS involves the action of the electron

transfer chain consisting of five complexes located on the inner

mitochondrial membrane. Complexes I and II oxidize products of the

tricarboxylic acid (TCA cycle) and transfer the electrons to ubiquinone,

also known as coenzyme Q (CoQ). The electrons are transferred to

complexes III and IV, creating a proton gradient which culminates in the

generation of ATP by complex V. CoQ is pleiomorphic having critical

antioxidant properties, controlling cellular redox, altering various signal-

ing pathways, and influencing transcriptional activity of cells and is

required for the activity of succinate dehydrogenase (Crane, 2001;

Quinzii et al., 2010).

Several observational studies demonstrated a tissue-specific decline in

CoQ levels with age (Kalen et al., 1989; Miles et al., 2004). De novo

CoQ production involves a complex but poorly understood biochemical

pathway, depending on the activity of at least 10 different enzymes. The

benzoquinone ring of CoQ is synthesized from the amino acid tyrosine or
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phenylalanine, and the tail is produced from acetyl-CoA by the

mevalonate pathway through the action of tetrameric decaprenyl

diphosphate synthase, encoded by the Pdss1 and Pdss2 genes. Upon

condensation of the ring with the polyprenyl tail by the COQ2 enzyme,

the ring structure is modified by decarboxylation, hydroxylation, and

methylation, mediated by enzymes encoded by Coq 3, 6, and 7. CoQ

proteins form a large mitochondrial complex (Tran & Clarke, 2007), and

the presence of all protein components is required to maintain its

stability (Wang & Hekimi, 2013). The aim of this study was to determine

whether impaired oocyte mitochondrial function could be improved by

supplementation with mitochondrial energy-production stimulants and

to determine whether oocyte-specific inhibition of CoQ synthesis could

recapitulate the reproductive abnormalities seen with aging.

Results

As maternal aging is accompanied by reduction of mitochondrial

function in oocytes (Kujjo et al., 2013), we treated aged dams with

known stimulators of mitochondrial bioenergetics, CoQ10, alpha lipoic

acid, and resveratrol. CoQ10 significantly improved ovulation rates in

this model (Fig. S1A). Thus, we focused our further experiments to

determine whether CoQ10 can ameliorate other aging-mediated phe-

notypes in the female germ line. After confirming that ovarian response

was improved in a larger cohort of females treated with CoQ10 (Fig. 1),

we evaluated whether ovarian reserve and breeding performance with

aging can also be improved. While substantial ovarian reserve was lost

during a 3-month treatment (from 9 to 12 months Fig. S1B), ovarian

histomorphometry confirmed increased numbers of primordial, prean-

tral, and antral follicles in the CoQ10-treated group compared to the

aged-matched vehicle-treated cohort (Fig. 1A). As preservation of

ovarian reserve does not necessarily mean production of better quality

oocytes, we subjected females to a breeding trial. The reduced litter size

observed in the old vehicle-treated dams was normalized with CoQ10

(Fig. 1C). Thus, CoQ10 supplementation not only preserved the ovarian

follicle pool, but also facilitated ovulation of gametes able to support

normal development.

Mitochondrial dysfunction has been implicated in oocyte aging (Bentov

et al., 2011). As CoQ is awell-knowncomponent of the electron transport

chain, we next evaluated whether CoQ10 treatment could improve

mitochondrial performance in oocytes. We determined that the pool of

respiring mitochondria was decreased in aged oocytes and increased by

CoQ10 treatment to the level similar to that of young controls (Fig. 2A).

Decreased mitochondrial activity in aged oocytes was reflected by lesser

reduction of FAD++ to FADH2 as the oxidized (fluorescent) FAD++ to

MitoTracker (active mitochondrial pool) ratio was increased with age and

this was normalized by CoQ10 (Fig. 2A). On the contrary, mitochondrial

membrane potential was elevated with aging (Fig. 2A) and restored to

levels seen in the younganimals after CoQ10 exposure.During completion

of meiosis I, mitochondrial output and ATP demands are dramatically

increased (Dalton et al., 2014). This can be monitored by increase in

mitochondrially derived reactive oxygen species (ROS – Mitosox). ROS

levels decreased with aging and were restored in the oocytes of CoQ10-

treated dams (Fig. 2A). Both ATP output and oxygen consumption were

decreased with aging and significantly increased upon CoQ10 adminis-

tration (Fig. 2B). Consistent with these outcomes, metabolites of the TCA

cycle, including citrate, malate, and to a lesser extend fumarate were

reducedwith aging and increasedwithCoQ10 treatment to the levels seen

in the young controls (Figs 2B and S2). Outcomes of these studies indicate

the inhibition of the TCA cycle activity is a major reason for poor

mitochondrial function in aged oocytes.

Using previously published outcomes of microarrays studies on aged

murine oocytes (Hamatani et al., 2004; Pan et al., 2008), we established

that expression of genes involved in mitochondrial metabolism was

reduced by aging. Expression of Sdha and Nduf3, the mitochondrial ROS

scavenger Sod1 as well as the ATP-dependent chromatin regulator

Smarca2 (Fig. 2C) were all significantly decreased in the oocytes of the

(A)

(B) (C)

Fig. 1 Impact of CoQ10 treatment on ovarian reserve and breeding performance in an aged mouse model. (A) Ovarian reserve was significantly higher in old vehicle

mice treated with CoQ10 for a period of 15 weeks (n = 9/age and treatment) evidenced by significantly higher number of resting primordial and growing secondary follicles.

Values represent average follicle numbers � SEM. Images of stimulated ovaries from each group are shown on the right – magnification 509. (B) Number of ovulated

oocytes collected after hormonal stimulation of young (n = 20), old vehicle-treated (n = 16), and old CoQ10-treated dams (n = 16). Values represent average number of

oocytes per female � SEM. (C) Litter size in young (n = 39), old vehicle-treated (n = 15), and old CoQ10-treated mice (n = 11). The number of live pups born to dams in

the 13th month of age was decreased, but normalized after CoQ10 supplementation. Each female produced only one litter during breeding trial. Scatter plot data are

shown as mean per female � SEM.
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aged animals and increased in the CoQ10-treated aged group. In

contrast, CoQ10 supplementation had no significant impact on expres-

sion of genes involved in transcription or chromatin organization

(Cggbp1, Arf1, Ezh2, Bmi1, Rbbp4, Kpna2) (Fig. S2). Thus, we conclude

that maternal treatment with CoQ10 boosts mitochondrial function in

aged oocytes, restores activity of TCA cycle, and normalizes energy

production.

Various mouse models have linked bioenergetic status of oocytes to

abnormal meiotic outcomes, particularly defects in spindle positioning

and chromosome scattering (Wang et al., 2009; Luzzo et al., 2012). We

thus assessed the metaphase II spindle and chromosomal alignment of

ovulated oocytes. As previously reported, aging was accompanied by the

production of oocytes with higher rates of spindle defects and

chromosomal misalignment. CoQ10 treatment in the old mice restored

normal spindle appearance and prevented chromosomal scattering to a

degree indistinguishable from young dams (Fig. 3A). In addition,

transcript levels of genes involved in meiotic progression such as

Tuba1a, Nek2, and Hook1 were all significantly increased after CoQ10

treatment in the old animals (Fig. 3B), while no change was observed for

Ccna2 (Fig. S2). Most importantly, the litter sizes of live-born pups in the

CoQ10-treated older mice were similar to the litter sizes seen in the

young animals (Fig. 1C).

The source of CoQ10 in most tissues is believed to originate from

endogenous production because the bioavailability of CoQ10 from the

diet is very low. In rodents, the major CoQ variant is CoQ9 with a

variable content of CoQ10 that differs among tissues. Similar to liver, the

ovary appears to efficiently uptake CoQ10 from external sources without

dramatic impact on endogenous CoQ9 levels. (Table S1).

We next proceeded to determine whether aging oocytes express

altered levels of enzymes involved in CoQ biosynthesis. Quantitative

RT–PCR of growing (GV) stage oocytes revealed a significant decrease in

Coq6 and Coq9 expressions (Fig. 4A) but no change in the Pdss1/2

transcript levels. To establish whether human oocytes demonstrate the

same molecular changes as the mouse, we assessed expression of these

targets in GV oocytes obtained from patients undergoing IVF treatment.

Similar to the mouse, a significant decline in CoQ6 expression was

observed in the oocytes of older patients (Fig. 4B). Western blot analysis

of ovaries isolated from young and old dams revealed reduction in both

PDSS2 and CoQ6 proteins (Fig. 4C). Immunolocalization on ovarian

sections confirmed expression of PDSS2 and CoQ6 in oocytes of growing

(A) (B)

(C)

Fig. 2 Improvement in mitochondrial function in oocytes of old vehicle mice after CoQ10 supplementation. (A) Oocytes from young, old vehicle and old CoQ10 mice were

stained with MitoTracker Red, JC-1, and Mitosox or examined for green autofluorescence (FAD). The respiring mitochondrial pool (MitoTracker Red) was reduced in oocytes

from old vehicle mice compared to young or old CoQ10, which were not different from each other. The ratio of oxidized FAD (FAD++)/MitoTracker Red increased in old

oocytes. The mitochondrial membrane potential (MMP) increased in old oocytes, while ROS production (Mitosox) decreased. These aging effects were normalized by CoQ10

treatment. Values represent random fluorescence units (RFUs) per oocyte � SEM. For all experiments, individual oocytes were used and groups contained n = 15–25
oocytes/age/treatment. (B) ATP (nM) and TCA cycle metabolites (millimole of substrate per kilogram wet weight per oocyte) were evaluated in individual oocytes from

young (n = 7–15), old vehicle (n = 8–14), and old CoQ10 (n = 11–17). Oxygen consumption is expressed as a ratio of fluorescent signals obtained by a scan 1 min apart and

reflects oxidative decay of the probe per oocyte. Data shown are mean � SEM. (C) Expression levels of genes involved in mitochondrial function (Ndufs3, Sdha, and Sod1)

and chromatin organization (Smarca2) in ovulated oocytes were reduced with aging and improved after treatment with CoQ10 (mean � SEM). Each sample contained a

pool of 3 oocytes (n = 4 young, n = 6 old vehicle and n = 5 old CoQ10 pools), and data are shown as the ratio of reference (actin)/target (studied) transcript.

Oocyte aging and CoQ10 deficiency, A. Ben-Meir et al. 889

ª 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.



follicles (from the secondary follicle stage onwards), as well as lower,

albeit detectable, expression in the stroma, theca, cumulus, and

luteinized granulosa cells (Fig. S4). As declining levels of PDSS2 and

CoQ6 in ovarian lysates could reflect altered tissue composition (e.g.,

decreased follicle pool), we performed immunocytochemistry on GV

stage oocytes isolated from young and old females. Both PDSS2 and

(A) (B)

Fig. 3 CoQ10 rescues spindle defects in aging oocytes. (A) Percent of chromosomal or spindle misalignment in ovulated oocytes from young (n = 60), old (n = 73), and old

CoQ10 (n = 51) mice. Oocytes were stained with antitubulin antibody (green) and DAPI (red). Representative images of normal spindle (barrel shaped) and chromosome

alignment (toothbrush appearance) were considered normal. Arrows demonstrate detachment of chromosomes from spindle or misshaped spindle organization. Letters (a vs. b

and a* vs. b*) are significantly different from each other (P < 0.05). (B) Expression of genes implicated in spindle formation/attachment and meiotic execution (Tuba1a,

Hook1, Nek2, and Smarca2) in oocytes was reduced with aging and improved after treatment with CoQ10. Each sample contained a pool of 3 oocytes, and each age

category was represented by n = 4 young, n = 6 old, and n = 5 old CoQ10 pools, and data are shown as the mean ratio of reference (actin)/target � SEM.

(A) (B)

(C)

Fig. 4 Reduced expression of CoQ10 biosynthesis genes in oocytes with aging. (A) Fold change in mRNA level of pooled GVs (3 per sample; n = 6 young, n = 6 old) were

normalized to young age. Transcripts encoding enzymes Pdss1 and Pdss2 did not change with aging, but the expression of the enzymes involved in modifying the

hydroxybenzoate ring (Coq6 and Coq9) significantly decreased. (B) Fold change in mRNA level of CoQ10 synthesis genes in single human GV oocyte per patient (n = 8

patients <32 years old, n = 8 patients >39 years old females). Data are shown as mean � SEM and are normalized to actin. (C) Immunocytochemistry of GV oocytes

exposed to anti-PDSS2 and anti-COQ6 antibodies from young (n = 9) and old vehicle mice (n = 5). Values represent mean fluorescence units � SEM. Western Blot of whole

ovarian lysates from young (3 months old) and aged mice (12 months old) blotted with anti-PDSS2, anti-COQ6, and anti-actin antibodies.
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CoQ6 were significantly reduced with age (Fig. 4C) in oocytes, although

we did not observe significant reduction in CoQ9/10 level in total ovarian

lysates in aged animals (Table S1). As oocytes only represent a very small

fraction of the total ovarian tissue content, changes that occur in these

cells would be untraceable.

Previous work has established that disruption of Pdss2 and prevention

of CoQ synthesis are embryonic lethal. However, it is currently unknown

whether the function of this enzyme is required for oogenesis. We used

conditional disruption of Pdss2 in oocytes to investigate whether

interruption of CoQ10 synthesis will affect ovarian reserve. The ZP3-

Cre3Mrt line has a high efficiency of excision (~98%),with activity restricted

to oocytes initiated at the primordial follicle stage (Fig. S3A). PDSS2 levels

were reduced in growing GV oocytes of Pdss2 fl/fl Cre+mice (Fig. S3B), and

immunoreactivity was virtually absent in fully grown oocytes (Fig. S3C).

Although the Pdss2 fl/fl Cre� females had an averageof 6 pups per litter, the

Pdss2 fl/fl Cre+ females (n = 4) did not produce any viable offspring during

an entire 3-month breeding trial when crossed with males of proven

fertility (Fig. S3D). By 4 months of age, Pdss2 fl/fl Cre+ female ovaries

contained no healthy follicles and were accompanied by a hypotrophic

uterus, a condition resembling premature ovarian failure. The ovulation

rate at 4 weeks of age, shortly after the onset of puberty, revealed a

decreased number of ovulated oocytes, and the ovarian reserve of the

Pdss2 fl/fl Cre+ mice was already severely compromised, evidenced by the

loss of 50% of follicles (Fig. 5A,B).

We next investigated whether oocytes ovulated by young Pdss2 fl/fl Cre+

females exhibitedmitochondrial phenotypes similar to those found in the old

females. The respiring mitochondrial pool (e.g., MitoTracker Red), mito-

chondrial ROS, and ATP were all significantly decreased (Fig. 5C,D). In

addition, a higher proportion of oocytes from Pdss2 fl/fl Cre+ females

contained misalignment of chromosomes, suggesting that disruption of

the CoQ10 biosynthetic pathway could contribute to abnormal meiotic

outcomes observed with increased maternal age (Fig. 5E). As we

have observed reduced CoQ6 levels in aged oocytes, we examined whether

this outcome could be a response to PDSS2 deficiency. Indeed, Pdss2-

deficientGVoocytesalsoexpresseda reduced level ofCoQ6protein (Fig. 5F).

To determine whether CoQ10 is the factor responsible for poor

ovarian reserve caused by Pdss2 deficiency, we exposed mothers during

pregnancy/lactation to CoQ10 with subsequent dietary supplementation

of pups with CoQ10 through suckling. At 2 months of age, control

Pdss2 fl/fl Cre+ mice displayed severely reduced ovulation rates accompa-

nied by reduction in ovarian reserve. This phenotype in the pups was

partially corrected by lactational exposure to CoQ10 (Fig. 5B). In

addition, mitochondrial membrane potential, ATP production, and

superoxide levels were improved in the CoQ10-supplemented animals,

without a change in the respiring mitochondrial pool (Fig. 5B,C). We

also observed an improvement in spindle and chromosomal alignment

(Fig. 5D). Interestingly, exposure of young Pdss2 fl/fl females to CoQ10

did not alter ovarian reserve, breeding, ovulation rates, or mitochondrial

function (Fig. S4). These results indicate that diminished synthesis of CoQ

created by oocyte-specific Pdss2 disruption is sufficient to alter ovarian

function, suggesting that deficiency of CoQ may contribute to the

accelerated oocyte loss and poor pregnancy outcomes seen with aging.

Discussion

In this study, we demonstrate that CoQ10 supplementation in an aged

animal model delayed depletion of ovarian reserve, restored oocyte

mitochondrial gene expression, and improved mitochondrial activity. As

a result, more oocytes were ovulated in aged mice, developmental

potential of the oocytes was improved, and more pups were born. The

conditional disruption of the Pdss2 gene resulting in CoQ deficiency in

oocytes recapitulated many of the phenotypic changes characteristic of

oocyte mitochondrial dysfunction associated with reproductive aging.

These changes could be reversed by feeding the animals CoQ10. CoQ10

supplementation had no impact on ovarian reserve or oocyte quality of

young females, suggesting no beneficial reproductive effect of CoQ10 in

animals in which mitochondrial function is intact.

The reproductive aging process in mammals includes progressive

reduction in ovarian follicular reserve with decreased oocyte quality.

Increased loss of ovarian follicles with aging had been confirmed both in

rodent and in human ovaries (Faddy et al., 1983; Faddy, 2000). We

detected a significantly higher number of primordial follicles after

12 weeks of treatment with CoQ10. When we performed follicle

counts, we did not see any dying primordial oocytes in aged ovaries,

based on morphology and chromatin condensation. Therefore, the most

likely explanation for the observed increase in the number of follicles is

due to decreased atresia. The second alternative possibility to increase

primordial follicle reserve is a decrease in recruitment toward growth.

However, as we see slightly more primary oocytes in the CoQ10

treatment group, this is an unlikely explanation.

Previously published microarray studies comparing old and young

oocytes revealed altered expression of genes responsible for mitochon-

drial function, oxidative stress responses, chromosome alignment, and

ubiquitination (Hamatani et al., 2004; Pan et al., 2008). Ultrastructural

examination of cellular organelles in aging oocytes confirmed the defects

in mitochondrial architecture (Kujjo et al., 2013). Based on the outcomes

of our study, it is clear that defects in mitochondrial performance occur

concomitantly with the decline in breeding performance, and we

attribute these changes to insufficient production of CoQ by oocytes.

DNA damage is another contributing factor to oocyte aging (Titus et al.,

2013), and it remains to be determined whether CoQ9/10 deficiency may

accelerate DNA damage. However, it is clear that disruption of Pdss2 in

oocytes is sufficient to trigger mitochondrial defects reminiscent of aging.

CoQ10 is essential for mitochondrial activity as point mutations in

enzymes responsible for CoQ10 synthesis are characterized by pheno-

types involving high energy-consuming tissues such as the central

nervous system, skeletal muscle, and the kidney (Lopez et al., 2006;

Peng et al., 2008; Heeringa et al., 2011), and these symptoms can be

partially alleviated by the administration of CoQ10. Unlike most rodent

tissues in which CoQ9 is the predominant form of ubiquinone, the

ovaries produce relatively high levels of CoQ10 and are able to efficiently

uptake CoQ10 from external sources. We observed transcriptional

decrease in CoQ6 in aged oocytes and concomitant decrease in PDSS2

protein level. Reciprocal relationship exists between these two enzymes,

as disruption of Pdss2 triggered decrease of CoQ6 protein. Similar

changes were previously described for CoQ9 and CoQ7 (Garcia-Corzo

et al., 2013). It is possible that disruption of key elements in the CoQ

pathway could result in altered stability of whole CoQ enzyme complex

(Wang & Hekimi, 2013).

In human, CoQ10 concentrations decrease after 30 years of age in

some tissues (Morre et al., 2003; Miles et al., 2004), and perhaps this

contributes to the aging process. The timing of the age-related decline in

CoQ10 availability seems to coincide with the decline in fertility and the

increase in embryo aneuploidies. Indeed, correlation between low

plasma CoQ10 levels and spontaneous abortions were previously

reported (Noia et al., 1996). In addition, levels of CoQ10 in the follicular

fluid correlate with oocyte maturation and embryo grade during in vitro

fertilization (Turi et al., 2012). Our results suggest that the oocyte is the

beneficial target of CoQ10 supplementation. However, it is also possible

that granulosa/cumulus cells and/or the uterine environment may also
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benefit and thus contribute to the increased reproductive capacity of

CoQ10-treated females.

Due to limitations of technology, we have been unable to measure

CoQ9/10 levels in oocytes. However, we demonstrate that the expres-

sion of multiple CoQ synthesis enzymes decreases with aging in human

and murine oocytes, and cell-specific disruption of the CoQ synthesis

pathway in young animals impacts negatively on oocyte quality. Thus,

the oocytes, similar to podocytes in the kidney (Peng et al., 2008),

dopaminergic neurons in the substantia nigra (Ziegler et al., 2012), and

glial cells/neuroblasts in cerebellum (Lu et al., 2012), appear to be

exquisitely sensitive to decreased CoQ levels. As CoQ10 administration

improved breeding outcomes, slowed down follicle loss, and improved

oocyte mitochondrial energetics in the aged animal model, it is tempting

to propose that dietary CoQ10 supplementation could have beneficial

reproductive effects in women seeking to conceive at a later age. While

our results in an animal model appear promising, there are tremendous

differences between aging mice and women, not the least of which is

the order of magnitude difference in life expectancy. In relative terms,

the use of CoQ10 for 12–16 weeks in a mouse is equivalent to about a

decade in human. In addition, it is unknown whether a mitochondrial

nutrient such as CoQ10 alone could reverse the impact of decades of

environmental exposure of oocytes in human. Additional large-scale

(A) (B)

(C)

(D) (E) (F)

Fig. 5 Decreased ovarian reserve and oocyte quality in Pdss2 fl/fl Cre+ mice is rescued by CoQ10 supplementation. (A) The follicular count of ovaries (mean � SEM) from

4-week-old vehicle mice revealed decreased ovarian reserve in Pdss2 fl/fl Cre+ (n = 8) compared to Pdss2 fl/fl Cre� mice (n = 5). Follicle loss is reflected also by the reduced

ovulation rate (n = 8 Pdss2 fl/fl Cre+, n = 16 Pdss2 fl/fl Cre�). (B) Treatment with CoQ10 from birth till 7 weeks of age prevented loss of ovarian reserve (mean � SEM) and

improved the ovulation rate triggered by Pdss2 deficiency. (C) Oocytes from Pdss2 fl/fl Cre+ exhibit mitochondrial dysfunction with decreased respiring mitochondrial pool,

reduced mitochondrial membrane potential (MMP), and decreased ROS production. Similar to aging, MMP and mitochondrial ROS levels were significantly improved

under CoQ10 supplementation. (D) ATP output per oocyte improved by CoQ10 administration in Pdss2 fl/fl Cre+ females. All data shown are mean � SEM obtained from

20–40 oocytes. (E) Chromosomal misalignment was significantly more frequent in oocytes from Pdss2 fl/fl Cre+ (n = 62) compared to Pdss2 fl/fl Cre� (n = 118), and this was

corrected by CoQ10 administration (n = 56). (F) Anti-COQ6 protein level in growing GV oocytes. Pdss2 fl/fl Cre+ oocytes present with significantly reduced levels of CoQ6

protein (n = 31 Pdss2 fl/fl Cre�, n = 44 Pdss2 fl/fl Cre+).
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studies on dosing, length of treatment, and clinical outcomes safety are

necessary before the use of CoQ10 in a clinical setting.

Experimental procedures

Animals and treatment

Institute of Cancer Research (ICR) female mice were obtained from

Harlan Laboratories Inc. (Mississauga, Canada). All mouse experiments

were performed in accordance with the Canadian Council on Animal

Care (CCAC) guidelines for Use of Animals in Research and Laboratory

Animal Care under protocols approved by animal care committees at

Mount Sinai Hospital or the Toronto Centre for Phenogenomics. All mice

were housed with free access to food and water, and kept on a 12-h:12-h

light/dark cycle. For aging experiments, only proven (retired) breeders

were used, while young controls were virgin females (7–8 weeks old).

For conditional disruption of Pdss2 in oocytes, mice carrying the loxP

allele of Pdss2tm1.1Dalg were crossed with transgenic ZP3-Cre3Mrt animals

(Lewandoski et al., 1997), and genotyping was performed as previously

described. Efficiency of excision in the ZP3-Cre line was tested by the

ZAPCAG-Bgeo/ALPP reporter.

a-lipoic acid (ALA), resveratrol (Sigma-Aldrich, Oakville, Ontario,

Canada), and CoQ10 (Sigma-Aldrich or Advanced Orthomolecular

Research Inc., Calgary, Alberta, Canada) were dissolved in sesame oil.

Nine-month-old mice were injected subcutaneously with doses of ALA

(33 mg kg�1), resveratrol (10 mg kg�1), CoQ10 (22 mg kg�1), or pla-

cebo (sesame oil) three times a week for a period of at least 12 weeks as

shorter treatment did not show beneficial effects in preliminary breeding

trials. Treatment for 12–13 weeks was used for the analysis of various

outcomes in ovulated oocytes. For rescue experiments in the Pdss2model,

mothers during pregnancy and their offspring after weaning received

CoQ10 (LiQsorb, Tishcon, Westbuty, NY, USA) in drinking water

(0.4 mg mL�1) (Saiki et al., 2008).

For breeding performance, dams were set with young male studs of

proven fertility and checked daily for signs of pregnancy and delivery.

Dams were pretreated for 12 weeks and set to breed while still being

treated for one more month period (e.g., final treatment up to 16th

week). Treatment (injections) was stopped when female was pregnant

(as determined by gain of weight ~ day 10.5 postmating). All together

aged females were maintained with males for 4 weeks and 3 more

weeks afterward, while young Pdss2 females were monitored for at least

4 months. Twenty-one aged ICR females were used, although only 15

produced a single litter during this period in the control group. Twelve

females were used for CoQ10 treatment, from which 11 produced a

single litter during the breeding trial.

Ovulation induction, oocyte collection, and assessment of

ovarian reserve

Mice were superovulated with pregnant mare serum gonadotropin

(ProSpec, Rehovot, Israel) and 48 h later with human chorionic gona-

dotropin (hCG) (Sigma-Aldrich) by intraperitoneal injection. For young

females, 5 IU of both gonadotropins was administered, while old

females received 10 IU. Mice were sacrificed by cervical dislocation and

oviducts were removed. The oocytes were retrieved in modified human

tubal fluid (LifeGlobal, Guilford, CT, USA) supplemented with 0.1% BSA

(Sigma-Aldrich) and denuded of cumulus cells using hyaluronidase

(Sigma-Aldrich). Murine germinal vesicle (GV) stage oocytes were

collected 48 h after PMSG priming. Human immature oocytes (GV)

not used for insemination were obtained from women aged 27 to

45 years who were undergoing IVF treatment. The study was approved

by Mount Sinai Hospital (MSH REB Number: 05-0044-E), consent was

obtained from all subjects, and experiments conformed to the principles

of Declaration of Helsinki.

Murine ovaries were fixed in Dietrich’s fixative, embedded, serially

sectioned (fully), and stained, and the number of healthy follicles at

various stages of development was determined by systematic counts on

every tenth section, summarized, and multiplied by a factor of 10. For

excision efficiency, ovaries of ZAPZP3-Cre+ females were collected at

2 months of age, and frozen sections were stained for alkaline

phosphatase activity as previously described (Lobe et al., 1999). The

number of excised oocytes (e.g., blue) was determined by counting 5

random ovarian sections from three females.

Metabolic Assays, Mitochondrial labeling, and spindle

scoring

Microanalytical metabolic assays for citrate, malate, and fumarate levels

were performed as previously described (Chi et al., 2002), and for the ATP

assay, Cell Titer GLO (Promega Madison, WI, USA) was used using ATP as

standard. Ovulated oocytes were stained with MitoTracker Red, ROS –

Mitosox (Invitrogen, USA), DePsifer (Trevigen, Gaithersburg, MD, USA),

and autofluorescence for FAD (FITC) were performed as previously

described (Fernandes et al., 2012). For oxygen consumption (MitoXpress

Intra; Luxcel, Cork, Ireland), zona pellucida was removed with acid

Tyrode’s solution, and oocytes were cultured for minimum of 5 h in the

presence of probe at concentration recommended by amanufacturer and

subsequently imaged on a spinning disk confocal microscope using

appropriate filters. Ten optical sections from each sample were taken

1 min apart from each oocyte and were analyzed by Volocity Image

Analysis Software, PerkinElmer Inc., Waltham, MA, USA. Final data are

shown as ratio of these values. ATP and oxygen consumption assays were

validatedby treatment of oocyteswith8 lMantimycin for 30 min (Fig. S5).

Oocytes were scored for appearance of the spindle structure and

arrangement of the chromosomes. Normal oocyte contained a barrel-

shaped spindle with condensed chromosomes positioned centrally on

the equator of the spindle. Abnormal spindle morphology included a

reduction in the number of microtubules or the size of the spindle and

detachment of the spindle from the chromosomes. Dispersion or

misalignment of chromosomes from chromosomal plate was also

defined as abnormal.

Immunostaining

Ovarian sections fixed in 10% neutral buffered formalin were embedded

in paraffin, sectioned, and rehydrated. Antigen retrieval with citrate

buffer was used prior to exposure to antibody PDSS2 (1:40) followed by

ABC Vectastain Kit (Dako, Glostrup, Denmark). Sections from Pdssfl/fl ZP3-Cre+

females were used as a negative control. Isolated oocytes at the GV

stage were fixed in PHEM fixative, and indirect immunocytochemistry of

the oocytes was performed as previously described (Fernandes et al.,

2012). Primary antibodies included mouse antitubulin (1:500; Invitrogen)

and rabbit anti-CoQ6 or PDSS2 (1:100; 1:200, respectively; Proteintech

Group Inc, Chicago, IL, USA), followed by incubation with donkey anti-

mouse Alexa 488 or donkey anti-rabbit Alexa 594 (Invitrogen). DNA was

counterstained with 40,6-diamidino-2-phenylindole (DAPI) and imaged

on confocal microscope. Values obtained from samples without primary

antibody were subtracted from the experimental signals, and the data

were shown as the sum of intensity expressed as random fluorescence

units (RFUs).
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Quantitative RT–PCR

Following oocyte retrieval, three oocytes were transferred into guanidinium

isothiocyanate (GITC) solution, and cDNA for real-time PCR analysis was

preparedasdescribed (Perumalsamyet al., 2010). The sequences for forward

and reverse primers are listed in Table S2. All gene expression experiments

utilized the SYBR green PCR mix using LiteCycler (Roche, Mississauga, ON,

Canada). qRT–PCR conditionswere as follows: 95 °C for 10 min and then40

cycles of 95 °C for 30 s, 60 °C for 30 s, and 72 °C for 30 s. Comparisons of

expression levelswere determinedby deltaCTmethodnormalized tob-actin.

Western blot

Ovarian protein lysateswere prepared in 1%SDS-RIPA buffer containing a

complete protease inhibitor cocktail (Roche) and protein concentrations

determined using the BCA protein assay. Protein samples were resolved

through 12% acrylamide gels and transferred to PVDF membranes. After

blocking, the blots were probed with rabbit anti-CoQ6 or anti-PDSS2

(1:400 and 1:600, respectively; Proteintech Group Inc) followed by

hybridization with goat anti-actin (Santa Cruz Biotechnology, Dallas,

Texas,USA)asa loadingcontrol.Theblotswerethenwashedandincubated

with appropriate HRP-conjugated secondary antibodies and ECL Plus.

Ubiquinone extraction and measurement

For determination of ovarian ubiquinone (UQ) concentrations, whole

ovaries and livers were homogenized in 0.5 mL of homogenization buffer

(0.25 M sucrose, 10 mMHepes buffer pH 7.4, 1 mM EDTA)with ten passes

of the Teflon pestle homogenizer (Wheaton Overhead Stirrer, Wheaton

Instruments, Millville, NJ, USA). After the total volume was made up to

500 lL with the homogenization buffer, 5 lL of the homogenates was

used to determine their total protein content using the Bradford Reagent

(Bio-Rad Mississauga, ON, Canada). To extract UQ, whole ovarian

homogenates were mixed with an equal volume of hexane/ethanol for

10 min by vortexing. After centrifugation at 9000 g for 10 min, the

hexane layer was collected and evaporated to dryness using a vacuum

centrifuge (Eppendorf, Mississauga, ON, Canada). The quinone residue

was then dissolved in 100% ethanol and analyzed by HPLC with UV

detection at 275 nm (Beckman System Gold, Beckman Coulter Inc, Brea,

CA,USA). A reverse phaseC18 column (25.0 9 0.46 cm, 5 lm,Hichrom,

Berkshire, UK) was used with an isocratic elution at a flow rate of

1.8 mL min�1. The mobile phase was methanol/ethanol (70:30 v/v). The

concentrations of ubiquinones were estimated by comparison of the peak

area with those of standard solutions of known concentration. Finally,

quinone amount was normalized to protein content in the samples.

Statistical analysis

All results are given as mean � SEM. All statistical tests were performed

with SIGMAPLOT 11 (Systat Software Inc., San Jose, CA, USA). Analyses

were performed either with a one-way ANOVA followed by Tukey’s or

Dunn’s post-test, Mann–Whitney rank sum test, with the student’s t-test

or chi-squared analysis, where appropriate. Results were considered

statistically significant if P < 0.05.
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Fig. S1. (A) Ovulation rate of 12 months old mice from control vehicle

(n = 9), CoQ10 (n = 8), ALA (n = 7) and Resveratrol (n = 9) treated females.

The CoQ10-treated group was the only one to show significant increase in

ovulation rate compared to control. (B) Ovarian follicle reserve in ICR retired

breeders at 9 month of age at the start of treatment and after 12 month of

age (data for 12 months is the same as those in Fig. 1).

Fig. S2. (A) Level of gene expression (mRNA) in GV oocytes from young, old

and old-CoQ10 treated mice which did not show significant change with age

and/or with treatment. Values represent ratio of b-actin to target gene levels.

(B) Fumarate levels were not significantly reduced by age, but were

upregulated by CoQ10 treatment.

Fig. S3. Validation of ZP3Cre activity in oocytes. (A) Ovaries from ZAPCAG-

Bgeo/ALPP ZP3-Cre+ mice. Cre activity is restricted to oocytes and is initiated

already at primordial follicle stage (arrows). (B) PDSS2 protein levels were

significantly reduced in growing GV oocytes of 3 weeks old Pdss2 fl/fl Cre+

(n = 14) compared to Pdss2 fl/fl Cre� (n = 12), indicating excision efficiency.

(C) Antral follicles with fully grown oocyte present absence of Pdss2 activity in

Pdss2 fl/fl Cre+ mice (arrowheads), while immunoreactivity is still observed in

the cumulus cells surrounding the oocyte (arrows). (D) Breeding performance

of young fl/fl and fl/fl Cre+ mice during 4 months breeding trial.

Fig. S4. Supplementation of with CoQ10 (LiQsorb) has no effect on (A)

breeding (e.g. litter size), (B) ovulation rates, (C) ovarian reserve, (D)

mitochondrial respiration (Mitotracker Red intensity or ROS production) and

E) ovulation of chromosomally abnormal oocytes in young (up to 3–4 month

of age) Pdss2 fl/fl (WT) females and (F) ATP level. However, similar to

administration of subcutaneous CoQ10, LiQsorb did improve oocyte ATP

level in 12 month old treated Pdss2 fl/fl females (G).

Fig. S5. Validation of ATP and Oxygen consumption assay. Ovulated oocytes

were collected and cultured in HTF medium with or without antimycin for

30 min followed by measurement of ATP (nM) (A) or oxygen consumption

based on imaging of MitoXpress Intra (B) expressed as ratio of probe

fluorescence taken in a 1 min interval. Data shown are mean � SEM n = 16

oocytes for ATP experiment and n = 10 for oxygen consumption experiment.

Both assays show significant reduction of signal (P < 0.001) after inhibiting

activity of Complex III.

Table S1. Level of CoQ9 and CoQ10 (ng mg�1 of protein) after supple-

mentation in various tissues.

Table S2. List of primers used for gene expression studies.
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