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Abstract

As an important tumor suppressor protein, reactivate mutated p53 was found in many kinds of human cancers and that
restoring active p53 would lead to tumor regression. In this work, we developed a new computational method to predict
the transcriptional activity for one-, two-, three- and four-site p53 mutants, respectively. With the approach from the general
form of pseudo amino acid composition, we used eight types of features to represent the mutation and then selected the
optimal prediction features based on the maximum relevance, minimum redundancy, and incremental feature selection
methods. The Mathew’s correlation coefficients (MCC) obtained by using nearest neighbor algorithm and jackknife cross
validation for one-, two-, three- and four-site p53 mutants were 0.678, 0.314, 0.705, and 0.907, respectively. It was revealed
by the further optimal feature set analysis that the 2D (two-dimensional) structure features composed the largest part of the
optimal feature set and maybe played the most important roles in all four types of p53 mutant active status prediction. It
was also demonstrated by the optimal feature sets, especially those at the top level, that the 3D structure features,
conservation, physicochemical and biochemical properties of amino acid near the mutation site, also played quite
important roles for p53 mutant active status prediction. Our study has provided a new and promising approach for finding
functionally important sites and the relevant features for in-depth study of p53 protein and its action mechanism.
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Introduction

As a critical tumor suppressor gene, p53 plays an important role

in maintaining genomic stability and preventing cancer [1,2,3]. It

has the highest mutation frequency in human tumors: over 50% of

kinds of tumors have p53 mutations, and over 80% of kinds of

tumors involve dysfunctional p53 signaling pathway [4]. It was

reported that restoring p53 activity could lead to tumour

regression and that p53 mutants could be reactivate in vivo

through intragenic second-site suppressor mutations. In view of

this, it is worthwhile for us to conduct an in-depth study on the

occurrence of p53 mutation because the findings thus obtained

may provide useful insights for developing new drugs that possess

similar functions of ‘‘cancer rescue’’ via mutation as p53 does.

P53 gene encodes a 393 amino-acid protein which contains

three important domains: an amino-terminal transactivation

domain, a core domain which recognizes p53 DNA binding sites,

and a carboxy-terminal tetramerization domain [5,6]. About 75%

of mutations are single amino acid substitutions in the core domain

[7]. There are three (not mutually exclusive) kinds of outcomes

when p53 mutation occurs [8,9]. The first kind of mutation is to

destroy the function of tumour suppressor for the affected allele of

p53; if both alleles are mutated, the cells will completely loss the

capacity of anticancer protection provided by p53. The second

kind of mutation is to make the mutant p53 dominate the wild-

type p53 by forming inactive mixed tetramers so as to deprive the

ability of binding to DNA and transactivation. Therefore, even

with one wild-type allele mutated, the cell may practically loss of

the wild-type p53 function. The last kind of mutation is to make

the mutant p53 gain or enhance its function for tumour

progression [8,9]. In other words, different kinds of p53 mutations

may have completely different impacts to cancer patients.

Accordingly, knowing mutant functional properties across a

mutation sequence space is of specific interest that could advance

medical practice. However, mutation spaces grow to be combi-

natorially large and hence making it time-consuming and labour-

intensive for experimental studies. The resources for such

experimental studies may also be quite limited. In view of this, it

is important and urgent to develop computational approaches for

studying the effects of different kinds of mutation or mutation-
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combinations, as well as the relevant features that dominate these

effects.

The present study was devoted to develop a new computational

method for predicting the active status of one-, two-, three- and

four site p53 mutants. Our method used eight types of features: (1)

gain/loss of amino acids during evolution [10] and conservation of

amino acid at protein-protein interface [11]; (2) physicochemical

and biochemical properties of amino acid, i.e., the ‘‘amino acid

factors’’; (3) conservation; (4) structural disorder; (5) distance

between mutations; (6) the physicochemical differences between

the original amino acid and the new amino acid at the mutation

site; (7) 2D structure surface of the mutant protein; (8) 3D structure

changes of the p53 protein caused by the mutation. The optimal

features were selected based on the Maximum Relevance &

Minimum Redundancy (mRMR) and Incremental Feature

Selection (IFS). The Mathew’s correlation coefficients (MCC)

obtained by using Nearest Neighbor Algorithm (NNA) and

jackknife cross validation for one-, two-, three- and four- site

p53 mutants were 0.678, 0.314, 0.705 and 0.907, respectively. It

has been revealed through further optimal feature set analysis that

the 2D structure features composed the largest part of the optimal

feature set and played the most important roles in all these four

types of p53 mutant active status prediction. It has also been

demonstrated via analysing the optimal feature sets, especially

those at the top level, that the 3D structure features, PSSM

conservation features and amino acid factor features played

important roles in p53 mutant active status prediction.

According to a recent comprehensive review [12], to establish a

really useful statistical predictor for a protein or peptide system, we

need to consider the following procedures: (i) construct or select a

valid benchmark dataset to train and test the predictor; (ii)

formulate the protein or peptide samples with an effective

mathematical expression that can truly reflect their intrinsic

correlation with the attribute to be predicted; (iii) introduce or

develop a powerful algorithm (or engine) to operate the prediction;

(iv) properly perform cross-validation tests to objectively evaluate

the anticipated accuracy of the predictor. Below, let us describe

how to deal with these steps.

Materials and Methods

Dataset
We downloaded the mutant p53 transcriptional activity data set

from UCI Machine Learning Repository http://archive.ics.uci.

edu/ml/datasets/p53+Mutants [13,14,15]. After filtering the

mutations that could not be encoded, there were 62 one-site

mutations (7 active ones, 55 inactive ones), 16372 two-site

mutations (57 active ones, 16315 inactive ones), 111 three-site

mutations (63 active ones, 48 inactive ones) and 31 four-site

mutations (7 active ones, 24 inactive ones). We used the following

eight types of features to encode the mutation site and its

upstream/downstream four amino acids.

As mentioned above, to develop a powerful predictor for a

protein or peptide system, one of the keys is to formulate the

protein or peptide samples with an effective mathematical

expression or vector that can truly reflect their intrinsic correlation

with the target to be predicted. To realize this, let us utilize the

general form of pseudo amino acid composition (PseAAC) [16]

that can be formulated as follows [12]

P~ y1 y2 ::: yu ::: yV½ �T ð1Þ

where T is a transpose operator, while the subscript V reflects the

dimension of the vector and its value as well as the components y1,

y2, … will be defined by a series of feature extractions as

elaborated below.

Type 1 features: gain/loss of amino acids during
evolution and conservation of amino acid at protein-
protein interface

Let us consider the following two kinds of features: one

representing the gain/loss of amino acids during evolution [10]

(we called ‘‘SNP’’ feature for short), and the other representing

conservation of amino acid at protein-protein interface [11]

(hereafter it will be abbreviated as ‘‘pro-pro’’ feature) for each

amino acid in each 9 amino-acid peptide. The SNP feature of

gain/loss of amino acids during evolution was calculated based on

the normalized differences between the number of substitutions

creating and removing the amino acid [10]. The pro-pro feature of

conservation of amino acid at protein-protein interface was

calculated based on the number of conserved residues of this kind

of amino acid at the contact interface, the total number of residues

of this kind of amino acid in the protein, and the number of total

amino acids in the protein [11]. It represents the conservation

propensities on the binding sites [11].

Type 2 features: physicochemical and biochemical
features of amino acid

The diversity and specificity of protein structures and functions

are largely attributed to the different compositions of different

amino acids, which have different physicochemical properties.

Atchley et al. [17] have performed multivariate statistical analyses

on AAIndex [18] that is a database of various amino acid

physicochemical and biochemical properties. These authors have

summarized and transformed AAIndex to five highly compact

numeric patterns to reflect the polarity (Factor 1), secondary

structure (Factor 2), molecular volume (Factor 3), codon diversity

(Factor 4), and electrostatic charge (Factor 5). In the current study,

these five numerical pattern scores (abbreviated as ‘‘amino acid

factors’’ or ‘‘AAFactor’’) are used to represent the respective

properties of each amino acid. Thus, there are 5 AAFactor

features for each of the amino acids in a 9 amino-acid peptide.

Type 3 features: conservation of residues
The position specific iterative BLAST (PSI BLAST) [19] was

adopted to quantify the conservation probabilities of an amino acid

against the 20 different types of native amino acids by using a 20D

vector. All such 20D vectors for all residues in a given protein

sequence formed the position specific scoring matrix (PSSM).

Residues, which are more important for biological function, are

more conserved through cycles of PSI BLAST. There are 20 PSSM

features for each of the amino acids in a 9 amino-acid peptide.

Type 4 features: structural disorder
The VSL2 [20] was used to score the structural disorder of each

amino acid in the protein sequence. Protein disordered region is a

segment that lacks 3D structures under physiological conditions

and plays important roles in signalling control and regulation.

There is one disorder feature for each of the amino acids in a 9

amino-acid peptide.

Type 5 features: distance between mutation sites
In human mammary carcinoma, the mutation sites of p53 tend

to occur within one single exon away or a short distance from

another [21], implying that the distance of mutations may be of

importance for affecting the function of p53. Here, we used 1, 2, 3

distance features for two-, three- and four-site p53 mutants

Predicting Activity of Multiple Site p53 Mutants
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respectively. The distance features represent the distance between

adjacency mutations. For example, in three-site mutants, there

were 2 distance features, which were the distance from the first

mutant site to the second one, and the distance from the second to

the third. Other distance features were defined in a similar way.

Type 6 features: the physicochemical differences
between the original amino acid and the new amino acid
at the mutation site

The GRANTHAM score [22] was adopted to measure the

physicochemical differences between two amino acids. According

to such a score, if two amino acids have similar physicochemical

features, the mutation from one to another will not cause the

change of protein functions. There is one GRANTHAM feature

for each mutant site.

Type 7 features: 2D structure features
The structure features for each mutant were calculated based on

the homology models [14,15]. The structures of mutant proteins

were simulated based on the structure of wild type p53 with

mutant amino acids substituted. Then structure features were

extracted from the energy minimized mutant model [13]. The

attributes 1–4826 of structure features (V1–V4826) were calculat-

ed based on the 2D surface map of the mutant protein [13,14,15]

where it is available for molecular interactions or drug binding.

Type 8 features: 3D structure features
Attributes 4827–5408 (V4827–V5408) of structure features

were calculated based on the 3D distance difference map between

mutant and wild-type p53 [13,14,15]. Mutation of amino acid in

p53 may change the 3D structure of protein. The 3D distance map

of p53 protein is an N6N matrix showing the distance between N

residue alpha carbons [15]. It reflects the structural changes

caused by the mutation of amino acids. After subtracting the

distance map of wild-type p53, a difference map was obtained.

The 3D distance difference map features represent the magnitudes

of the distance changes in 3D structure. Both the 2D structure

features and 3D structure features were downloaded from UCI

Machine Learning Repository http://archive.ics.uci.edu/ml/

datasets/p53+Mutants [13,14,15].

Feature space for one-site, two-site, three-site and four-
site mutants

Shown in Table 1 is a breakdown of the number of each kind of

features for one-site, two-site, three-site and four-site mutants,

respectively. Accordingly, we totally have 1z1z5z20zðf
1Þ|9z1z1z1z5z4826z582g~5668 features for a 9 amino

acid peptide with one-site mutant. Similarly, we have 1z1ð½f
z5z20z1Þ|9z1z1z1z5)�|2z1z4826z582g~5929,

1z1z5z20z1ð Þ|9z1z1z1z5½ �|3z2z4826z582f g~
6190, and 1z1z5z20z1ð Þ|9z1z1z1z5½ �|4z3zf
4826z582g~6451 features for a 9 amino acid peptide with one-

site, two-site, and four-site mutants, respectively. Accordingly, the

dimension V for a 9 amino acid peptide mutant as formulated by

equation (1) can now be expressed by

V~

5668, forone� sitemutant

5929, fortwo� sitemutant

6190, forthree� sitemutant

6451, forfour� sitemutant

8>>><
>>>:

ð2Þ

Thus, substituting the dimension value for V as well as the value

for each of relevant features as described above into equation (1),

we immediately obtain the 5668D, 5929D, 6190D, or 6451D

vector for the one-site, two-site, three-site, or four-site mutant of 9

amino acid peptide, respectively. The vectors thus obtained will be

used to represent the statistical samples concerned for the current

study.

mRMR method
To rank the features with their importance, we used the

maximum relevance minimum redundancy (mRMR) method

developed by by Peng et al. [23]. The mRMR program can be

downloaded from http://penglab.janelia.org/proj/mRMR/. It

recursively selects the feature that has the maximum relevance to

the target variable and minimum redundancy to the already

selected features. Features that have a smaller index mean that

they are selected earlier and are more important. We used the

mutual information (MI) to quantify the relation between two

vectors, which was defined as follows

I x,yð Þ~
ÐÐ

p x,yð Þ log
p x,yð Þ

p xð Þp yð Þ dxdy ð3Þ

In equation (3), x and ydenote vectors; p xð Þ and p yð Þ denote the

marginal probabilistic densities; and p x,yð Þ denotes joint proba-

bilistic density.

To quantify both relevance and redundancy, we defined V as

the whole feature set, Vs as the already-selected feature set

containing m features and Vt as the to-be-selected feature set

containing n features. The relevance D between feature f in Vt

and the target c can be calculated by:

D~I f ,cð Þ ð4Þ

The redundancy R between the feature f in Vt and all the features

in Vs can be calculated by:

R~
1

m

X
fi[Vs

I f , fið Þ ð5Þ

The mRMR function, which combined equation (4) and equation

(5) and can be used to obtain the feature fj in Vt with maximum

relevance and minimum redundancy, was defined as following:

max
fj[Vt

I fj ,c
� �

{
1

m

X
fi[Vs

I fj,fi

� �
2
4

3
5 j~1,2,:::,nð Þ ð6Þ

Given a feature set with N N~mznð Þ features, the feature

evaluation will be performed N rounds. After these evaluations,

mRMR method will generate a feature set S:

S~ f
0

1 ,f
0

2 ,:::,f
0

h ,:::,f
0

N

n o
ð7Þ
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In this feature set S, each feature has an index h, indicating which

round the feature is selected. A better feature will be selected

earlier and have a smaller index h.

Nearest Neighbor Algorithm
We used nearest neighbor algorithm (NNA) [12] to build the

prediction model of p53 activity. NNA calculates similarities

between the test sample and all the training samples. In the current

study, the distance between vector px and py is defined as

following [24,25,26,27,28,29,30,31]:

D px,py

� �
~1{

px
:py

pxk k: py

�� �� ð8Þ

In equation (8), px
:py denotes the inner product of px and py.

pk k denotes the module of vectorp. The smaller D px,py

� �
is, the

more similar px to py is.

In NNA, given a vector ptand training set P~ p1,f
p2,:::,pn,:::,pNg, pt will be designated to the same class of its

Figure 1. The IFS curves for one-site, two-site, three-site and four-site p53 mutants. In the IFS curve, the x-axis is the number of features
used for classification, and the y-axis is the Mathew’s correlation coefficients (MCC) generated by the jackknife test. (A) The IFS curve for one-site p53
mutants. The peak of MCC is 0.678 with 8 features. The top 8 features derived by the mRMR approach form the optimal feature set for one-site p53
mutants. (B) The IFS curve for two-site p53 mutants. The peak of MCC is 0.314 with 50 features. The top 50 features derived by the mRMR approach
form the optimal feature set for two-site p53 mutants. (C) The IFS curve for three-site p53 mutants. The peak of MCC is 0.705 with 282 features. The
top 282 features derived from the mRMR approach form the optimal feature set for three-site p53 mutants. (D) The IFS curve for four-site p53
mutants. The peak of MCC is 0.907 with 25 features. The top 25 features derived from the mRMR approach form the optimal feature set for four-site
p53 mutants.
doi:10.1371/journal.pone.0022940.g001
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nearest neighbor pn in P, i.e. the vector having the smallest

D pn,ptð Þ:

D pn,ptð Þ~min D p1,ptð Þ,D p2,ptð Þ,:::,D pz,ptð Þ,:::,D pN ,ptð Þf g z=tð Þð9Þ

Jackknife Cross-Validation Method
In statistical prediction, the following three cross-validation

methods are often used to examine a predictor for its effectiveness

in practical application: independent dataset test, subsampling test,

and jackknife test [32]. However, as elucidated in [33] and

demonstrated by Eqs.28–32 of [12], among the three cross-

validation methods, the jackknife test is deemed the least arbitrary

that can always yield a unique result for a given benchmark

dataset, and hence has been increasingly used and widely

recognized by investigators to examine the accuracy of various

predictors (see, e.g., [34,35,36,37,38,39,40,41]). Accordingly, in

this study we also used the jackknife test to evaluate the

performance of our classifier. In the jackknife cross-validation,

each of the statistical samples in the benchmark dataset is in turn

singled out as a tested sample and the predictor is trained by the

remaining samples. During the jackknifing process, both the

training dataset and testing dataset are actually open, and a

statistical sample will in turn move from one to the other. The

jackknife cross-validation can exclude the memory effects during

entire testing process and also the result thus obtained is always

unique for a given benchmark dataset [25].

Since the positive and negative samples are highly imbalanced in the

data set, the Matthews’s correlation coefficient (MCC) [42] was used to

evaluate the prediction performance and its definition is given by

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPzFNð Þ| TNzFPð Þ| TPzFPð Þ| TNzFNð Þ
p ð10Þ

where TP, TN, FP and FN were the number of true active mutants,

true inactive mutants, false active mutants and false inactive mutants,

respectively [43].

Incremental Feature Selection
With features ranked by mRMR method, incremental feature

selection (IFS) was applied to determine the optimal number of

features [26,27,28,29,30,44]. An incremental feature selection is

conducted for each of the independent predictor with the ranked

features. Features in a set are added one by one from higher to

lower rank. If one feature is added, a new feature set is obtained,

then we get N feature sets, and the i-th feature set is:

Si~ f1,f2,:::,fif g 1ƒiƒNð Þ ð11Þ

where N is the number of features. With each of the N feature sets,

an NNA predictor was constructed and tested using Jackknife

cross-validation test. With MCC of jackknife cross-validation

calculated, we obtain an IFS table with the number of features and

the performance of them. Soptimal is the optimal feature set that

achieves the highest MCC.

Results

mRMR result
Using the mRMR program, we obtained the ranked mRMR list

of 5668, 5929, 6190 and 6451 features for one-, two-, three- and

four-site p53 mutants respectively (cf. Eq.2). Within the lists, the

smaller index of a feature indicates it has a more important role in

discriminating positive samples from negative ones. The mRMR

lists were used in IFS procedure for further feature selection and

analysis.

IFS result
Based on the outputs of mRMR, we built individual predictors

by adding features recursively from the top of the mRMR output

to the bottom to predict the active status of p53 mutants. We

tested each of the individual predictors and obtained the IFS

results. The IFS results for one-, two-, three- and four-site p53

mutants are provided as Table S1, Table S2, Table S3 and Table

S4, respectively. The IFS curves for one-site, two-site, three-site

and four-site p53 mutants were shown in Figure 1.

Optimal feature set analysis for one-site p53 mutants
Figure 1 A shows IFS curve plotted based on Table S1. The

maximum MCC is 0.678 by using 8 features as shown in Table 2.

Within the optimal feature set for one-site p53 mutants active

status prediction, there are two 2D structure features (V241 and

V78), three PSSM features (i.e., AA3_PSSM-8-G: the conservation

status against G at residue 3; AA8_PSSM-19-Y: the conservation

Table 1. Number of features for one-site, two-site, three-site and four-site mutants.

Features One-site mutant Two-site mutant Three-site mutant Four-site mutant

SNP featuresa 169+1 = 10 (169+1)62 = 20 (169+1)63 = 30 (169+1)64 = 40

Pro-pro featuresb 169+1 = 10 (169+1)62 = 20 (169+1)63 = 30 (169+1)64 = 40

Amino acid factor 569+5 = 50 (569+5)62 = 100 (569+5)63 = 150 (569+5)64 = 200

PSSM features 2069 = 180 206962 = 360 206963 = 540 206964 = 720

Disorder feature 169 = 9 16962 = 18 16963 = 27 16964 = 36

GRANTHAM 1 2 3 4

Distance features 0 1 2 3

2D structure features 4826 4826 4826 4826

3D structure features 582 582 582 582

Total 5668 5929 6190 6451

aGain/loss of amino acids during evolution.
bConservation of amino acid at protein-protein interface.
doi:10.1371/journal.pone.0022940.t001

Predicting Activity of Multiple Site p53 Mutants
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status against Y at residue 8; and AA2_PSSM-18-W: the

conservation status against W at residue 2), two AAFactor features

(AA6_AAFactor-3: the molecular volume amino acid factor feature

at residue 6; AA5_AAFactor-1: the polarity amino acid factor

feature at residue 6) and one disorder feature at residue 4.

Optimal feature set analysis for two-site p53 mutants
Shown in Figure 1 B is the IFS curve plotted based on Table S2.

The maximum MCC is 0.314 by using 50 features. The 50 optimal

features for the two-site p53 mutants are given in Table S5.

Within the top 50 features, there are 49 2D structure features

and 1 PSSM feature (AP2.AA8_PSSM-3-N). Listed in Table 3 are

the top 10 features for two-site p53 mutants. The conservation

status against N at residue 8 is the top feature within the selected

optimal feature set, indicating that site 8 and the specific mutation

status against N plays the most important role in determining the

active status of two-site p53 mutants. The inclusion of 49 2D

structure features within the optimal 50 features indicates its

important roles. As mentioned in introduction, the majority of p53

mutations occurred in the core DNA-binding domain [7]. Within

the DNA-binding domain of p53 protein, the secondary structures

(the two alpha-helices and the eleven beta-strands) were

susceptible to amino acid substitution [45]. Thus, the changes of

secondary structures would alter the DNA contact and Zn binding

so as to cause functional changes [45].

Optimal feature set analysis for three-site p53 mutants
Shown in Figure 1 C is the IFS curve plotted based on Table

S3. The maximum MCC is 0.705 using 282 features although it

can reach 0.632 already with the top 48 features. The 282 optimal

features for three-site p53 mutants are provided in Table S6.

There are totally 249 structure features (including 214 2D features,

35 3D structure features), 22 PSSM features, 7 AAFactor features,

1 SNP feature, 2 disorder features, and 1 pro-pro feature.

The top 10 features for active status prediction of three-site p53

mutants are shown in Table 4. There are 7 2D structure features

(including the Top four features), indicating that they have the

most important impact on the three-site p53 mutants active status

prediction. The fifth feature is the polarity amino acid factor

feature at residue 2 and mutation site 1 (AP1.AA2_AAFactor-1).

This indicates that residue 2 at mutation site 1, especially its

polarity property, would play an important role for the active

status prediction of three-site p53 mutants. The 3D structure

features (index 6 and 8) may also play some roles for this type of

prediction.

There are 18, 9, and 6 optimal features at mutation site 1, 2,

and 3, respectively. For more detailed information about these

optimal features, please refer to Table S7, S8 and S9, respectively.

Optimal feature set analysis for four-site p53 mutants
As we can see from Figure 1 D, the MCC reached the

maximum value (0.907) when using 25 features shown in Table 5.

In the optimal feature set there are three AP1 features

(AP1.AA9_PSSM-7-E, AP1.AA2_PSSM-11-L, and AP1.AA2_AA-

Factor-4) as well as one AP2 feature (AP2.AA1_PSSM-14-F),

indicating that these specific features at relevant residues may play

more roles than other features and residues.

The optimal feature set also contains 19 2D structure features

and 2 3D structure features (including the top 8 features), which is

fully consistent with the majority of this optimal feature set (21/

25), indicating that these two types of features would play

important roles in the four-site p53 mutant active status prediction.

Comparison of the optimal feature sets of the four types
of p53 mutants

By comparison of the optimal feature sets for one-, two-, three-

and four-site p53 mutants, we can now see that the 2D structure

features composed the largest part of the optimal feature set and

hence might play the most important roles in all these four types of

p53 mutant active status prediction. It has also been demonstrated

Table 4. Top 10 features for three-site p53 mutants.

Order Name Score

1 V2261 0.159

2 V3291 0.074

3 V4391 0.069

4 V3106 0.067

5 AP1.AA2_AAFactor-1 0.056

6 V5068 0.061

7 V4075 0.049

8 V5278 0.046

9 V3568 0.05

10 V3978 0.052

doi:10.1371/journal.pone.0022940.t004

Table 2. Optimal feature set for one-site p53 mutants.

Order Name Score

1 AA3_PSSM-8-G 0.144

2 AA8_PSSM-19-Y 0.105

3 V241 0.067

4 AA6_AAFactor-3 0.052

5 V78 0.05

6 AA5_AAFactor-1 0.04

7 AA2_PSSM-18-W 0.039

8 AA4_disorder 0.04

doi:10.1371/journal.pone.0022940.t002

Table 3. Top 10 features for two-site p53 mutants.

Order Name Score

1 AP2.AA8_PSSM-3-N 0.004

2 V1152 0.002

3 V55 0.002

4 V1854 0.001

5 V4001 0

6 V2846 0

7 V4168 0

8 V1059 0

9 V2633 0

10 V3105 0

doi:10.1371/journal.pone.0022940.t003
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through the optimal feature sets (especially those at the top level)

that the 3D structure features, PSSM conservation features and

AAFactor features did play important roles in p53 mutant active

status prediction. The selected optimal feature sets, especially those

at the top level, may provide important clues or insights for further

experimental studies in this area.

Discussion

The relationship between structure change and function
change in p53 mutants

It was found through this study that most of the selected features

were those directly related to structure. The relationship between

structure and function of p53 were suspected for quite a long time.

Most cancer-associated p53 amino acid mutations are located at

the highly conserved central DNA binding domain, suggesting a

correlation between the evolutionary conservation and the

structural or functional importance of amino acid residues

[45,46]. It has been reported [45,47] that those residues, which

are in contacting with DNA or located at the opposite side of

DNA, would form the core of the folded protein, and hence are

most likely to be conserved and mutated. Most hotspots with high

evolutionary conservation are either near to the DNA-protein

interface, or at the amino acids in contacting with DNA [45,47].

Mutation of cysteines 176, 238 and 242 to serine within the zinc

region will completely block the transcriptional activation of p53

[48]. It is evidenced that mutation of arginine 156, arginine 158,

serine 215 and glutamate 258 in p53 protein will destabilize the

protein structure [45,48] owing to the repulsion interactions

between the side chains of these amino acids.

The imbalance of features from different sites in
multiple-site p53 mutants

It has been observed through this study that the selected features

of multiple-site p53 mutants are usually located on only part of the

mutation sites. This is probably due to the reason that the

unselected mutation sites might contribute nothing to the p53

functional abnormality because the selected mutation sites, which

serve as ‘‘hitch-hikers’’ [49], have already done the job.
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