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E
merging evidence suggests that HDL function is
not always accurately predicted by HDL choles-
terol levels. The functions of HDL include re-
verse cholesterol transport and modulation of

inflammation. These functions appear to have evolved as
part of the innate immune system. In healthy individuals,
in the absence of systemic oxidative stress and inflamma-
tion, HDL is anti-inflammatory. However, in those with
chronic illnesses such as diabetes that are characterized
by systemic oxidative stress and inflammation, HDL may
actually promote the inflammatory response (i.e., it may
become proinflammatory). HDL may be thought of as a
shuttle. The size of the shuttle can be estimated by HDL
cholesterol levels. The shuttle’s cargo can change dramat-
ically from one that efficiently promotes reverse choles-
terol transport and is anti-inflammatory to one that is less
effective in promoting reverse cholesterol transport and is
also proinflammatory without any change in the size of the
shuttle (i.e., these changes in HDL cargo can occur with-
out any change in HDL cholesterol levels). Understanding
these issues may lead to improved use of HDL as a
biomarker and may also lead to new therapeutic targets
and therapies.
HDL can modulate LDL oxidation. Lipoproteins
evolved to facilitate the extracellular transport of lipids in
multicellular organisms. The major protein in LDL is
apolipoprotein (apo)-B. This protein contains a binding
domain that causes LDL to be deposited in the extracellu-
lar matrix of many tissues, particularly in arteries that are
predisposed to atherosclerosis. As a result of the binding
of apoB-containing proteins to extracellular matrix mole-
cules, the concentration of apoB in the subendothelial
space of even normal arteries is twofold higher than in
plasma (1). The deposition of LDL in the extracellular
matrix of the subendothelial space predisposes it to oxi-
dation. The oxidized lipids that result evoke a tissue
response similar to that which occurs in response to a
Mycobacterium (2,3).

Unlike LDL, HDLs do not normally bind to extracellular
matrix molecules, and the concentration of the main
protein in HDL (apoA-I) in the subendothelial space of
normal arteries is only one-fifth the concentration found in

plasma (1). Adding LDL to an artery wall model con-
structed from cultured human aortic endothelial and
smooth muscle resulted in LDL being deposited in the
subendothelial space where the cells oxidized the LDL
lipids. This caused the cells to synthesize and secrete
monocyte chemoattractant protein (MCP)-1, which
evokes a potent inflammatory response of the type seen
in atherosclerosis. Addition of normal HDL abolished
this process, indicating that normal HDL is capable of
preventing LDL oxidation and the inflammatory re-
sponse induced by LDL (4).
The acute-phase response changes HDL’s ability to
inhibit LDL oxidation. Van Lenten et al. (5) were the first
to report that HDL loses its ability to inhibit LDL oxidation
during the acute-phase response. HDL from normal rabbits
and humans prior to elective surgery prevented LDL
oxidation and prevented LDL-induced MCP-1 production
(measured by a bioassay) in cultures of human artery wall
cells. In contrast, HDL from the same rabbits or humans,
isolated at the peak of an acute-phase response, was less
effective in inhibiting LDL oxidation and actually in-
creased LDL-induced MCP-1 production (5). This change
in HDL was paralleled by changes in HDL composition.
Among the changes noted at the peak of the acute-phase
response was a decrease in activity of two HDL-associated
enzymes, paraoxonase-1 (PON1) and platelet-activating
factor acetylhydrolase (PAF-AH). Upon resolution of the
acute-phase response, these HDL-associated enzyme activ-
ities returned toward baseline and the anti-inflammatory
properties of the HDL were restored (5). Subsequently, it
was found that these enzymes were partly responsible for
the ability of normal HDL to inhibit proinflammatory
LDL-derived oxidized lipids (6–8). The ability of HDL to
prevent the formation of LDL-derived oxidized lipids or to
inactivate them was determined to be a major factor in
identifying the anti-inflammatory properties of HDL (9,10).
The chronic acute-phase response. Gabay and Kushner
(11) noted that many chronic disease states are associated
with a chronic acute-phase response defined by the per-
sistent presence of acute-phase reactants in the plasma.
By this definition, diseases characterized by persistent
elevations of acute-phase reactants such as C-reactive
protein (CRP) are examples of a chronic acute-phase
response. The important clinical implications of the per-
sistent elevations of these plasma biomarkers in chronic
disease states have been extensively studied (12–14).
HDL in diabetes, the metabolic syndrome, obesity,
and familial hypercholesterolemia. Hedrick et al. (15)
found that glycation of HDL by incubation under hyper-
glycemic conditions caused the HDL to lose its ability to
inhibit monocyte adhesion to human aortic endothelial
cells exposed to oxidized LDL. Glycation of the HDL-
associated enzyme PON1 also prevented its ability to
inhibit monocyte adhesion to the endothelial cells. In
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subjects with type 2 diabetes and documented coronary
artery disease, PON1 activity was reduced by 40% (P �
0.0001) compared with nondiabetic subjects (15). Figure 1
shows a progressive loss of the ability of HDL to inhibit
LDL oxidation and LDL-induced MCP-1 in subjects with an
abnormal glucose tolerance test, subjects with well-
controlled diabetes, and subjects with poorly controlled
diabetes compared with normal control subjects. HDL
cholesterol levels were not significantly different for any of
the groups (data not shown).

Another example of the inability of HDL cholesterol
levels to predict HDL inflammatory properties comes from
the article by Roberts et al. (16). HDL inflammatory
properties improved despite a fall in HDL cholesterol
levels in obese men with characteristics of the metabolic
syndrome who were treated with a 3-week residential
program of diet and daily aerobic exercise (16). In South
Asian immigrants with a high incidence of metabolic
syndrome and a high risk for coronary heart disease
(CHD), the inflammatory properties of HDL significantly
correlated with carotid intima-media thickness (17).

Visceral abdominal obesity is now recognized as a
chronic inflammatory state. Perségol et al. (18) found that
HDL taken from subjects with abdominal obesity was
defective in reversing the effects of oxidized LDL on
vascular relaxation compared with HDL from normal
subjects. They also found that HDL from both type 1 and
type 2 diabetic subjects was similarly dysfunctional
(19,20). These results also suggest that although the etiol-
ogies of type 1 and type 2 diabetes are different, the
abnormalities in HDL function that result from type 1 and
type 2 diabetes are similar. Cancello et al. (21) found
that omental adipose tissue in morbidly obese humans
contained significantly more macrophages than the sub-
cutaneous adipose tissue. Moreover, the increased mac-
rophage accumulation in omental adipose tissue was
correlated with fasting glucose and insulin levels and
insulin sensitivity and was also closely associated with
hepatic fibroinflammatory lesions (21). These results are
consistent with macrophage cytokines in omental fat
playing a role in insulin resistance as well as the changes
in HDL that have been observed in patients with abdomi-
nal obesity.

The impact of LDL levels on the inflammatory properties
of HDL was demonstrated by the significant improvement
in HDL inflammatory properties that occurred after LDL
apheresis in patients with familial hypercholesterolemia,

despite the decrease in HDL cholesterol levels caused by
the treatment (22).
HDL in CHD. HDL from 27 patients with documented
CHD, with normal lipid levels, and without diabetes failed
to inhibit LDL oxidation and LDL-induced MCP-1 produc-
tion in cultures of human artery wall cells, whereas HDL
from 31 age- and sex-matched control subjects did not
demonstrate this failure (23).

Ansell et al. (24) compared the ability of LDL from a
normal control to induce MCP-1 in cultures of human
aortic wall cells or to induce fluorescence in a cell-free
assay in the absence of HDL and in the presence of a test
HDL. The values in the presence of the control LDL with
the absence of HDL were normalized to 1.0. The values
obtained in the presence of both the control LDL and the
test HDL were divided by the values obtained in the
presence of the control LDL with the absence of HDL to
obtain the HDL inflammatory index (HII). If HII was �1.0,
the test HDL was classified as anti-inflammatory. If the
addition of the test HDL together with the control LDL
resulted in HII �1.0, the test HDL was classified as
proinflammatory. Blood was taken from 26 subjects with
normal plasma lipid levels but with CHD or CHD equiva-
lents defined by the Cholesterol Education Program Adult
Treatment Panel III criteria (25), and the patients were
then started on 40 mg simvastatin daily for 6 weeks. HII for
the patients prior to simvastatin treatment was means �
SD 1.38 � 0.91 compared with 0.38 � 0.14 for age- and
sex-matched control subjects (P � 1.5 � 10�5). After 6
weeks of treatment, HII for the patients was 1.08 � 0.71,
which was a significant improvement (P � 0.002) but still,
on average, proinflammatory (24). Ansell et al. (24) also
studied a group of 20 patients with high HDL cholesterol
levels (95 � 14 mg/dl) and normal LDL and triglyceride
levels but documented CHD. HII for this group was 1.28 �
0.29. Ansell et al. (24) concluded that the inflammatory/
anti-inflammatory properties of HDL distinguished pa-
tients from control subjects better than HDL cholesterol
levels.
HDL in rheumatic diseases. Systemic lupus erythemato-
sus (SLE) is an autoimmune disease with chronic inflam-
mation and episodes of acute inflammation. Women with
SLE have a dramatically increased risk of CHD (7- to
50-fold greater than normal). Proinflammatory HDL was
found in 44.7% of women with SLE, 20.1% of women with
rheumatoid arthritis, and only 4.1% of healthy women,
even though all three groups had normal HDL cholesterol
levels (26). Administering 80 mg atorvastatin daily to
rheumatoid arthritis patients significantly improved HDL
inflammatory properties, which significantly worsened in a
group given placebo (27). Scleroderma is a chronic illness
associated with abnormal capillaries and Reynaud’s phe-
nomenon. Weihrauch et al. (28) reported that scleroderma
patients had both low HDL cholesterol levels and proin-
flammatory HDL.
HDL in other diseases with a chronic acute-phase
response. Chronic renal disease is recognized as a condi-
tion associated with chronic inflammation. HII was deter-
mined in 189 patients on hemodialysis who were followed
prospectively for 30 months. Subjects with HII �1.0 had
significantly more comorbid conditions and worse quality
of life (short-form 36 [SF36] health survey questionnaire)
than patients with HII �1.0. Despite no difference in total
cholesterol levels, LDL cholesterol levels, triglyceride lev-
els, or HDL cholesterol levels, after 30 months of follow-
up, the patients with HII �1.0 had a significantly higher
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FIG. 1. HII in diabetes. Abn’l GTT, abnormal oral glucose tolerance
test.
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mortality, determined by Kaplan-Meier curves adjusted for
case-mix variables, than patients with HII �1.0 (29).
Crohn’s disease is another chronic illness associated with
persistent elevations in acute-phase reactants. HDL from
Crohn’s disease patients was found to be dysfunctional
and was associated with increased carotid intima-media
thickness (30).
HDL in leprosy. Cruz et al. (31) reported that normal HDL
strongly promoted the conversion of monocytes into
CD1b� dendritic cells. In many respects, the cellular
events in leprosy are similar to those in atherosclerosis.
Cruz et al. found that HDL from leprosy patients was
proinflammatory (i.e., HII �1.0) and was also less effective
in promoting the conversion of monocytes into CD1b�

dendritic cells than anti-inflammatory HDL from control
subjects.
HDL in inbred strains of mice and in rabbits. Inbred
strains of mice have been useful in dissecting genetic traits
associated with various diseases. Navab et al. (32) found
that inbred strains of mice susceptible to atherosclerosis
all had anti-inflammatory HDL, whereas inbred strains
resistant to atherosclerosis all had proinflammatory HDL.
Additionally, Navab et al. found that human HDL that was
proinflammatory was less able to promote cholesterol
efflux from human macrophages than was HDL that was
anti-inflammatory. HDL cholesterol levels failed to predict
lesion area in cholesterol-fed rabbits, but levels of the
acute-phase reactant serum amyloid A (SAA) and HII
values both accurately predicted lesion area and were
significantly correlated with each other (33).
Oxidative stress and the acute-phase response as
modifiers of HDL content. As noted above, PON1 is an
HDL-associated enzyme. Bhattacharyya et al. (34) found
that the PON1 genotype predicted a dose-dependent asso-
ciation with PON1 activity and with indexes of systemic
oxidative stress. The oxidative enzyme myeloperoxidase,
which is present in increased concentrations at sites of
inflammation, was found to preferentially associate with
HDL and cause oxidative damage to apoA-I, resulting in
impaired ability of the apoA-I to promote cholesterol efflux
(35). A specific tyrosine residue (residue 166) in apoA-I
that is required for activation of lecithin cholesterol acyl-
transferase (LCAT) was found to be the preferred target
for oxidative modification (36). Compared with that from
normal subjects, HDL from patients with CHD is enriched
with apoE and acute-phase proteins (37). Combined treat-
ment with a statin and niacin reduced the apoE content of
HDL from CHD patients and resulted in an HDL proteome
more similar to that in healthy individuals (38).

The connection between oxidized lipids and the induc-
tion of an acute-phase response and the generation of
proinflammatory HDL was shown by the injection of
oxidized phospholipids into atherosclerosis-susceptible
and -resistant mice (39). The injection of oxidized phos-
pholipids into the atherosclerosis-susceptible strain re-
sulted in a significant increase in the HDL-associated
acute-phase reactant apoJ and a significant decrease in the
HDL-associated enzyme PON1, although there was no
change in the strain that is resistant to atherosclerosis
(39).
The role of Hb and haptoglobin in determining the
inflammatory properties of HDL. In mice and humans,
there is always a small amount of Hb in the plasma that is
outside of erythrocytes (RBCs). In the absence of clinical
hemolysis, the concentration of Hb in the plasma outside
RBCs is �10 	mol/l, whereas the concentration in RBCs is

�1 mol/l. Watanabe et al. (40) reported that feeding an
atherogenic diet to mice that are genetically susceptible to
atherosclerosis did not increase the concentration of
plasma Hb outside of RBCs but resulted in the association
of the Hb specifically with HDL. HDL containing Hb was
found to be dysfunctional and proinflammatory in mice
and humans (40,41).

The major protein for binding Hb outside of RBCs is
haptoglobin (Hp), which is a positive acute-phase protein
(i.e., it increases during an acute-phase response), and Hp
is known to be associated with HDL. In humans, there are
two alleles (1 and 2) for Hp yielding three genotypes: Hp
1-1, Hp 2-1, and Hp 2-2. Diabetic subjects with the Hp 2-2
genotype (�40% of diabetic subjects) are at increased risk
for CHD (42). Although vitamin E has failed to alter
outcomes in large studies of patients with atherosclerosis,
in a subgroup of middle-aged individuals with both type 2
diabetes and the Hp 2-2 genotype, vitamin E supplemen-
tation in a double-blinded clinical trial significantly re-
duced cardiovascular events (43,44). Mice only have the
Hp 1-1 genotype. Levy and colleagues (45) genetically
engineered mice to express the Hp 2-2 genotype and found
that these mice had impaired reverse cholesterol transport
in vivo compared with Hp 1-1 mice. Additionally, serum
from Hp 2-1 or Hp 2-2 diabetic humans was inferior to
serum from Hp 1-1 subjects in promoting cholesterol efflux
from macrophages in vitro (45).

The Hp 1-1 genotype produces an Hp monomer that is
monovalent and, consequently, can only associate with
one other Hp molecule to create dimers. The Hp 2-2
genotype results in a bivalent molecule that can associate
with two different Hp monomers to form cyclic polymers.
Levy and colleagues (46) found that in Hp 2-2 diabetic
humans and Hp 2-2 diabetic mice, Hb and lipid peroxides
associated with HDL were increased and the HDL was
dysfunctional in its ability to promote cholesterol efflux
from macrophages compared with Hp 1-1 subjects. In a
crossover placebo-controlled study, vitamin E treatment
decreased oxidative modification of HDL and improved
HDL function in Hp 2-2 subjects with diabetes but not Hp
1-1 diabetic subjects (46). Interestingly, on an atherogenic
diet, Hb does not associate with HDL in mice lacking Hp,
and these mice do not develop proinflammatory HDL,
although mice that are wild type for Hp do (41).
HDL cholesterol as a predictor of risk. HDL choles-
terol has long been known to be a powerful predictor of
risk for clinical events due to atherosclerosis in large
populations (47). However, in all of the clinical studies
published, many of the clinical events occurred in subjects
with perfectly normal HDL cholesterol levels (32). Addi-
tionally, Briel et al. (48) recently published a large meta-
regression analysis indicating that simply increasing the
amount of circulating HDL cholesterol does not reduce the
risk of CHD events, CHD deaths, or total deaths. An
obvious example of the dissociation between HDL choles-
terol levels and risk for CHD can be found in subjects with
apoA-IMilano (49). These individuals have a mutant apoA-I
protein that causes low HDL cholesterol levels, but these
subjects do not appear to have increased risk for CHD
(49). The studies cited above indicate that the composi-
tion, functionality, and inflammatory properties of HDL
may be as important as HDL cholesterol levels in deter-
mining risk for CHD.
HDL as a potential therapy and therapeutic target. In
animal models, HDL and apoA-I have been highly effica-
cious in the treatment of atherosclerosis (50,51). In pilot
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studies in humans, apoA-I has also shown promise, includ-
ing in patients with diabetes (52,53). The initial pilot study
(52) suggested that weekly intravenous administration for
5–6 weeks might be adequate. However, larger subsequent
trials have not shown sufficient attainment of desired goals
after such short treatment periods (54).

The potential benefit of an HDL-based strategy in diabe-
tes was recently demonstrated in a study showing that
infusion of recombinant HDL particles increased AMP-
activated protein kinase in skeletal muscle, increased
plasma insulin levels, and decreased plasma glucose levels
in type 2 diabetic subjects (55). ApoA-I is a relatively large
protein with 243 amino acid residues, making its large-
scale production for clinical use a significant challenge.
Given the likely cost and need for prolonged treatments
requiring intravenous administration, it is not likely that
such a therapy would be used for millions of patients with
atherosclerosis and diabetes.
The search for apoA-I mimetic peptides. More than 2
decades ago, J.P. Segrest and A.M. Anantharamaiah de-
signed a peptide with only 18 amino acid residues that
lacked sequence homology with apoA-I but contained a
class A amphipathic helix, like that found in apoA-I
(56–58). The original peptide was named 18A because of
its 18 amino acid residues and the class A amphipathic
helix. Addition of blocking groups gave the peptide in-
creased helical stability and increased ability to bind
nonoxidized lipids. The resulting peptide was named 2F
because of the two phenylalanine residues on the hydro-
phobic face. Although this peptide bound nonoxidized
lipids similarly to apoA-I, it failed to improve atheroscle-
rosis in a mouse model (59). Based on the assumption that
oxidized lipids derived from LDL were likely to play a
more important role than nonoxidized lipids in the devel-
opment of atherosclerosis, a series of peptides in which
amino acids were conservatively substituted in 2F was
tested for the ability to block LDL from inducing MCP-1 in
cultures of human artery wall cells. The 2F peptide was
found to be relatively weak in this regard compared with
peptides with 4–6 phenylalanine residues on the hydro-
phobic face (59). A peptide with 5 phenylalanine residues
on the hydrophobic face (5F) significantly reduced lesions
in a mouse model of atherosclerosis (60). A peptide with 4
phenylalanine residues on the hydrophobic face (4F) was
also found to be efficacious in mouse models of athero-
sclerosis (61). Subsequent studies indicated that the 4F
peptide improved a variety of inflammation-based diseases
in animal models including influenza A pneumonia (62),
hyperlipidemia- and sickle cell–mediated vascular dys-
function (63,64), scleroderma (28), type 1 diabetes (65,66),
obesity and type 2 diabetes (67,68), hepatic fibrosis (69),
vascular dementia (70), arthritis (71), hyperlipidemia-
mediated renal inflammation (72), accelerated vein graft
atherosclerosis (73), and Alzheimer’s disease (74). Addi-
tionally, the 4F peptide inhibited the inflammatory re-
sponse and improved survival in septic rats (75). The 4F
peptide was also found to synergize with statins in a
mouse model of atherosclerosis, causing regression of
lesions (76), and in vitro, it improved the anti-inflamma-
tory properties of HDL from patients with end-stage renal
disease (77).

In all of the animal models in which the anti-inflamma-
tory properties of HDL were studied, HII significantly
improved after peptide treatment (60–62,64,71,76). In hu-
mans with CHD or CHD equivalents, a single oral dose of
the 4F peptide synthesized from all D-amino acids signif-

icantly improved the HII (78). The efficacy of the 4F
peptide, when given by injection, was the same whether
the peptide was synthesized from all D- or all L-amino
acids (33). It was initially thought that only peptides
synthesized from D-amino acids could be given orally
because the peptides synthesized from all L-amino acids
were rapidly degraded by intestinal proteases (61). How-
ever, more recently, it was found that oral administration
of the 4F peptide synthesized from all L-amino acids was
efficacious if given with niclosamide, a drug that has been
used for decades in the treatment of parasitic infections
and has low toxicity for mammals. At an acidic pH,
niclosamide appears to form a complex with 4F, protect-
ing the peptide from degradation by intestinal proteases
and thus allowing dramatically increased bioactivity after
absorption (79).

The plasma concentrations of the 4F peptide after oral
administration to animal models or in human studies were
very low. In a mouse model of atherosclerosis, the maxi-
mal plasma concentration was �130 nmol/l (80), and in
humans, it was �4 nmol/l (78). Because 4F is an apoA-I
mimetic peptide and the concentration of apoA-I in mouse
models of atherosclerosis and in humans is �35 	mol/l, it
was difficult to understand how the peptide could be
bioactive. The answer to this conundrum was found to be
that the original peptide 2F was selected for its ability to
bind nonoxidized lipids similar to apoA-I, whereas the 4F
peptide was selected for its ability to inhibit LDL oxidation
by human artery wall cells. Direct comparison of the
ability of human apoA-I and the 4F peptide to bind
nonoxidized lipids versus oxidized lipids showed that
apoA-I and 4F bound nonoxidized lipids similarly, but the
4F peptide bound oxidized lipids as much as 5 million–fold
better than apoA-I (81). It was concluded that the mecha-
nism of action of the 4F peptide relates to this remarkable
ability to bind oxidized lipids (82,83). Consistent with this
conclusion was the finding that, in vivo, the 4F peptide
specifically removed oxidized lipids from inflamed tissue
and that the removal of these oxidized lipids was associ-
ated with resolution of the inflammatory changes (72).
Summary of the present state of the art and potential

for future innovations. Measuring HDL cholesterol lev-
els may not accurately predict the composition, function-
ality, and anti-inflammatory properties of HDL. HDL in
diseases associated with a chronic acute-phase response
has been found to be dysfunctional and proinflammatory.
Currently, there are no tests widely available for measur-
ing the composition, functionality, and inflammatory prop-
erties of HDL in clinical practice. However, it appears that
the composition, functionality, and inflammatory proper-
ties of HDL are directly related to the presence or absence
of conditions that are known to induce a chronic acute-
phase response. These conditions are clinically recogniz-
able (e.g., diabetes, visceral obesity, CHD, rheumatic
diseases, chronic inflammatory gastrointestinal condi-
tions, chronic renal disease, and chronic infections). Stud-
ies using HDL and HDL mimetics as therapeutic agents are
all in early-phase clinical trials. Studies in animals and in
the early clinical trials are encouraging, but it likely will be
some time before the outcome of definitive studies is
known. In the meantime, our therapeutic approach must
continue to emphasize lifestyle modification, control of
diabetes, obesity, hyperlipidemia, and hypertension as
well as the appropriate use of aspirin, statins, ACE inhib-
itors, and 
-blockers for patients with CHD.
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