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Learning regularized representations 
of categorically labelled surface EMG enables 
simultaneous and proportional myoelectric 
control
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Abstract 

Background:  Processing the surface electromyogram (sEMG) to decode movement intent is a promising approach 
for natural control of upper extremity prostheses. To this end, this paper introduces and evaluates a new framework 
which allows for simultaneous and proportional myoelectric control over multiple degrees of freedom (DoFs) in real-
time. The framework uses multitask neural networks and domain-informed regularization in order to automatically 
find nonlinear mappings from the forearm sEMG envelope to multivariate and continuous encodings of concurrent 
hand- and wrist kinematics, despite only requiring categorical movement instruction stimuli signals for calibration.

Methods:  Forearm sEMG with 8 channels was collected from healthy human subjects (N = 20) and used to cali-
brate two myoelectric control interfaces, each with two output DoFs. The interfaces were built from (I) the proposed 
framework, termed Myoelectric Representation Learning (MRL), and, to allow for comparisons, from (II) a standard pat-
tern recognition framework based on Linear Discriminant Analysis (LDA). The online performances of both interfaces 
were assessed with a Fitts’s law type test generating 5 quantitative performance metrics. The temporal stabilities of 
the interfaces were evaluated by conducting identical tests without recalibration 7 days after the initial experiment 
session.

Results:  Metric-wise two-way repeated measures ANOVA with factors method (MRL vs LDA) and session (day 1 vs 
day 7) revealed a significant ( p < 0.05 ) advantage for MRL over LDA in 5 out of 5 performance metrics, with metric-
wise effect sizes (Cohen’s d ) separating MRL from LDA ranging from |d| = 0.62 to |d| = 1.13 . No significant effect on 
any metric was detected for neither session nor interaction between method and session, indicating that none of the 
methods deteriorated significantly in control efficacy during one week of intermission.

Conclusions:  The results suggest that MRL is able to successfully generate stable mappings from EMG to kinematics, 
thereby enabling myoelectric control with real-time performance superior to that of the current commercial stand-
ard for pattern recognition (as represented by LDA). It is thus postulated that the presented MRL approach can be of 
practical utility for muscle-computer interfaces.

Keywords:  Electromyography, Prosthetic control, Online performance, Regression, Deep learning, Representation 
learning, Regularization, Multitask learning
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Background
Muscle-computer interfaces (MCIs) have found use 
in a broad range of clinical and biotechnical domains 

Open Access

*Correspondence:  alexander.olsson@bme.lth.se; christian.antfolk@bme.lth.se
1 Department of Biomedical Engineering, Faculty of Engineering, Lund 
University, Lund, Sweden
Full list of author information is available at the end of the article

https://orcid.org/0000-0001-7368-2442
https://orcid.org/0000-0001-8140-5453
https://orcid.org/0000-0003-0600-1365
https://orcid.org/0000-0001-6783-0461
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12984-021-00832-4&domain=pdf


Page 2 of 19Olsson et al. J NeuroEngineering Rehabil           (2021) 18:35 

[1]. Most salient within the category of clinical applica-
tions is perhaps the field of hand- and wrist prosthet-
ics, where myoelectrically controlled prostheses have 
been part of clinical routine since the 1960s [2]. In this 
application, electromyography (EMG) signals are pro-
cessed by an MCI and transformed into movement com-
mands intended to modulate the behaviour of a powered 
actuator, i.e. a robotic replacement limb. The proto-
typical system [3] designed to this end utilizes a sparse 
setup of surface EMG (sEMG) electrodes which meas-
ure the activities of a single antagonistic muscle pair 
located superficially in the residual limb of the ampu-
tee. The difference in some measure of intensity (e.g. 
signal magnitude) between the sEMG signals from the 
pair can thereafter be mapped directly to the force driv-
ing a single motorized degree of freedom (DoF) which 
is typically instantiated as the grasp aperture of a hand-
replacing gripper. Within this framework, the additional 
DoFs possessed by multifunctional prostheses (which 
have recently become more available to hand- and arm 
amputees [4]) must be controlled sequentially by use of 
auxiliary protocols, e.g. based on co-contraction [5] or 
non-EMG inputs [6], for DoF switching. The enduring 
preponderance of this direct control framework can be 
understood in light of the robustness brought about by 
the relative simplicity of the relevant hard- and software, 
as well as the ease with which the intensity of contraction 
of a single muscle group can be controlled volitionally. 
However, disadvantages such as limited dexterity, lack 
of intuitiveness, and an associated cognitive burden have 
been observed among users [7]; these are thought to be 
among the main reasons for the high abandonment rates 
by which devices controlled in this way are afflicted [8].

The divide that separates the direct control paradigm 
from advances seen in mechatronics has for a time 
spurred research into potential alternatives. A notewor-
thy candidate to this end is the use of myoelectric pattern 
recognition [9–11]—a class of methods which formu-
lates the control problem as one of supervised machine 
learning. Within this framework, example segments X 
of a multichannel sEMG time series (typically acquired 
from the forearm) or more information-dense features 
[12] of the same, are, together with encodings of co-
occurring movements y , fed to a machine learning algo-
rithm which generates a computable function fθ . This 
learned function represents an approximate mapping 
between sEMG and movement and is typically derived 
by selecting the free parameters θ such that fθ minimizes 
some loss metric 

∑
t L(yt , ŷt , θ) , where X t and yt are the 

sEMG segment and (a numeric encoding of ) the concur-
rent movement, respectively, at time t, and ŷt = fθ (X t) 
is (a numeric encoding of ) the inferred movement. Fol-
lowing such initial calibration, fθ can be used to process 

previously unseen segments by recognizing movement-
specific sEMG patterns; an MCI based on pattern rec-
ognition can thus be understood as a form of gesture 
recognition system.

The contemporary engineering research literature 
shows no signs of scarcity when surveyed for approaches 
based on pattern recognition aiming to accommodate 
the mechanical sophistication of available robotic limbs. 
Algorithms from the broader machine learning discipline 
such as linear discriminant analysis [13]; support vector 
machines [14]; hidden Markov models [15]; and deci-
sion trees/random forests [16] have, among several oth-
ers, been applied for this purpose; such methods have 
at times reached impressive classification accuracies of 
more than 95% for movement class sets with cardinali-
ties exceeding 10 [17]. As in most other technical pur-
suits in which statistical inference plays a part, Deep 
Learning [18] in the form of, for example, convolutional 
neural networks (e.g. [19–23]) and recurrent neural net-
works (e.g. [24, 25]), has recently found widespread use 
in myoelectric control research [26] and has frequently 
attained exceptional accuracy scores. Unlike their ‘classi-
cal’ machine learning counterparts, such methods avert 
the need for manual feature engineering via their ability 
to gainfully operate directly on raw sEMG, but are often 
hampered by a need for time-consuming hyperparameter 
tuning; large datasets; and/or requirement on computa-
tional resources infeasible for embedded systems [27].

Independent of the minutiae of any specific algorithm, 
the improvements over the industrial and clinical sta-
tus quo made possible by pattern recognition are quite 
apparent. Importantly, use of pattern recognition is con-
gruent with complete naturalness of control: The task of 
mapping a detected movement attempt to a movement 
command corresponding to the very same movement 
is trivial, thus enabling an intuitive form of steering. 
Similarly, multiarticulate control can be realized either 
implicitly, by detecting separate multiarticulate move-
ments and/or grasps as individual classes, or explicitly, 
by detecting each DoF separately using multi-output ver-
sions of pattern recognition [22, 28–30]. In spite of such 
alluring promises, the fact remains that remarkably few 
implementations of pattern recognition have so far been 
deployed at scale in the daily life of amputees [31].

Conjecturally, one of the main obstacles separating 
myoelectric pattern recognition from widespread adop-
tion within prosthetics relates to the phenomenon of 
drift in the data-generating distribution P(X |y) from 
which sEMG is sampled [32]. Stated succinctly, the sta-
tistical relationship connecting measured myoelectric 
activity X to movement y is not necessarily identical to 
the relationship which was valid at the time of calibration 
data acquisition, making the problem a specific instance 
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of model overfitting. Variations in electrode positions; 
skin conductivity; limb placement and load; and fatigue 
are all examples of mechanisms which modulate the 
characteristics of the acquired sEMG [32], making the 
learned mapping fθ (X) = ŷ obsolete and thus degrad-
ing MCI performance over time [33]. Drift of this kind 
has in the past been mitigated either by including calibra-
tion data from a varied set of recording circumstances 
(although this approach has limitations regarding scala-
bility [10]) or by using adaptive control strategies [34]. As 
will be argued in this paper, a complementary strategy is 
to develop methods which yield more generalizable map-
pings from sEMG to movement via regularization.

In addition to problems of robustness and stability of 
the aforementioned kind, one drawback of straightfor-
wardly applying pattern recognition relates to propor-
tionality of control. To make effective use of a prosthesis 
it is practical, and perhaps even necessary, to be able to 
not only transmit what movement to perform, but also to 
transmit information of the desired force and velocity—
a capability not granted by basic pattern recognition. A 
naïve solution is to reformulate the classification problem 
as one of direct regression (of kinetics and/or kinemat-
ics), as is certainly notionally consistent [35]. However, at 
some point this requires ground truth measurements of 
relevant regressands, which in principle are impossible 
to acquire from prosthesis users. One way to circumvent 
this anatomical limitation has been the use of mirrored 
training [36], where sEMG from the amputation stump, 
collected during mediolaterally mirrored movements, is 
used to infer the kinematics of the contralateral, intact 
limb. Regression has also been realized by using continu-
ous visual movement instruction stimuli as regressand 
[21], which requires the subject to manually vary the 
intensity of muscle contraction during acquisition of cali-
bration data. Regardless of method, proportional inter-
faces have been observed to lead to higher levels of user 
adaptation [37], potentially due to their greater resem-
blance to natural motor control.

An alternative way of extending myoelectric pattern 
recognition into the continuous domain, that does not 
require continuous target measurements, is to leverage 
the fact that aggregated sEMG activity can be modulated 
volitionally, and thusly estimate movement class and 
intensity of contraction separately. This approach, which 
has been applied both in previous laboratory studies (e.g. 
[38–40]) and commercially [41], use a classifier to deter-
mine what gesture is to be performed. Following classi-
fication, the detected gesture is performed with velocity 
directly proportional to either (I) the concurrently esti-
mated force of contraction (with e.g. instantaneous 
sEMG magnitude as proxy), or to (II) some monoto-
nously increasing function thereof. Such functions can be 

tuned automatically and independently for each detect-
able movement, thereby accounting for systematic dif-
ferences in intensity between movement classes [40]. 
Albeit uncomplicated and demonstrably effective, these 
strategies can be understood as problematic for a num-
ber of reasons. Firstly, there is no guarantee that the pat-
tern associations learned during model calibration will 
be generalizable to all intensities of contraction [10], 
and thus some sEMG patterns might inadvertently be 
classified as patterns cooccurring with other movement 
classes. Such mistakes can plausibly lead to an MCI out-
put perceived as erratic by the user. Secondly, propor-
tionality mediated in this way is not simultaneous over all 
available DoFs, as only a single dimension of proportional 
information (i.e. the globally estimated intensity of myoe-
lectric activity) is available.

In addition to developments in pattern recognition, 
studies of methods which are not directly based on 
regression or classification have demonstrated the poten-
tial of several alternative paths towards natural, simulta-
neous, and proportional myoelectric control. Multisite 
intramuscular EMG (iEMG), which can measure motor 
unit action potentials directly [42], has been investigated 
as a mechanism for direct control, and has furthermore 
been shown to possess functional advantages when com-
pared to proportional pattern recognition [43]. Weakly 
supervised autoencoding has shown promising results in 
unlabelled separation of underlying sEMG signal compo-
nents which can be mapped to kinematics directly [44]. 
Nonnegative matrix factorization has been used [45] to 
extract multiple simultaneous DoFs separately from rec-
tified and filtered sEMG while retaining their respective 
proportionalities. Techniques for deconvoluting high-
density sEMG based on models informed by neuromus-
cular physiology have successfully been applied towards 
the same end [46]. Although at the cutting edge of elec-
trophysiology, such approaches have, possibly due to 
advanced modes of signal acquisition, so far mostly been 
constrained to the laboratory environment.

In order to aid in the pursuit of practical MCIs and to 
alleviate the limitations of available methods, this paper 
introduces a new set of methods aimed at achieving intui-
tive, proportional, and simultaneous myoelectric control. 
Concretely, the framework is constituted by a computa-
tionally lightweight neural network topology with a com-
patible optimization procedure, all described in detail in 
the Methods section. In contrast to previous frameworks 
based on pattern recognition, the proposed combination 
of techniques operates to learn nonlinear mappings from 
forearm sEMG to continuous and multivariate encodings 
of hand- and wrist kinematics, despite only being cali-
brated with sEMG signals labelled with categorical move-
ment instruction stimuli. This affords the framework the 
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advantage of regression-based approaches (i.e. propor-
tionality) but requiring neither kinematic ground truth 
data nor complicated recording protocols. Additionally, 
by incorporating a multi-task learning formulation of 
the kinematic inference problem, the framework implic-
itly allows for independent and simultaneous control of 
all considered DoFs. Due to its reliance on signal repre-
sentations [47] arising from supervised learning with 
regularizing constraints, the novel framework is referred 
to as myoelectric representation learning (MRL). To 
demonstrate the viability of MRL and to quantify differ-
ences in performance compared to the current commer-
cial standard for pattern recognition, this paper includes 
experiments in which test subjects were tested for effi-
cacy of control when using (I) MRL, and (II) pattern rec-
ognition as represented by linear discriminant analysis 
(LDA) [40], to perform a virtual Fitts’s law [48] type test. 
Furthermore, to quantify temporal deterioration of myo-
control quality, the performances of both methods were 
reassessed after 7 days of intermission. Interestingly, dis-
tributed representations learned by the MRL model seem 
insensitive to small drifts in the data-generating distribu-
tion over time, leading to a stable interface across the two 
usage sessions.

Methods
Myoelectric representation learning
In accordance with existing pattern recognition frame-
works for myoelectric control via supervised learning, 
the proposed MRL system operates in two modes: cali-
bration and inference. During calibration, an adaptive 
model is trained to approximate a mapping from sEMG 
to concurrent movement intent. During inference, the 
calibrated model is used to regress kinematics from pre-
viously unseen sEMG samples in real-time. Just as is the 
case with many earlier myoelectric decoding systems, the 
MRL system comprises a preprocessing step followed 
by a multi-layered feedforward artificial neural network 
(ANN) model. To adapt the model to the task at hand, 
the system requires user-specific calibration data in the 
form of:

1	 X cal =
[
xcal1 , · · · , xcalt , · · · , xcalT

]
 , where xcalt ∈ FI

b are 
raw sEMG voltages at time t, Fb is the set of all float-
ing-point numbers representable by b bits, I is the 
number of sEMG channels, and T  is the number of 
calibration samples.

2	 Y cal =
[
ycal1 , · · · , ycalt , · · · , ycalT

]
 , where 

ycalt ∈ {−1, 0, 1}J is a ternary DoF-wise categorical 
encoding of the movement intent of the subject at 

time t , and J  is the number of DoFs which the system 
is intended to control.

Following calibration, the system can infer DoF-wise 
continuous output ŷ ∈ F

J
b , corresponding to concur-

rent kinematics, from any time slice x ∈ FI
b of a provided 

sEMG time series. During inference time, the system 
provides an output control signal with update rate identi-
cal to that with which the input sEMG is provided.

Two principal modifications distinguish the proper-
ties of the ANN models employed here from those of 
previous applications of Deep Learning for the purpose 
of decoding myoelectric signals. The first modification, 
to which the network topology itself is subject, can be 
viewed through the prism of hard parameter sharing as 
known from the literature on multitask learning [49]. 
This modification, which is elaborated upon in the sec-
tion titled ‘Neural Network Topology’, is the basis for the 
simultaneity of control enabled by calibrated models. 
The second modification, which involves the optimiza-
tion procedure and the appertaining loss function which 
selects the free parameters of any instantiation of the 
topology, can be viewed through the prism of contractive 
regularization, as known from the study of deep autoen-
coders [50]. This technique, which has been reformulated 
for the intended purpose and is presented in the section 
titled ‘Calibration’, allows for proportionality of control 
when deploying calibrated models.

Preprocessing
Prior to instantiation and optimization of the neural 
model, the raw I-channel sEMG signals X cal ∈ FI×T

b  of 
the calibration data set is subject to envelope extraction, 
rescaling, clipping, and nonlinear transformation: Ini-
tially, channel-wise signal envelopes are extracted from 
X cal by full-wave rectification and digital LTI lowpass fil-
tering with a gain-free causal FIR filter (moving average) 
with length W samples. The resulting (unbounded and 
nonnegative) envelopes Eu ∈ FI×T

b  are thereafter linearly 
rescaled elementwise via (1).

Here, p1%i  and p99%i  are the 1st and 99th percentile, 
respectively, of the recorded voltages of the i th sEMG 
channel envelope across all T  samples of Eu . The result-
ing rescaled signals Er ∈ FI×T

b  are subject to clipping and 
transformed by the element-wise square root operator as 
shown in (2).

(1)Er
i,l ←

Eu
i,l − p1%i

p99%i − p1%i

(2)Ecal
i,l ←

√
max(0,min(1,Er

i,l))
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These steps: (I) ensure that all elements of the obtained 
matrix Ecal =

[
ecal1 · · · ecalt · · · ecalT

]
∈ FI×T

b  (which are to 
be used as ANN inputs) are constrained to the interval 
[0,1]; (II) mitigate the influence of outlier samples in X cal ; 
and (III) provide implicit threshold values under which 
the envelopes are taken to equal zero. The square root 
operator is included to bias resolution towards high lev-
els of muscle contraction by smoothing variations in sig-
nal envelopes at values close to the observed maximum. 
Due to the lack of time shifts introduced in the process of 
generating Ecal from X cal , the columns (i.e. time points) 
of the ground truth movement intent matrix Y cal are syn-
chronous with those of Ecal.

When the MRL system operates in inference mode, 
acquired sEMG samples are processed in an identical 
manner by utilizing online filtering and rescaling with the 
calibration data statistics p1% =

[
p1%1 , · · · , p1%i , · · · , p1%I

]
 

and p99% =
[
p99%1 , · · · , p99%i , · · · , p99%I

]
 as per Eqs.  (1) 

and (2).

Neural network topology
A network topology of the kind described in this sec-
tion is depicted in Fig.  1. The ANN model takes as 

input an sEMG envelope time slice e = [e1 · · · ei · · · eI ]T , 
obtained as described above, and provides a numeric 
representation of inferred concurrent kinematics 
f (e) = ŷ ∈

[
ŷ1 · · · ŷj · · · ŷJ

]T as output. Although the 
ANN models of the current study are instantiated and 
calibrated end-to-end (as will be described in the next 
section), the mappings they represent can naturally be 
understood as processes constituted by two elements in 
succession: encoding followed by decoding. Initially, e is 
mapped to the input layer which in turn is fed through 
N  blocks, the sequence of which constitute the encoder 
network said to be performing the function H(·) . (The 
depth N  of the decoder network is a hyperparameter to 
be selected prior to network instantiation.) Internally, 
each such encoder block is constituted by a fully con-
nected layer [18] followed by a leaky rectifier linear unit 
(ReLU) activation layer [51], whose output in turn is sub-
ject to layer normalization [52] without learnable param-
eters. The numbers of output neurons of the first fully 
connected block of the encoder network is here set to 
equal 2K  , where K ≥ N  is a model hyperparameter. The 
number of output neurons for each consecutive encoder 
block is set to equal half of that of its predecessor, and the 
number of output neurons at the last encoder block thus 

Fig. 1  Schematic overview of the regression feedforward neural network topology central to the MRL framework. A time slice e of the signal 
envelopes of I -channel sEMG at time t  is fed through an encoder network, constituted by N fully connected blocks, which transforms e into 
an alternative representation, i.e. code, h . A set of J decoder networks, each constituted by a single hidden block, decode this representation to 
independently estimate the activations of J DoFs, interpreted collectively as the proportional and simultaneous output command ŷ  corresponding 
to the movement intent of the user at time t
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equals 2K−N+1 . This output of this last encoder block, 
referred to as the code H(e) = h ∈ FK−N+1

b  , is subse-
quently fed into a set of parallel decoder sub-networks, 
collectively said to be performing the function D(·) . 
These decoder sub-network, each associated with one 
of the J  decodable DoFs, are constituted by a single fully 
connected hidden block (again incorporating leaky ReLU 
activations and parameter-free layer normalization) of 
output size 2S ( S being a hyperparameter) and a termi-
nal fully connected layer with one output neuron with 
linear activation function. The resulting concatenation 
of values {ŷ1, . . . , ŷJ } , each of which is the output of one 
of the decoder networks, constitute the network output, 
i.e. f (e) = D(H(e)) = D(h) = ŷ =

[
ŷ1, · · · , ŷj , · · · , ŷJ

]T , 
where ŷj is to be interpreted as the inferred ‘intensity’ of 
movement intent for the j th kinematic output DoF.

In previous work aimed at achieving simultaneous (i.e. 
multi-DoF) myoelectric control via the use of regression 
ANNs, a distinction is sometimes made between the use 
of shared models and dedicated models [36, 45]. Shared 
models here refer to a type of network where each DoF to 
be inferred is represented as a single neuron in the out-
put layer. Dedicated models, in contrast, use one sepa-
rate network per DoF, each with a single output neuron. 
Within this framework, it has typically been found that 
dedicated models outperform shared models in tasks of 
multivariate kinematic regression [53]. The novel ANN 
topology used in the current study can be construed as a 
hybrid between these two extremes: The encoder H(·) is 
shared between the DoFs and the decoder D(·) is formed 
by dedicated branch networks.

Use of an initial shared network followed by multiple 
task-specific subnetworks, sometimes referred to as hard 
parameter sharing [49], has previously been studied in 
the context of multitask learning, where the simultane-
ous estimation of multiple related target variables often 
results in better performance for all estimations individu-
ally [54]. It is thus hypothesised that the alternative pre-
sented here is an improvement over the dedicated model 
approach: The encoder can learn to transform sEMG into 
a more useful signal representation h for the purpose of 
decoding all DoFs, while at the same time allowing for 
the advantages of using dedicated subnetworks to infer 
the activation strengths of all DoFs separately.

Calibration
The calibration of the MRL neural network topology pre-
viously presented, i.e. the tuning of model parameters 
(weights W  and biases b ) for a given user of the system, 
is specified by two components: (I) a differentiable loss 
metric L = L(Ecal ,Y cal , θ) , where θ = {W , b} is the com-
plete set of free model parameters, and (II) an iterative, 

gradient descent procedure for its minimization with 
respect to the parameter values constituting θ.

The loss metric L , which is to be minimized, is given 
below in (3) and is defined as a weighted sum of the two 
loss functions Li and Lc.

The value of αc ∈ Fb is a hyperparameter representing 
the relative weighting of the two sources of error. The 
first term Li in the definition above is referred to as the 
inference loss and is given in (4).

Here � · �1 denotes the L1 vector norm, i.e. 
�v�1 =

∑
i|vi| . This loss term, which is functionally 

identical to DoF-wise mean absolute error, quanti-
fies the discrepancy between ground truth movement 
intent ycalt  and the corresponding value ŷt = G(H(ecalt )) 
inferred by the ANN model, averaged across all cali-
bration example instances. Importantly, in contrast to 
the more commonly used mean square error of linear 
regression fame, Li penalizes DoF-wise distance from 
estimate to target linearly. When deployed in conjunc-
tion with the topology presented above, Li can addi-
tionally be understood as a form of regularization in 
and of itself: In order to achieve a low value of Li , the 
model needs to accurately infer the activation of all J  
DoFs simultaneously. As has been observed for multi-
task learning models in general [54], multiple related 
sub-tasks of this kind impose regularizing constraints 
onto each other, impacting which kinds of data repre-
sentations are likely to arise throughout the network 
and leading to a synergistic effect whereby the perfor-
mance on every sub-task (i.e. the estimation quality for 
every individual DoF) is expected to improve.

Albeit clearly a necessary condition for desirable 
model behaviour, a low value of Li is not a sufficient 
goal of the optimization procedure in the context of 
kinematic estimation. To realize this fact, one can con-
sider the case of a model which has learned to infer 
only categorical output (i.e. ŷ ∈ {−1, 0, 1}J  ) that per-
fectly matches the provided categorical targets in Y cal 
(e.g. the model in Fig.  2b). Furthermore, assume this 
model performs well only with input sEMG envelopes 
generated at intensities of muscle contraction identical 
to those employed during the collection of the calibra-
tion data Ecal . Such a model, although clearly deficient 
for the task at hand, would achieve very low values of 
Li . To generate calibrated models which in addition 
enable the previously stated goal of proportionality of 
control, as well as achieve adequate performance with 

(3)L = Li + αcLc

(4)Li

(
Ecal ,Y cal , θ

)
=

1

T

T∑

t

�ycalt − ŷt�1
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previously unobserved contraction intensities, the total 
loss function contains a second, regularizing term, 
referred to as the contractive loss, denoted by Lc , and 
defined in (5).

Lc here represents the squared gradient of every indi-
vidual output element ŷj with regard to every individual 
input element ei , computed at the value generated from 
the presented inputs (i.e. the columns of Ecal ) and aver-
aged across all such provided calibration examples. 
Stated equivalently, Lc is Frobenius norm of the Jaco-
bian matrix of the multivariate function performed by 
(the current parameter configuration of ) the network 
[18], averaged across all calibration example instances 
{ecalt , ycalt } , t ∈ [1,T ].

(5)Lc(E
cal , θ) =

1

TIJ

T∑

t

I∑

i

J∑

j

(
∂ ŷj

∂ei

∣∣∣∣
ei=Ecal

t ,i

)2

To understand the consequences of a minimized value 
of Lc , it is important to note that the mapping performed 
by any ANN model with fully differentiable activation 
functions (i.e. compatible with backpropagation) is, by 
definition, continuous in the mathematical sense [18]. 
However, without any constraints, such a model may still 
learn parameter values θ such that the gradient ∂ ŷj/∂ei of 
any element ŷj in the output with regard to any element 
ei in the input becomes arbitrarily large at any number of 
points in the space of possible inputs. To counteract this 
sometimes unwanted property by ‘incentivizing’ models 
to learn to associate limited deviations in input with only 
limited deviation in output, contractive loss of the same 
formulation as that of (5) has previously been applied as a 
form of regularization for the class of unsupervised neu-
ral network models known as contractive autoencoders 
[50].

The postulated relevance of Lc in the current problem 
formulation lies in the common assumption that mus-
cle kinetics, and by extension limb kinematics, correlate 

Fig. 2  The effect of contractive regularization on proportionality of control. The effect is illustrated by a simplified example with univariate regressor 
e = e and regressand y = y . a Plot of calibration data, simulating movement onset, constituted by the sEMG envelope ecalt  with I = 1 channel 
(upper blue) and the concurrent movement instruction ycalt  with J = 1 DoF (lower red). b Plot of the learned mapping ŷ = f1(e, θ) performed by 
an MRL network calibrated by minimizing Li with respect to θ . This model approximates a categorical decision threshold and does not enable 
proportionality. c Plot of the learned mapping ŷ = f2(e, θ) performed by an MRL network calibrated by instead minimizing Li + αcLc with respect 
to θ . This model produces output which varies smoothly with latent muscle activity and thus enables proportionality
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(nonlinearly) with the concurrent signal envelope as 
extracted from sEMG collected at relevant recording sites 
[40]. Formulated in the MRL framework, this assumption 
can be stated differently: increases or decreases of the 
values constituting ŷ should only occur in conjunction 
with, and (approximately) monotonically with, increases 
and decreases, respectively, of the values constituting e . 
A network with this property will both give rise to pro-
portionality of control output and achieve a small value 
for Lc , thereby warranting the inclusion of this loss term 
here. A specific example illustrating how minimizing Lc 
induces proportionality can be viewed in Fig. 2.

With the total loss L established as above, its minimi-
zation with respect to θ is performed iteratively via error 
backpropagation and the AdamW algorithm [55] (requir-
ing hyperparameters η , β1 , β2 , and weight decay � ) for 
gradient descent in minibatches of size B (a hyperparam-
eter). The minibatch affiliation of each individual calibra-
tion example {ecalt , ycalt } is determined randomly at the 
start of every training epoch. All network weights W  are 
initialized randomly via Glorot initialization [56] and all 
biases b are initially set to 0.

Prior to being fed into the ANN model for loss evalua-
tion and parameter updating, the input sEMG envelope 
time slices of each minibatch is at every iteration cor-
rupted additively with isotropic white Gaussian noise of 
predefined variance σ 2 (a hyperparameter). This step, 
inspired by its analogue in denoising autoencoders [57], 
has a twofold purpose: Firstly, it acts as a form of data 
augmentation, whereby the model overfitting to spuri-
ous patterns in the calibration data is made more unlikely 
[18]. Secondly, an ANN model calibrated with such input 
data will learn to map elements close to each other in 
the space of possible inputs e to elements close to each 
other in the space of possible outputs y [57]. In conjunc-
tion with the minimization of the contractive loss Lc , 
this effect contributes to calibrated models which has the 
here desired property of proportionality.

Before the calibration process begins, a percentage 
P (a hyperparameter) of the available calibration data 
{Ecal ,Y cal} is sampled randomly, without replacement, 
to be held out and used as validation data {Eval ,Y val} . 
At the conclusion of every Adam update iteration, this 
validation data is used to compute a validation error 
Lv = L(Eval ,Y val , θ) of the model parameter configu-
ration θ at that iteration. The optimization process con-
tinues until Lv is greater than that obtained V  iterations 
previously (i.e. a form of early stopping) or until a total 
of M parameter update iterations have been performed, 
whichever comes first ( M and V  are hyperparameters). 
At this point, the model is considered calibrated and can 
be used for real-time inference of continuously encoded 
movement intent (i.e. kinematics).

Benchmark myoelectric pattern recognition framework
For the purpose of verifying the conjectured advan-
tages of using MRL for myoelectric control, a propor-
tional myocontrol pattern recognition method based on 
LDA is here chosen as the object of comparison due to 
its paradigmatic role in contemporary and commercially 
available prosthetic systems [41]. Implementation details 
and hyperparameter values are selected to be identical to 
those of Method 2 introduced by Scheme et  al. in [40], 
as this approach, like MRL, only requires sEMG col-
lected at a single level of muscle contraction for calibra-
tion. Furthermore, the selected method has been used 
in clinical settings for some time and thus represents a 
reliable application of pattern recognition for myoelec-
tric control. For brevity, the method for motion-normal-
ized proportional control denoted Method 2 in [40] will 
in its entirety henceforth be referred to simply as LDA. 
Importantly, LDA does not require any manual tuning of 
parameters (e.g. gains and thresholds), thus eliminating 
the risk that the experiment supervisor impacts the qual-
ity of the calibration results in the current study. A brief 
summary of this method is provided below.

In contrast to MRL, LDA does not operate on sEMG 
envelopes alone; instead, a sliding window is used to 
extract 4 time-domain features per channel from the 
raw sEMG signals: Mean Absolute Value (MAV), Zero 
Crossings, Slope Sign Changes, and Waveform Length, 
all introduced by Hudgins et  al. in [12]. As LDA is not 
inherently simultaneous over the available DoFs, each 
detectable movement combination is instead assigned a 
unique categorical value to be inferred in order to allow 
for multiarticulate control. For a problem formulation 
involving J independently controllable, bidirectional 
DoFs, LDA thus operates to map each processed feature 
time window to a member of the set of 3J possible move-
ment classes (each bidirectional and categorical DoF can 
independently assume 3 mutually exclusive states). LDA 
achieves proportionality by computing a proportionality 
scalar PCm , contingent on the index m ∈

[
0, 3J − 1

]
 of the 

currently inferred movement class, to each feature win-
dow. PCm is computed in parallel with the running clas-
sification process by use of the MAV feature as detailed 
in (6), (7), and (8).

(6)PCm =

(
1

Cm

I∑

i=1

Si,mMAVi

)2

(7)Cm =
I∑

i=1

Si,m
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MAVi is the MAV feature value of the i th sEMG chan-
nel of the processed window,MAVcal

i,m,k is the MAV fea-
ture value of the i th sEMG channel of the k th feature 
window of the m th movement of the calibration data, 
and Km is the total number of calibration data feature 
windows for movement m . As before, I is the number of 
sEMG channels. The training of the classification algo-
rithm, together with the computation of the class centres 
C = [C1 · · ·Cm · · ·CM] and of the matrix S = {Si,m} , con-
stitute the entirety of the LDA calibration which is per-
formed on a subject-wise basis.

Experiments
Subjects
20 able-bodied subjects (age range 24–58 years, median 
age 32 years, 13 male, 7 female, 18 right-handed, 2 left-
handed) without history of known neuromuscular or 
musculoskeletal disorders participated in the current 
study. The study was approved by the Regional Ethics 

(8)Si,m =
1

Km

Km∑

k=1

MAVcal
i,m,k

Review Board in Lund, Sweden and was conducted in 
accordance with the tenets of the Declaration of Helsinki. 
All subjects were informed about the contents of the 
experiments, both verbally and in writing, and gave their 
informed and written consent.

Each subject participated in two separate experiment 
sessions: the first session, hereinafter referred to as day 
1, consisted of both calibration data acquisition, model 
calibration, and evaluation of the two methods (MRL and 
LDA) for myoelectric control. This first session lasted for 
a total duration of 1 h or less, with some variations across 
subjects. The second session, carried out one week later 
and hereinafter referred to as day 7, entailed evaluation 
of both methods without any recalibration (in order to 
quantify interface stability) and thus lasted for a shorter 
duration (approximately 30  min). None of the subjects 
had prior experience with the studied myoelectric con-
trol methods.

Calibration data acquisition
A Myo armband (Thalmic Labs, Canada), composed 
of 8 circularly arranged dry surface electrodes of size 
100 mm2, was used to acquire sEMG time series from 

Fig. 3  The acquisition setup. Photographs depict a the Myo armband used for recording sEMG signals and b the placement of the Myo armband 
on the arm of a subject
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subjects (see Fig. 3a). Prior to A/D conversion, EMG volt-
age signals were filtered using a built-in analogue band-
pass filter with passband 5–100  Hz and a 50  Hz notch 
filter. Digital signals were sampled with 8-bit precision at 
a rate of Fs = 200 Hz and transferred at that same rate to 
a host desktop computer (on which all signal processing 
was performed) wirelessly via Bluetooth. The Myo arm-
band was placed enclosing the dominant forearm of the 
subject at a level approximately 1/3 of the distance from 
the elbow joint to the wrist joint (see Fig. 3b). A photo-
graph depicting the armband position and orientation 
was taken on day 1 in order to provide guidance for the 
redonning on day 7. The process of donning the armband 
could always be completed in a time of at most one min-
ute. Following the placement of the armband, the subject 
was seated comfortably at approximately 1 m distance 
from a computer screen with the elbow resting on a table 
placed in front of the subject. The subjects could freely 
vary the position and angle of the elbow joint during all 
parts of the experiment.

The current study concerned the independent control 
of 2 separate DoFs: flexion and extension of the wrist 
(communicated to subjects as ‘wrist right’ and ‘wrist left’, 
contingent on the handedness of the subject), and flexion 
and extension of all digits simultaneously (communicated 
to subjects as ‘hand close’ and ‘hand open’, respectively). 
A ternary movement encoding approach was employed 
in the current study, resulting in 32 = 9 possible com-
pound movements (listed in Table 1).

Prior to calibration data acquisitions, sEMG was 
recorded while the subject performed all movements, 
excluding rest, with maximum voluntary contraction 
for 5  s. This step served to familiarize the subject with 
the movement combinations under consideration and 

was used to compute a maximum voluntary contraction 
(MVC) signal magnitude value specific to each move-
ment by summing the MAV over all 8 sEMG channels.

Calibration data was recorded via an automated acqui-
sition program which prompted the subject to perform 
all nonrest movements for 3 repetitions, each lasting for 
a duration of 5 s and separated by 3 s of rest. To aid the 
subject in applying a sustainable and consistent level of 
contraction across movements, the MAV of the EMG 
signal, extracted via a sliding window of length 0.5 s and 
summed over all channels, was mapped to the height of a 
bar shown in real-time on the computer screen together 
with a threshold set to equal 50% of the movement-spe-
cific MVC magnitude computed earlier; subjects were 
instructed to keep the height of the bar as close to the 
threshold as possible. Once the program was concluded, 
recorded sEMG was saved together with synchronized 
movement instruction stimuli signals. An example of 
such calibration data from a single subject is shown in 
Fig. 4.

Calibration of models
The MRL model and the LDA model described previously 
were both automatically calibrated immediately following 
the conclusion of the data acquisition phase. The meth-
ods were executed with Python 3.6, using the SKLearn 
library [58] to implement the LDA model and the Ten-
sorFlow [59] library to implement the MRL model. No 
part of the calibration of either method required any 
manual intervention by the experiment supervisor.

The hyperparameter of the MRL framework had been 
selected empirically based on data from pilot work with 
subjects who were not participating in the current study 
and were not subject to change for the duration of the 
experiments; exact numerical values are presented in 
Table 2. Analysis of the ANN topology resulting from this 
configuration using the computational cost estimation 
heuristics from [27] revealed an approximate inference-
mode time complexity of 5.5 MFLOPS (at 200 forward 
passes per second, i.e. synchronously with sEMG sam-
pling) and a memory footprint of 59.5 kB (excluding the 
computational cost of preprocessing); these are require-
ments compatible with contemporary embedded systems. 
Furthermore, the use of a preprocessing filter length of 
W = 0.5 s (100 samples at Fs = 200 Hz) corresponds to 
a group delay (i.e. lag) of (100− 1)/(2Fs) = 0.2475 s for a 
FIR filter [60]—less than the typically desired maximum 
delay of 300 ms in myocontrol applications [61].

Calibration of the MRL model was performed accord-
ing to the procedures outlined previously in the section 
titled ‘Calibration’. The average (across subjects) wall time 
required to calibrate a single MRL model with data col-
lected from a single subject on the desktop computer 

Table 1  The calibration movements for  right-handed 
subjects, all recorded on day 1

Movement class Description Ternary 
movement 
encoding

m = 0 Rest y = [0, 0]
m = 1 Wrist flexion y = [−1, 0]
m = 2 Wrist extension y = [1, 0]
m = 3 Flexion of the digits y = [0,−1]
m = 4 Extension of the digits y = [0, 1]
m = 5 Wrist flexion and Flexion of the digits y = [−1,−1]
m = 6 Wrist flexion and extension of the 

digits
y = [−1, 1]

m = 7 Wrist extension and flexion of the 
digits

y = [1,−1]

m = 8 Wrist extension and extension of the 
digits

y = [1, 1]
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(equipped with a Nvidia Titan V GPU) was measured as 
97.96  s (SD 0.43  s). An illustration of the mapping per-
formed by a calibrated MRL model is presented in Fig. 5.

LDA was calibrated as per the specifications of the pre-
viously summarized original study [40], with hyperpa-
rameter values as those of the same study, using a feature 
window of duration 160 ms (32 samples) and inter-win-
dow time increments of 15  ms (3 samples). The feature 
window was moved across the entirety of each collected 
EMG without regard to when individual movement rep-
etitions started and ended. All 8 · 4 = 32 features were 
individually renormalized to have zero mean and unit 
variance across all calibration data feature window loca-
tions. During real-time inference, features were similarly 
rescaled with the calibration set means and variances 
prior to being processed by the classifier. The ground 
truth movement class m of each calibration data fea-
ture window was determined via a majority vote over its 
constituent time samples, thereby resolving ambiguities 
regarding the class affiliation of feature windows contain-
ing a shift in contraction level. The average (across sub-
jects) wall time required to calibrate the LDA model to a 
single subject was measured as 1.31 s (SD 0.09 s).

Fig. 4  Calibration signals acquired from a representative, right-handed subject. The calibration data is constituted by raw sEMG ( X cal ) and trinary 
( −1 , 0 , or 1 ) DoF- and sample-wise encodings of concurrent movement instruction stimuli ( Y cal ). a Wrist flexion. b Wrist extension. c Flexion of the 
digits. d Extension of the digits e Wrist flexion and flexion of the digits. f Wrist flexion and extension of the digits. g Wrist extension and flexion of the 
digits. h Wrist extension and extension of the digits

Table 2  The hyperparameters of  the  MRL framework 
and their respective values selected for the current study

Hyperparameter Symbol Value

Floating point precision b 32 bits

Number of sEMG channels I 8

Number of decodable DoFs J 2

Envelope extraction filter length W 0.5 s

Size of first encoder layer 2
K 128

Encoder network depth N 5

Code size 2
K−N+1 8

Decoders hidden layer size 2
S 32

Contractive loss weigh αc 10
−2

Adam hyperparameters η 10
−4

β1 0.9

β2 0.999

Corruptive noise variance σ 2
10

−1

Weight decay � 10
−6

Minibatch size B 2
12

Validation set percentage P 10%

Validation lookback V 300

Maximum number of iterations M 5000
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Although previous studies (e.g. [33]) have made use 
of the same combination of feature set and acquisitions 
setup as the LDA benchmark framework of the current 
study, concerns can be raised over the appropriateness 
of the selected time-domain features due to the relatively 
limited sampling rate of the system (200  Hz). This, in 
turn, could potentially make comparisons between MRL 
and LDA unbalanced, as the former utilizes high fre-
quency information to a lesser degree than the latter. To 
verify the absence of any such adverse effects on the LDA 
classifier originating from insufficient signal bandwidth, 
10% of calibration examples (selected randomly) were 
for each subject withheld during calibration and used 
to compute a validation accuracy. The average (across 
subjects) validation accuracy obtained in this way was 
92.71% (SD 4.05%). This level of performance is in line 
with what is expected in light of previous studies with 
comparable number of detectable movement classes [10], 
indicating that the acquisition setup provided sufficient 
information for the selected feature set and classifier.

Evaluation
Common offline measures of inferential performance 
(e.g. classification accuracy) have often been found to 
exhibit only limited correlation with the quality of myoe-
lectric control as estimated by functional tests [10]. 
Efficacy of control was for this reason here instead evalu-
ated using a type of real-time test originally introduced 
by Williams and Kirsch in [62] and based on Fitts’s law 
[48]. The test makes use of a human test subject to lever-
age the myoelectric control method under investigation 
to steer a cursor towards a set of circular targets pre-
sented to the subject on a computer screen. The subject 
and the control method are thereafter evaluated in uni-
son via the calculation of a set of performance metrics; 
each metric aggregated over multiple subjects is assumed 
to constitute an informative measure of control method 
quality. This particular approach to the evaluation of 
man–machine control interfaces has been validated for 
use with control based on forearm myoelectricity multi-
ple times (e.g. [38, 44]).

In the current study, the performance of each subjects 
with both myoelectric control methods were evaluated 
in sequence. To eliminate confounding effects on meas-
ured performance originating from user adaptation, 10 
subjects were randomly selected to be evaluated using 
MRL first and then using LDA, whereas the remain-
ing 10 subjects were selected to be evaluated using LDA 
first and then using MRL. All subjects were blind to the 
order in which the methods were presented to them. On 
day 1, the evaluation phase was undertaken directly fol-
lowing data acquisition and model calibration, with the 
Myo armband unmoved. On day 7, the evaluation phase 
followed directly after the initial redonning of the Myo 
armband. Evaluative tests were otherwise conducted 
identically on day 1 and on day 7.

The control interface
For both LDA and MRL, detection of wrist flexion and 
wrist extension corresponded to cursor translations left 
and right, respectively, whereas detection of flexion of the 
digits and extension of the digits corresponded to cur-
sor translations down and up, respectively (as shown in 
Fig. 6). For LDA, the direction of cursor translation was 
determined according to the detected movement class, 
with 1-DoF movements leading to cursor translation par-
allel to the screen coordinate axes and 2-DoF movements 
leading to cursor translations parallel to the axes’ diago-
nals. Cursor speed was scaled linearly such that PCm = 0 
(as defined in (6)) resulted in a speed of 0 pixels per sec-
ond and PCm = 1 resulted in a speed of 540 pixels per 
second. Detection of the rest class resulted in a cursor 
speed of 0 pixels per second. For MRL, the velocities of 
the cursor in the x - and y directions were separately set 

Fig. 5  Example of MRL calibration results from a single subject. 
Each point represents the output ŷ =

[
ŷ1, ŷ2

]T  of the calibrated MRL 
model when fed an 8-channel sEMG sample from the calibration 
data, coloured according to the movement instruction stimuli with 
which it cooccurred. Each ‘trail’ connecting the origin to a cluster 
represents the onset and conclusion of a movement repetition
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to equal the first and second element of the ANN-esti-
mated kinematics ŷ , respectively. The cursor speed was 
scaled linearly such that �ŷ�2 = 0 resulted in a speed of 0 
pixels per second and �ŷ�2 = 1 resulted in a speed of 540 
pixels per second. Although MRL in principle allows for 
position control, whereby ŷ are mapped directly to the x - 
and y-coordinates of the cursor, the decision was made 
to consistently use this type of velocity control in order 
to be able to fairly compare results with those obtained 
with LDA.

Acclimation
Prior to evaluation, subjects underwent a brief acclima-
tion exercise to become familiarized with the control 
interface. This preparatory step was intended to mitigate 
the impact of user adaptation during subsequent tests. 
The exercise consisted of steering the cursor towards 8 
targets presented to the subject one at a time; 4 targets 
were placed along the x - and y axes with peripheries 
touching the screen edge, and 4 targets were placed simi-
larly at the ends of the coordinate axes’ diagonals. Once 
each target had been reached 5 times the exercise was 
considered complete. The acclimation exercise, which 
lasted for 3–5 min, was performed prior to the Fitts’s law 
test on day 1 and day 7 for both MRL and LDA.

The performance test
Every combination of 20 possible center coordi-
nates (5 per coordinate system quadrant) and 2 pos-
sible radii were selected as targets for the Fitts’s law 
test, resulting in 20 · 2 = 40 unique targets (all shown 

in Fig.  7). The possible radii were selected as 60 pixels 
and ⌈

√
2 · 60⌉ = 85 pixels on a monitor with resolution 

1920× 1080 pixels, corresponding to circular targets 
covering 0.6% and 1.2% of the total screen area visible to 
the subject, respectively.

In an order established randomly for each subject, tar-
gets were one by one plotted on the screen; the cursor 
was at this time held stationary at the origin. After 3  s 
(selected to minimize the impact of reaction time and 
planning), a vibration cue was given to the user through 
the Myo armband, and the subject was granted control 
of the cursor. The instruction of the subject was at this 
time to move the cursor to the presented target as rap-
idly as possible. As in previous studies [38, 44], the target 
was considered successfully reached once the cursor had 
resided within its boundary for a dwell time of 0.3  s. If 
20 s passed without the subject successfully reaching the 
target, the task was reported as failed. Following success 
or failure, the target was removed from the screen, the 
cursor recentred, and the subject prompted to rest for 
5  s, after which a new target was presented. The proce-
dure was repeated until all 40 targets-reaching tasks had 
been attempted exactly once by the subject.

When all targets had either been successfully reached 
or failed, a set of 5 performance metrics, named com-
pletion rate ( CR ), completion time ( CT ), path efficiency 
( PE ), overshoot ( O ), and throughput ( T ), was calcu-
lated from the cursor trajectories traversed during the 
test. These metrics, defined in [62] and summarized in 
Table 3, characterize separate aspects of the performance 
of the test subject and control method across all targets. 

Fig. 6  Decodable DoFs and corresponding cursor translations in the test environment for a right-handed subject. Gestures incorporating 
combinations of the DoFs allowed for cursor translations in intermediate directions
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To calculate T  , the target-specific index of difficulty ( ID ) 
was defined as in [62] for each of the 40 targets.

D is the Euclidean (straight-line) distance from the ori-
gin to the target and W is the diameter of the target. Each 
of the 40 targets were thus assigned an ID out of 3 · 2 = 6 
possible values (from the 3 values of D and the 2 values 
of W  visible in Fig. 7) ranging from 1.17 bits to 2.38 bits.

The gold standard
Once both myoelectric control methods had been evalu-
ated on day 1, each subject was instructed to complete 
the aforementioned performance test using a regular 
computer mouse. As the computer mouse did not allow 
for vibration stimuli, task onset was instead accompanied 
by a visual trigger presented on the screen. Just as for 
myocontrol evaluation, targets were considered reached 

(9)ID = log2

(
D

W
+ 1

)

after a dwell time of 0.3 s (i.e. no clicking was required) 
and considered failed after 20 s. This step was undertaken 
once per test subject and was not repeated on day 7. The 
same set of 5 performance metrics was calculated from 
the obtained trajectories with the purpose of contrasting 
myocontrol efficacy with that of the arguably best avail-
able tool of contemporary man–machine interfacing 
– the performance achieved with a computer mouse dur-
ing this step is for this reason denoted the gold standard 
(GS).

Statistics
The analysis described in this section was performed 
using SPSS Statistics version 27.0. Linear regression 
models with ID as independent variable and target-wise 
completion time as dependent variable was fitted for 
MRL and LDA independently using all targets from all 
session and subjects. As in previous studies [38, 44], a 
high value of R2 was seen as indicative of the validity of 
the Fitts’s law test.

Fig. 7  The Fitts’s law test. a The 40 combinations of target positions and radii selected for the current study. No target was placed on any of the 
coordinate axes, thus requiring the subject to activate both DoFs, either sequentially or simultaneously, for successful task completion. b Screen 
capture of the view of a subject while steering the cursor towards one of the targets presented during the test. The red ‘tail’ tracking the cursor 
represents the positions occupied during the preceding 0.3 s (60 samples at the 200 Hz sampling rate). A target was considered reached after a 
dwell time of 0.3 s, i.e. when the entirety of the tail was situated within the target periphery

Table 3  The real-time myocontrol performance metrics calculated for each subject and control method

Metric Abbreviation Summary

Completion rate [%] CR The proportion of targets which are successfully reached

Completion time [s] CT The total time from the start of the task to the target being reached, averaged across all targets (excluding failed 
attempts)

Path Efficiency [%] PE The ratio between the length of the optimal (straight line) path from the origin to the target and the distance 
traversed by the cursor, averaged across all targets

Overshoot O Total number of occurrences during the test wherein the cursor leaves the target prior to dwell time elapsion, 
divided by the total number of targets

Throughput [bits/s] T The ratio between the (target-wise) index of difficulty and the (target-wise) completion time averaged across all 
successfully reached targets
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Full factorial two-way repeated measures multivariate 
analysis of variance (MANOVA), with independent varia-
bles method (with two levels: LDA and MRL) and session 
(with two levels: day 1 and day 7) and all 5 performance 
metrics as dependent variables, was used to simultane-
ously assess the impact of control approach and time 
since calibration on aggregated control efficacy. p-values 
of less than 0.05 after Bonferroni correction for 3 esti-
mated terms (method, session, and method*session) were 
considered significant. Due to the statistical significance 
of results obtained via MANOVA (see the Results sec-
tion), this step was followed by post-hoc metric-wise uni-
variate analysis of variance (ANOVA) in order to assess 
the impact of the independent variables on each metric 
separately. As with MANOVA, two-way full factorial 
repeated measure designs with a p < 0.05 significance 
level (subject to Bonferroni correction for multiple com-
parisons [63]) were employed for this step. In addition to 
the p-values obtained via MANOVA and ANOVA, the 
Cohen’s d effect size [64] separating MRL from LDA was 
computed for each metric using the full concatenation of 
results obtained on day 1 and on day 7.

Results
For MRL, a strong linear relationship (coefficient of 
determination R2 = 0.97 with p = 0.0010 ) was observed 
between ID and CT. The corresponding value for LDA 

Table 4  Means and  standard deviations of  performance 
metrics obtained on day 1

Metric Method

LDA MRL GS

CR[%] 97.00 ± 4.78 99.38 ± 1.34 100.0 ± 0.0

CT [s] 5.23 ± 1.67 3.73 ± 1.51 1.23 ± 0.16

PE[%] 41.42 ± 8.58 49.20 ± 10.91 82.17 ± 1.96

O 0.60 ± 0.32 0.36 ± 0.24 0.00 ± 0.00

T [bits/s] 0.51 ± 0.12 0.69 ± 0.22 1.62 ± 0.20

Table 5  Means and  standard deviations of  performance 
metrics obtained on day 7

Metric Method

LDA MRL

CR[%] 97.38 ± 5.27 99.63 ± 1.19

CT [s] 5.38 ± 1.79 3.45 ± 1.29

PE[%] 38.75 ± 9.15 50.73 ± 9.13

O 0.59 ± 0.26 0.42 ± 0.25

T [bits / s] 0.49 ± 0.13 0.71 ± 0.20

Fig. 8  Graphical summary of myocontrol performance metrics. Metrics of motion-normalized proportional linear discriminant analysis (LDA) and 
the proposed myoelectric representation learning (MRL) method were obtained from evaluations conducted immediately following calibration 
(day 1) and after one week of intermission (day 7). Performances achieved by test subjects using the gold standard (GS), i.e. a computer mouse, are 
included for reference. Markers and error bars represent arithmetic means and standard deviations, respectively, across all 20 test subjects
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was computed as R2 = 0.89 with p = 0.0019 , lend-
ing credence to a view of a Fitts’s law test as suitable for 
method evaluation and by extension the appropriateness 
of throughput T  as a measure of overall performance.

Summary statistics of performance metrics obtained 
with all methods during day 1 and during day 7 are pre-
sented in Table 4 and in Table 5, respectively; the same 
data are summarized graphically in Fig.  8. MANOVA 
detected a significant effect of method ( p = 0.012 ) on the 
full set of 5 performance metrics. No significant effect 
of neither session ( p = 1.00 ) nor the interaction term 
method*session ( p = 0.070 ) was detected.

For CR , ANOVA detected a significant effect of method 
( p = 0.044 ) and non-significant effects of session 
( p = 1.00 ) and method*session ( p = 1.00 ). The effect 
size separating the mean value of CR across both sessions 
for MRL (99.50%) from that of LDA (97.19%) was com-
puted as d = 0.62.

For  CT  , ANOVA detected a significant effect of 
method ( p = 0.000042 ) and non-significant effects of 
session ( p = 1.00 ) and method*session ( p = 0.62 ). The 
effect size separating the mean value of CT  across both 
sessions for MRL (3.59 s) from that of LDA (5.31 s) was 
computed as d = −1.07.

For PE , ANOVA detected a significant effect of method 
( p = 0.00030 ) and non-significant effects of session 
( p = 1.00 ) and method*session ( p = 0.27 ). The effect 
size separating the mean value of PE across both sessions 
for MRL (49.96%) from that of LDA (40.09%) was com-
puted as d = 1.02.

For O , ANOVA detected a significant effect of method 
( p = 0.016 ) and non-significant effects of session 
( p = 1.00 ) and method*session ( p = 1.00 ). The effect 
size separating the mean value of O across both sessions 
for MRL (0.39) from that of LDA (0.60) was computed as 
d = −0.74.

For T  , ANOVA detected a significant effect of method 
( p = 0.00033 ) and non-significant effects of session 
( p = 1.00 ) and method*session ( p = 0.97 ). The effect 
size separating the mean value of T  across both sessions 
for MRL (0.69 bits/s) from that of LDA (0.50 bits/s) was 
computed as d = 1.13.

Discussion
The main aim of the current study was to empirically 
evaluate the hypothesized advantages of using the pro-
posed MRL framework for myoelectric control. For all 
considered performance metrics, a significant advantage 
was detected for MRL over LDA. For the T  metric, which 
characterize overall efficacy of control in terms of trans-
mitted information, the effect size separating MRL from 
the benchmark LDA method was computed as d = 1.13 , 
showing that subjects achieved slightly more than one 

standard deviation higher performance with MRL than 
with LDA. For metrics characterizing more specific 
aspects of myoelectric control quality, the results show 
that the performance of MRL surpassed that of LDA, 
although sometimes to a lesser (but still consistently sig-
nificant) degree. Anecdotally, all but 2 subjects indepen-
dently expressed preference for MRL over LDA while still 
blind to the experimental condition, some noting that 
control with the latter sometimes resulted in unpredict-
able cursor movements, whereas the former allowed for 
‘smoother’ steering and was conducive to ‘course-cor-
rections’ if the cursor did not follow the initially planned 
trajectory.

Contrary to what was expected in light of some previ-
ous findings [33], the current study failed to detect any 
statistically significant deterioration in performance 
over time for either control method (neither MANOVA 
nor ANOVA detected any significant effect of session 
or method*session on any metric). A potential expla-
nation for this discrepancy lies in the properties of the 
EMG recording setup used in the current study: as the 
electrodes had relatively large pickup area compared to 
what is typical, the signals they acquired could plausibly 
be resistant to small variations in electrode positioning 
over time [65]. Although it is also consistent with previ-
ous findings [66–68] to assume that subjects underwent 
continuous motor learning, which potentially obscures 
the effects of drift in EMG distribution, the results are 
nevertheless encouraging in that they indicate that MRL 
does not require frequent recalibration in order to retain 
its advantages over the LDA approach.

In addition to validating the MRL framework, the find-
ings presented in the current study support a favourable 
view of myoelectric control based on regression of kin-
ematics (i.e. proportional estimation of multiple DoFs 
simultaneously) more generally. As was experienced by 
the subjects of the current study, incorrect estimations 
can have a substantial effect on the perceived quality of 
control when the space of possible movements is quan-
tized, as is the case with LDA. Conversely, errors on the 
part of the continuous MRL algorithm were perceived 
as easier to counteract, allegedly due to the less ‘jittery’ 
nature of the resulting interface. Compared to many 
conventional methods with this advantage, the type of 
regression proposed in the current study requires neither 
continuous target values nor mirrored training, allowing 
for straightforward use by both unilateral and bilateral 
amputees.

In a manner similar to the current study, one previous 
approach has applied regression models calibrated with 
entirely categorical target values for the task of myoe-
lectric control of hand prostheses (see e.g. [69]). This 
earlier approach, termed on–off goal-directed training 
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[70], applies ridge regression to estimate a linear map-
ping from EMG features to concurrent multi-label visual 
movement instruction stimulus. Once calibrated, the 
linear regression model use EMG to infer continuous 
force-patterns exerted by the digits in real-time. Notably, 
due to its assumptions, this method requires an approxi-
mately linear relationship between the selected EMG 
features and activation intensity to hold true for all steer-
able output DoFs in order to function effectively. This is 
not the case for the MRL framework introduced in the 
current study: a large class of possible nonlinear rela-
tionships between EMG and kinematics can be learned 
by the proposed ANN model during calibration. Con-
sequently, the nonlinearity of the relationship between 
EMG and kinematics need not be fully captured by the 
selection of EMG features (i.e. the signal envelope in the 
current study) used as input to the MRL network model.

A salient limitation of the MRL framework as pre-
sented here relates to scalability with regard to the 
number of decodable DoFs. The current study was suc-
cessful in extracting kinematics concerning two DoFs, 
but required calibration data of every possible move-
ment combination, resulting in the recording of 32 = 9 
movements. As the number of performable movement 
combinations 3J grows geometrically with the number of 
independent DoFs J  , larger numbers of DoFs quickly lead 
to infeasible calibration data acquisition durations. This 
drawback is not unique to MRL but is, to the best of our 
knowledge, shared by all contemporary pattern recogni-
tion frameworks aimed at multiarticulate control. Future 
work could potentially focus on solving this problem 
by formulating generative sEMG models to artificially 
provide compound movement calibration data using 
subject-specific signals acquired exclusively from 1-DoF 
movements.

One avenue of algorithmic improvement for MRL 
concerns the preprocessing of sEMG signals. In the cur-
rent study, the choice was made to let the ANN model 
operate on sEMG envelopes; this was motivated by the 
observed monotonic relationship between kinematics 
and sEMG magnitude, which is a necessary property to 
allow for the application of proportionality-inducing 
contractive regularization. However, a body of previous 
work (cf. [11]) has been unanimous in establishing that 
higher frequency content of sEMG signals reflects factors 
of the movement-dependent generative process, mak-
ing information encoded at such frequencies discrimi-
native for the purpose of movement decoding. With the 
MRL approach introduced and used in the current study, 
most high frequency information is discarded (due to 
envelope extraction) and cannot impact the estimation 
of kinematics. A question which could warrant further 
investigation is whether MRL can be extended to include 

more sophisticated sEMG signal features (handcrafted or 
learned) while at the same time guaranteeing proportion-
ality by keeping the regression output constrained by the 
magnitude of the sEMG envelope.

Conclusions
This paper has introduced an algorithm (MRL), based 
on regularized multitask learning, for the purpose of 
extracting proportionally encoded hand- and wrist 
movement intent pertaining to multiple DoFs from 
the forearm sEMG. To investigate the suitability of the 
proposed framework for use with muscle-computer 
interfaces, it was evaluated on able-bodied subjects 
with a Fitts’s law type test and compared to a standard 
approach, based on LDA, for myocontrol. MRL was 
found to be superior to LDA in the sense of significantly 
outperforming the latter in all considered metrics of 
real-time efficacy of control. Furthermore, neither MRL 
nor LDA could be demonstrated to undergo significant 
deterioration in any performance metric over a time of 
7  days. Although these findings are promising, future 
work will have to examine performance over a longer 
time period in order to ascertain long-term stability.

In addition to its advantages related to efficacy of 
control, the proposed MRL system is computationally 
lightweight and can operate in real-time with relatively 
restricted hardware resources. Future work could thus 
focus on implementing this approach in the context of 
wearable computing platforms without expectations 
of reduced quality of control. Such endeavours should 
ideally study control of physically instantiated robotic 
limbs and involve forearm amputees.
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