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Comparative Analysis of Optoelectronic
Accuracy in the Laboratory Setting
Versus Clinical Operative Environment:
A Systematic Review

Bryan W. Cunningham, PhD1,2 , and Daina M. Brooks, MEM1

Abstract

Study Design: Systematic review.

Objectives: The optoelectronic camera source and data interpolation process serve as the foundation for navigational integrity
in robotic-assisted surgical platforms. The current systematic review serves to provide a basis for the numerical disparity
observed when comparing the intrinsic accuracy of optoelectronic cameras versus accuracy in the laboratory setting and clinical
operative environments.

Methods: Review of the PubMed and Cochrane Library research databases was performed. The exhaustive literature compi-
lation obtained was then vetted to reduce redundancies and categorized into topics of intrinsic accuracy, registration accuracy,
musculoskeletal kinematic platforms, and clinical operative platforms.

Results: A total of 465 references were vetted and 137 comprise the basis for the current analysis. Regardless of application, the
common denominators affecting overall optoelectronic accuracy are intrinsic accuracy, registration accuracy, and application
accuracy. Intrinsic accuracy equaled or was less than 0.1 mm translation and 0.1 degrees rotation per fiducial. Controlled
laboratory platforms reported 0.1 to 0.5 mm translation and 0.1 to 1.0 degrees rotation per array. Accuracy in robotic-assisted
spinal surgery reported 1.5 to 6.0 mm translation and 1.5 to 5.0 degrees rotation when comparing planned to final implant
position.

Conclusions: Navigational integrity and maintenance of fidelity of optoelectronic data is the cornerstone of robotic-assisted
spinal surgery. Transitioning from controlled laboratory to clinical operative environments requires an increased number of steps
in the optoelectronic kinematic chain and error potential. Diligence in planning, fiducial positioning, system registration and intra-
operative workflow have the potential to improve accuracy and decrease disparity between planned and final implant position.
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Introduction

The fundamental technological challenge of navigation and

robotic-assisted spinal surgery is the virtual world needs to

clearly represent the physical, real time world. Among the

multiple applications, variables and equipment utilized in navi-

gation and robotic-assisted spinal surgery, the optoelectronic

camera source and data interpolation process serves as the

foundation for navigational integrity and accuracy, or lack

thereof, in the surgical platform. The principles of optoelectro-

nic measurement systems are founded on the basis of devices

which have the capability to source, detect and control light and

are typically considered a subdivision of photonics. The spec-

trum of optoelectronic technology platforms are quite diverse,

1 Department of Orthopaedic Surgery, Musculoskeletal Research and

Innovation Institute, MedStar Union Memorial Hospital, Baltimore, MD, USA
2 Department of Orthopaedic Surgery, Georgetown University School of

Medicine, Washington, DC, USA

Corresponding Author:

Bryan W. Cunningham, Department of Orthopaedic Surgery, MedStar Union

Memorial Hospital, 201 East University Pkwy, Baltimore, MD 21218, USA.

Email: bcspine@gmail.com

Global Spine Journal

ª The Author(s) 2022
Article reuse guidelines:

sagepub.com/journals-permissions
DOI: 10.1177/21925682211035083

journals.sagepub.com/home/gsj

Creative Commons Non Commercial No Derivs CC BY-NC-ND: This article is distributed under the terms of the Creative Commons Attribution-Non
Commercial-NoDerivs 4.0 License (https://creativecommons.org/licenses/by-nc-nd/4.0/) which permits non-commercial use, reproduction and distribution of the
work as published without adaptation or alteration, without further permission provided the original work is attributed as specified on the SAGE and Open Access
pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Special Issue Article



60S Global Spine Journal 12(2S)

with utilization in sports performance activities such as speed

skating and soccer,1-4 human ergonomics,5,6 clinical gait and

motion analysis,7-12 musculoskeletal kinematics,13-20 and clin-

ical operative procedures.21-33 To this end, the degree of accu-

racy and errors acceptable across optoelectronic motion

measurement platforms differ considerably based on applica-

tion.1 For example, fiducial arrays placed on anatomic pelvic

landmarks of alpine skiers reported translation accuracy and

errors of 8.37 + 7.1 millimeters (mm).34 Although considered

adequate for the evaluation of positional or orientation-related

differences in this athletic application, discrepancies of this

magnitude would be unacceptable in the clinical operative set-

ting. Technological advancements in the accuracy of optoelec-

tronic marker-based systems over the past 20 years have

facilitated the adoption and application of these platforms to

the field of robotic-assisted spinal surgery.12,35,36 An ensuing

plethora of journal publications have documented the safety,

efficacy and technical accuracy of navigation and robotic sys-

tems,21-24,30-32,37-45 operative surgical applications,25,33,46,47 as

well as challenges of process workflow, learning curve and

training.28,30,31,39,40

Review of these publications, reveals what could be defined

as a significant discrepancy when comparing optoelectronic

accuracy in the laboratory setting versus clinical operative

environment. An approximate 10-fold decrease in technical

accuracy of final implant position (�2 mm) in the clinical

operative environment was observed compared to controlled

musculoskeletal kinematic studies (�0.2 mm), despite utiliza-

tion of near identical optoelectronic camera systems. Hence,

the objective of the current systematic review serves to provide

a basis for the numerical disparity that exist when comparing

intrinsic accuracy of optoelectronic cameras, accuracy

observed in the laboratory setting and accuracy in the clinical

operative environment. It is postulated that there exists a

greater number of linkages in the optoelectronic kinematic

chain when analyzing the clinical operative environment to

laboratory setting. This increase in data interpolation, coupled

with intraoperative challenges, reduces the degree of accuracy

compared to that observed in controlled musculoskeletal kine-

matic laboratory investigations.

Methods

A comprehensive systematic review of the PubMed and

Cochrane Library research databases was performed. The time

interval was unrestricted, however, the majority of publications

comprising the basis of this analysis ranged from 2000–present.

Combinations of key search terms were stratified into the fol-

lowing: optoelectronic measurement systems, technical accu-

racy, experimental error, robotic assisted spinal surgery, spinal

kinematics, and navigation. The search was limited to papers in

the English language, indexed in peer-reviewed journals acces-

sible through online searches, and all publications included

required a bona fide PubMed identification (pmid) or digital

object identifier (doi) citation. The exhaustive literature com-

pilation obtained was then pooled in an EndNote file, vetted to

reduce redundancies and categorized into topics pertinent to

optoelectronic measurement system accuracy with specific ref-

erence to intrinsic accuracy, registration accuracy, musculos-

keletal kinematic platforms, and clinical operative platforms.

The primary tier for inclusion focused on publications which

reported quantitative units of measure (microns, millimeters

and degrees) for intrinsic camera accuracy and tolerances,

accuracy obtained in a controlled laboratory setting and accu-

racy in the clinical operative setting. Musculoskeletal kine-

matic measurement studies were included if motions

observed were greater than the standard error of measure

(SEM). The second tier of inclusion criteria focused on publi-

cations highlighting the applications of optoelectronic mea-

surement systems, percent accuracy of screw placement,

inherent inaccuracies of surgical instruments, observational

commentary leading to accuracy improvement, and methods

to mitigate error potential.

Results

Three-Dimensional Cartesian Rigid Body
Transformations

The reported optoelectronic measurements of accuracy, errors

and methods to quantify these in the laboratory setting or clin-

ical operative environment are based on a fixed 3-dimensional

Cartesian coordinate system of rigid body transformation in

millimeters (mm) translation and degrees (deg) rotation along

3 orthogonal axes—X, Y and Z.48-52 This is in accordance to

the axial (Y), sagittal (Z) and coronal (X) anatomic planes as

defined by Panjabi’s 3-dimensional conceptual framework for

spinal kinematics (Figure 1A and B).53-55 From a nomenclature

standpoint, accuracy is defined as a combination of trueness

and precision according to the published ISO standard

5725-1.56 Trueness refers to the difference between measured

value and true position—typically represented by the mean

value of repeated measurements. Precision is a measure of

repeatability—typically represented by the standard deviation

of repeated measurements and refers to random error and noise

within the system. In addition to these standardizations, a use-

ful key measure with regard to accuracy (trueness and preci-

sion) is the root mean square distance error (RMS) as given by

ei being the 3-dimensional distance error of measurement i and

N the number of measurements.57

eRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

1
ei � eið Þ

r

Optoelectronic Measurement Systems

Image guided surgery (IGS) is based on the principal of inte-

gration and registration of the operative field to pre- or intra-

operative data set (e.g. CT or MRI), via amalgamation of an

optoelectronic imaging system with robotic platform.58

Although not necessarily involved in the execution of operative
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procedures, optoelectronic measurement systems are consid-

ered the gold standard in motion capture accuracy1,59 and pro-

vide 3-dimensional visualization and guidance; improving task

execution, targeting accuracy while functioning in a semi-

autonomous fashion.60 Hence, objective accuracy and error

assessments of optoelectronic-robotic interventional platforms

is essential. Regardless of optoelectronic camera system, the

fundamental triad of common denominators in assessing plat-

form accuracy include: 1) intrinsic accuracy of the source

device, 2) registration and tracking accuracy, and 3) application

accuracy. Prior to addressing the basis for application accuracy

across laboratory versus clinical platforms, the intrinsic and

registration accuracy and potential for error propagation are

of primary consideration.

Intrinsic (Technical) Accuracy

The initial link in the optoelectronic kinematic chain of data

transference resides in the intrinsic accuracy of the camera

source. Of the multiple factors affecting downstream optoelec-

tronic accuracy in musculoskeletal kinematic and clinical

operative platforms, the intrinsic camera components are most

controllable. Mechanical compliance of the system, loose

interconnection mechanisms,58 variation in camera resolution,

calibration, imperfect lenses, number of cameras, spatial orien-

tation, noise, computer vision algorithms and jitter all represent

sources of intrinsic error in optoelectronic systems.36,58,61-63

Topley and Richards36 reported that optoelectronic cameras

of higher resolution (Vicon 16MP) and number of cameras

(n ¼ 12) significantly improve the 3-dimensional spatial accu-

racy (0.080 + 0.092 mm) compared to an equal number of

cameras of lower resolution (OptiTrack 1.3MP) (0.259 +
0.084 mm). Khadem et al64 reported the intrinsic optical track-

ing error secondary to jitter. In the absence of intrinsic jitter,

repeated static measurements from a camera source to fiducial

would produce identical kinematic signatures along 3 orthogo-

nal axes. Comparison of 5 different optoelectronic camera sys-

tems utilized in image based surgical navigation was performed

[Image Guided Technologies (IGS), Boulder, CO and Northern

Digital Imaging (NDI), Waterloo Canada]. The intrinsic static

jitter (mean and standard deviation values) for the IGS Flash-

point systems ranged from 0.028 + 0.012 mm (Flashpoint

300 mm), 0.051 + 0.038 mm (FlashPoint 580 mm) to

0.059+ 0.047 mm (Flashpoint 1 m). The NDI Polaris systems

indicated mean values of 0.058+ 0.037 mm (active LED) and

0.115 + 0.075 (passive LED). When performing static single

marker measurements according to ASTM guidelines65 of the

NDI Optotrak 3020, a motion analysis system commonly used

in musculoskeletal kinematic platforms,13,17 Maletsky et al66

reported the relative accuracy position between 2 rigid bodies

at 0.03 mm translation and 0.04 degrees angulation, respec-

tively. Elfring et al57 evaluated the static volumetric single

marker measurements of 3 commercially available optoelec-

tronic tracking systems utilized in robotic assisted platforms—

NDI Polaris P4, NDI Polaris Spectra (active and passive mode)

and Stryker Navigation System II (Stryker Inc., Kalamazoo,

MI). The Stryker Navigation System II camera and the Polaris

Spectra (active mode), exhibited trueness values of 0.058 +
0.033 mm and 0.089 + 0.061 mm, respectively. The Polaris

Spectra (passive mode) exhibited values of 0.170+ 0.090 mm,

and the Polaris P4 demonstrated the highest static measurement

error of 0.272 + 0.394 mm. As a baseline statement of com-

parison, the optoelectronic systems utilized in clinical opera-

tive or controlled laboratory platforms report only marginal

differences in accuracy. Further, the contribution of intrinsic

errors is of miniscule value in comparison to error(s) pro-

pagation secondary to registration, targeting tracking and

application in controlled experimental and clinical operative

platforms.

Figure 1. Cartesian coordinate system and conceptual fame for spinal kinematics—schematic representation of a fixed 3-dimensional cartesian
coordinate system for calculation of rigid body transformation in millimeters (mm) translation and degrees (deg) rotation along 3 orthogonal
axes—X, Y and Z (A). This is in accordance to the axial (Y), sagittal (Z), and coronal (X) anatomic planes as defined by Panjabi’s 3-dimensional
conceptual framework for spinal kinematics (B).
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procedures, optoelectronic measurement systems are consid-

ered the gold standard in motion capture accuracy1,59 and pro-

vide 3-dimensional visualization and guidance; improving task

execution, targeting accuracy while functioning in a semi-

autonomous fashion.60 Hence, objective accuracy and error

assessments of optoelectronic-robotic interventional platforms

is essential. Regardless of optoelectronic camera system, the

fundamental triad of common denominators in assessing plat-

form accuracy include: 1) intrinsic accuracy of the source

device, 2) registration and tracking accuracy, and 3) application

accuracy. Prior to addressing the basis for application accuracy

across laboratory versus clinical platforms, the intrinsic and

registration accuracy and potential for error propagation are

of primary consideration.

Intrinsic (Technical) Accuracy

The initial link in the optoelectronic kinematic chain of data

transference resides in the intrinsic accuracy of the camera

source. Of the multiple factors affecting downstream optoelec-

tronic accuracy in musculoskeletal kinematic and clinical

operative platforms, the intrinsic camera components are most

controllable. Mechanical compliance of the system, loose

interconnection mechanisms,58 variation in camera resolution,

calibration, imperfect lenses, number of cameras, spatial orien-

tation, noise, computer vision algorithms and jitter all represent

sources of intrinsic error in optoelectronic systems.36,58,61-63

Topley and Richards36 reported that optoelectronic cameras

of higher resolution (Vicon 16MP) and number of cameras

(n ¼ 12) significantly improve the 3-dimensional spatial accu-

racy (0.080 + 0.092 mm) compared to an equal number of

cameras of lower resolution (OptiTrack 1.3MP) (0.259 +
0.084 mm). Khadem et al64 reported the intrinsic optical track-

ing error secondary to jitter. In the absence of intrinsic jitter,

repeated static measurements from a camera source to fiducial

would produce identical kinematic signatures along 3 orthogo-

nal axes. Comparison of 5 different optoelectronic camera sys-

tems utilized in image based surgical navigation was performed

[Image Guided Technologies (IGS), Boulder, CO and Northern

Digital Imaging (NDI), Waterloo Canada]. The intrinsic static

jitter (mean and standard deviation values) for the IGS Flash-

point systems ranged from 0.028 + 0.012 mm (Flashpoint

300 mm), 0.051 + 0.038 mm (FlashPoint 580 mm) to

0.059+ 0.047 mm (Flashpoint 1 m). The NDI Polaris systems

indicated mean values of 0.058+ 0.037 mm (active LED) and

0.115 + 0.075 (passive LED). When performing static single

marker measurements according to ASTM guidelines65 of the

NDI Optotrak 3020, a motion analysis system commonly used

in musculoskeletal kinematic platforms,13,17 Maletsky et al66

reported the relative accuracy position between 2 rigid bodies

at 0.03 mm translation and 0.04 degrees angulation, respec-

tively. Elfring et al57 evaluated the static volumetric single

marker measurements of 3 commercially available optoelec-

tronic tracking systems utilized in robotic assisted platforms—

NDI Polaris P4, NDI Polaris Spectra (active and passive mode)

and Stryker Navigation System II (Stryker Inc., Kalamazoo,

MI). The Stryker Navigation System II camera and the Polaris

Spectra (active mode), exhibited trueness values of 0.058 +
0.033 mm and 0.089 + 0.061 mm, respectively. The Polaris

Spectra (passive mode) exhibited values of 0.170+ 0.090 mm,

and the Polaris P4 demonstrated the highest static measurement

error of 0.272 + 0.394 mm. As a baseline statement of com-

parison, the optoelectronic systems utilized in clinical opera-

tive or controlled laboratory platforms report only marginal

differences in accuracy. Further, the contribution of intrinsic

errors is of miniscule value in comparison to error(s) pro-

pagation secondary to registration, targeting tracking and

application in controlled experimental and clinical operative

platforms.

Figure 1. Cartesian coordinate system and conceptual fame for spinal kinematics—schematic representation of a fixed 3-dimensional cartesian
coordinate system for calculation of rigid body transformation in millimeters (mm) translation and degrees (deg) rotation along 3 orthogonal
axes—X, Y and Z (A). This is in accordance to the axial (Y), sagittal (Z), and coronal (X) anatomic planes as defined by Panjabi’s 3-dimensional
conceptual framework for spinal kinematics (B).
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Registration Accuracy and Target Tracking

A second key step in the optoelectronic kinematic chain and

highest probable link(s) of error propagation is the registration

process. This intra-operative process integrates correlation and

mapping algorithms to register the physical patient to the vir-

tual patient via the navigation system, optoelectronic source,

fiducial arrays in the operative field, and patient CT images.

Accurate, close-to-ideal reference reproducibility of the dataset

improves trueness and precision of subsequent intra-operative

tracking. Multiple factors affect registration accuracy and tar-

get tracking, including optoelectronic camera source, passive

versus active arrays, occlusions, distance between fiducial

arrays and camera source, and anatomic locations of the coor-

dinate reference fiducials.1,57,67-74

As reported by States and Pappas75 and Simoes et al,68 the

NDI Certus 3 camera optoelectronic system demonstrated a

significantly higher degree of registration target accuracy

(0.1 mm translation and 0.13 degrees rotation75 compared to

the NDI Spectra 2 camera system when located 1.5 meters from

camera source.68 The surgical navigation principle of triangu-

lation, necessary to quantify 3-dimensional fiducial array posi-

tion, is void if 1 of 2 cameras is occluded.61,76,77 Marinetto

et al78 reported tracking errors secondary to camera and fidu-

cial array occlusions when utilizing an 8-camera configuration.

Occlusions of a single camera resulted in tracking errors from

0.2 mm to 0.5 mm, while occlusion of 5 cameras resulted in

errors from 0.6 mm to 1.6 mm. Optical trackers utilizing multi-

camera systems may lead to data redundancy but enables

fidelity in data transference, despite fiducial occlusions within

the application platform (Figure 2A-C).

The difference between active versus reflective passive mar-

kers systems also effect registration accuracy and target track-

ing. In the case of passive markers, the optoelectronic source

floods the operative field and light is reflected back to the

sensors via infrared-reflecting spheres. Active markers contain

and emit infrared-emitting diodes (IREDs) and provide a more

robust signal with increased accuracy compared to passive

markers.57,72,79 Furthermore, the distance between optoelectro-

nic camera source and operative field fiducial arrays effect

accuracy.64 Increasing the camera distance from 6 to 8 feet

nearly triples the intrinsic registration error along the Z axis

(maximum ¼ 0.250 mm) for the Polaris passive fiducial array

system. Hence, closer approximation of the optoelectronic

camera source to the operative fiducial arrays (�6 feet or

approximately 1800 millimeters) minimizes jitter and improves

precision.64 For comparison, when performing static single

marker measurements of the NDI Optotrak 3020 system, the

precision in rotation degrades significantly when positioning

the camera � 2.5meters from fiducial arrays66,75 (Figure 3A

and B).

In addition to distance between camera source and fiducial

arrays, Citak et al70,80 performed an investigation to determine

the maximum acceptable distance between fixed reference

arrays and dynamic “mobile” arrays within the operative field.

The results demonstrated a mean registration error of 0.04 mm

(0.04-0.05 mm) up to a distance of 200 mm from the patient

reference array. When mobile fiducial arrays (e.g., end

Figure 2. Optoelectronic camera sources—comparison of 3 optoelectronic camera systems utilized in motion analysis. The NDI spectra
2 camera system (A), NDI certus optotrak 3 camera system (B), and viconvicon MX13 multiple camera system (C) (Vicon motion systems Ltd.,
Oxford, UK). The spectra NDI is commonly used in the clinical operative environment and latter 2 systems for musculoskeletal kinematics
and biomechanics. The Vicon camera image and testing setup was generously provided by Prof. Dr. Hans Joachim Wilke, PhD, Institute
of Orthopaedic Research and Biomechanics, University of Ulm.
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effector) exceeded 200 mm from the reference point, the reg-

istration error increased to 0.25 mm (0.24-0.26) (P < .0001).

The initial registration and intra-operative working accuracy is

significantly reduced with localization of arrays greater than

200 mm from the patient reference point.70,80 Moreover, the

magnitude of errors secondary to array obstructions differ

based on active versus passive markers and distance between

arrays.35 When comparing 2 active Vicon fiducial arrays versus

distance, targeting errors increased from 0.47 mm to 1.2 mm,

with corresponding stepwise decreases from 5 cm to 0 cm

between arrays. In similarity but of greater magnitude, target-

ing errors for passive arrays (Qualisys AB, Goteborg Sweden)

increased from 0.54 mm to 2.99 mm with decreases from 5cm

to 0 cm between arrays. Hence, as visualized by the camera

source, increasing distances between fiducial arrays in the

operative clinical setting reduces experimental targeting errors

(Figure 4A-D).

The effect of transitioning from static to dynamic array

localization directly influences accuracy and targeting

errors.44,45,69,81 A comparison of static and dynamic motion

by Chassat and Lavallee69 demonstrated a significant increase

in array translation error when moving across a spectrum of

conditions located 2 meters from the camera source. Using the

best-in-class NDI Optotrak 3020 system, the static position

Figure 3. Active versus passive marker arrays—comparison of active marker arrays used in the laboratory platform as shown attached to the
vertebral elements. Note the active markers contain and emit infrared-emitting diodes (IREDs) via the attached wiring configurations (A). In the
case of passive fiducial marker arrays (B), the optoelectronic source floods the operative field and light is reflected back to the camera source via
infrared-reflecting spheres.

Figure 4. Fiducial array occlusions—Schematic illustration comparing fiducial array configuration and occlusions secondary to optimal
optoelectronic camera angle, steep camera angle, occluded sphere and interference between 2 fiducial arrays (A-D).

Cunningham and Brooks 5



64S Global Spine Journal 12(2S)

error measured 0.28 mm, static position hand held 0.400 mm,

and dynamic measure in translation at constant speed 1.29 mm.

The magnitude in angular errors was less than translation but

still increased significantly through dynamic localization of

instrument arrays.69 These findings were corroborated by

Stancic et al81 with static registration indicated errors of

0.11 mm while dynamic motion of the arrays resulted in errors

ranging from 0.250 mm to 1.10 mm with increasing veloci-

ties.81 Hence, higher displacement rates of the operative instru-

ment arrays directly affect the camera’s tracking accuracy.

Two additional clinical factors influencing registration

accuracy and targeting errors include the tool to tip distance

and accuracy of pre- or intra-operative radiographic CT/MRI

data.72,82-84 Static accuracy for a given marker array is on the

order of 0.2 mm, however, errors increase significantly when

extrapolated to the instrument tip, Wiles et al72 reported that

increasing the distance between fiducial array to instrument tip

from 0 to 100 mm decreases static accuracy from 0.4 mm to

0.85 mm, respectively.72 The array to tool tip distance on

instruments utilized in robotic assisted platforms far exceed

100 mm (4 inches). In consideration of the linearity of Wiles

et al accuracy degradation with distance calculations,72 it is

postulated that experimental targeting errors of longer instru-

ments are of increased magnitude compared the reported

0.85 mm. Computed tomographic data input affects target

accuracy and can be improved with resolutions of 1.0 mm and

2.0 mm versus 3.0 mm slice thickness.82,83

In summary, propagation of computational measurement

errors in the optoelectronic kinematic chain has a compounding

effect for the following transitions: 1) Measurement of the

intrinsic image plane error (IPE) secondary to errors within the

optoelectronic system, 2) transitioning from image error to

fiducial location error (FLE), and 3) transition from fiducial

location error to tracking target error (TRE). The mathematical

expressions for these computational transformations are

beyond the scope of the current publication but well documen-

ted by Fitzpatrick et al71,73 and Sielhorst et al.61 The margins of

error secondary to intrinsic and registration accuracy in optoe-

lectronics are more manageable compared to unpredictable

factors related to application in the laboratory versus dynamic

clinical intraoperative environments.

Application Accuracy—Musculoskeletal Kinematics
Laboratory Platform

Over the last 30 years, a plethora of spine publications have

documented the biomechanical properties of the occipitocervi-

cal through lumbopelvic spine under controlled laboratory con-

ditions utilizing Panjabi’s 3-dimensional conceptual

framework for testing.17,53-55,85 In contrast to the challenges

of the clinical operative environment, motion analysis of spinal

implant and anatomic vertebral structures(s) in the controlled

laboratory setting is performed utilizing a 6 degree of freedom

musculoskeletal simulator interfaced with an optoelectronic

measurement system. The fundamental principles pertinent to

maximizing optoelectronic accuracy include mounting the

specimen to a rigid testing platform, affixing active or passive

fiducial arrays directly to implants or anatomic structures using

screw-bolt fixation, and creating rigid body configurations par-

allel to the camera source. Multidirectional flexibility testing is

typically performed along 3 predominant loading axes—flexion-

extension, lateral bending, and axial rotation under controlled

displacement rates of 1 to 3 degrees per second for multiple

cycles. To this end, a series of laboratory investigations using

the NDI Certus and Vicon MX13 camera systems (Vicon

Motion Systems Ltd., Oxford, UK) reported the peak limits of

optoelectronic accuracy when evaluating kinematics of the

osteoligamentous spine13-19,86-92 (Figure 5A and B).

Cunningham et al14 compared occipital plate versus intra-

cranial anchors for reconstruction of the occipitocervical (O-C)

junction. The reported differences (degrees) in axial rotation at

the O-C junction based on optoelectronic measurements were

4.13 + 2.05 (intact), 0.22 + 0.13 (plate) and 0.30 + 0.21

(anchor). Rotation of the plate and anchor, with respect to the

occiput, in flexion-extension ranged from 0.06 + 0.05 to

0.10 + 0.08, respectively. Although not of clinical signifi-

cance, the study quantified differences on the order of

0.1 degree between 2 methods of occipitocervical fixation.

Bowden et al86 described the variability in “quality of motion”

of L4 relative to the L5 vertebral elements, following various

methods of vertical preload. The optoelectronic data quantified

differences in L4 anteroposterior translations of 0.6 mm and

rotations of 0.6 degrees between different testing conditions.

Ilharreborde et al87 reported dynamic kinematic evaluation of

the multi-segmental lumbar spine under dynamic loading con-

ditions indicated peak accuracy to within 1.10 + 0.18 degrees

(L2-L3) and corresponding translations of 0.48 + 0.06 mm

rotation (L3-L4) with application of 7.5Nm pure moment load.

In a complex kinematic study utilizing a Vicon optoelectronic

system, La Barbera et al18,19 investigated lumbar interbody

cages with Ponte osteotomy versus pedicle subtraction osteot-

omy for severe sagittal imbalance, the peak accuracy of neutral

zone measurements (degrees) across the intact L3-L5 segments

demonstrated values of 0.7 (Range 0.3-1.9) in flexion-

extension, 1.0 (Range 0.1-3.8) in lateral bending and

0.2 (Range 0.1-0.9) in axial rotation in flexion-extension.

From a kinematic standpoint, the sacroiliac junction (SIJ)

presents formidable challenge to definitive and accurate mea-

surement using optoelectronics—reaching the 0.1 degree accu-

racy error measurement limitations of most optoelectronic

systems.18,19 Jeong et al88 was able to differentiate the range

of motion (degrees) of the SIJ in lateral bending when compar-

ing the intact condition (1.5 + 1.5), unilateral fusion (1.4 +
1.6) and bilateral fusion (1.1 + 1.0). Despite quantification of

SIJ motion within a range of 0.5 degrees of accuracy, the com-

parisons were not significant. Osterhoff et al89 quantified the

effects of cement augmentation on sacroiliac screw position

and fracture site motion using NDI optoelectronics. Screw tip

positioning within the sacrum was quantified to an accuracy

level of 0.7 mm (Range 0.5-1.3), with a corresponding vertical

(Y axis) SIJ range of motion of 1.2 mm (Range 0.6-1.9) under

cyclic compressive loads. In a comprehensive S2 alar iliac
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screw instrumentation study using 21 lumbopelvic specimens,

Cunningham and co-workers13 reported SIJ motion (degrees)

to accuracies of 1.78 + 0.96 (flexion-extension), 0.52 + 0.34

(lateral bending) and 0.48+ 0.32 degrees (axial rotation). In a

similar study by Dall et al15 evaluating SIJ fusion using lateral

sacroiliac screws, optoelectronic tracking quantified the intact

SIJ motion (degrees) under flexion-extension, lateral bending

and axial rotation at 1.80 + 1.62, 0.44 + 0.35 and 1.13 +
0.82, respectively. Additional studies on intact SIJ kinematics

reported translations along the 3-dimensional coordinate axes

on the order of 0.1 mm to 1.04 mm with corresponding rota-

tions of 0.11 to 1.14 degrees.16,91,92

Laboratory workflow methods and conditions for experi-

mental musculoskeletal kinematic studies are streamlined and

optimized for maximizing optoelectronic accuracy. Factors of

specimen stabilization, alignment, camera resolution, proxim-

ity to fiducials, planar visualization of the active arrays, and

controlled motion application account for the high degree of

accuracy reported in these studies. Moreover, in difference to

the operative clinical environments, non-destructive testing

procedures can be repeated multiple times on the same speci-

men to improve data accuracy. The collective effect of testing

methodology and limited experimental coordinate transforma-

tions between data input/output reduces error propagation and

maximizes optoelectronic accuracy (Figure 6).

Application Accuracy—Clinical Operative Platform

Transitioning from controlled laboratory conditions to the

dynamic variability of a clinical operative environment pre-

sents a different set of application challenges for maintaining

peak optoelectronic accuracy. Unique to robotic assisted spinal

surgery and in difference to the laboratory setting, the intra-

operative process requires considerably more steps in the

transference of optoelectronic kinematic data. This complex

process flow integrates correlation and mapping algorithms

to register the physical patient to the virtual patient via the

navigation system, optoelectronic source, surveillance mar-

kers, patient reference markers, end effector instruments in the

operative field, and patient CT images. Accurate, close-to-ideal

reference reproducibility and maintenance of this dataset is the

primary intra-operative objective and challenge (Figure 7).

Despite utilization of near identical optoelectronic sources

and fiducial arrays, a consistent disparity exists when compar-

ing the reported technical accuracies in the laboratory setting

versus clinical operative environment. An approximate 10-fold

decrease in accuracy was observed when comparing the final

implant position (�2 mm) in the clinical operative environment

to musculoskeletal kinematic studies (�0.2 mm). An extensive

number of peer reviewed journal publications have documen-

ted the use, efficacy safety and technical accuracy achieved

with robotic-assisted spinal surgery.23,28,30,37,39-41,44-46,93-123

Figure 5. Application accuracy—musculoskeletal kinematics laboratory platform in contrast to the challenges of the clinical operative
environment, motion analysis of spinal implant and anatomic vertebral structures(s) in the controlled laboratory setting is performed utilizing
a 6 degree of freedom musculoskeletal simulator interfaced with an optoelectronic measurement system (A). The fundamental principles
pertinent to maximizing optoelectronic accuracy include mounting the specimen to a rigid testing platform, affixing active or passive fiducial
arrays directly to implants or anatomic structures using screw-bolt fixation, and creating rigid body configurations parallel to the camera
source (B).
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Figure 6. Laboratory platform for optoelectronic data transference process—Schematic illustration demonstrating the laboratory workflow
and process for data transference utilizing optoelectronic tracking. The camera source visualizes the active fiducial arrays affixed to the
vertebral elements and transfers the data directly to the user interface for computational analysis. The collective effect of testing methodology
and limited experimental coordinate transformations between data input/output reduces error propagation and maximizes optoelectronic
accuracy.

Figure 7. Application accuracy—clinical operative platform. Intra-operative images highlight the transition from controlled laboratory
conditions to the dynamic variability of the clinical operative environment (A). A different set of application challenges are required for
maintaining peak optoelectronic accuracy related to registering the physical patient to the virtual patient via the navigation system,
optoelectronic source, surveillance markers, patient reference markers, end effector instruments in the operative field and workflow.
The intra-operative images were generously provided by the operative surgeons, (A) Dr. Vladimir Sinkov, MD and (B) Dr. Bhavuk Garg, MD.
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The focus in reviewing these publications was to highlight the

technical accuracy observations and determine a basis for dis-

crepancy between planned versus actual final implant position

based on postoperative CT images. In case studies where quan-

titative measurements were not reported, the Gertzbein and

Robbins124 score (GRS) was adopted to calculate pedicle screw

implant position. According to the GRS classification, screws

centered within the pedicle are considered grade A; < 2 mm

from center is a grade B; a breach from 2 mm to 4 mm is grade

C; a breach from 4 mm to 6 mm is grade D; and > 6 mm is

grade E. Grades of A and B (< 2 mm pedicle breach) are

considered clinically acceptable, and all other grades indicate

malposition.

Helm et al94 performed a comprehensive literature review

on the technical accuracy of 12 622 pedicle screws implanted

using a variety of image guided surgery navigation systems. As

reported, 11 830 were positioned perfectly according to pre-

operative plan (A), 395 screws within less than 2 mm of plan

(B), 92 breached between 2 mm to 4 mm off center (C), and

55 were within 4 mm to 6 mm of the pre-operative plan. The

balance of 250 screws remained ungraded due to radiographic

issues. Zhang et al45 reported one of the largest compilations

assessing screw accuracy in robotic assisted spinal surgery. A

total of 23 studies including prospective, prospective rando-

mized control trials and retrospective reviews comprised the

basis of this publication with a total of 5,013 pedicle screw

positions evaluated. The accuracy according to GRS grades

of A and B (less than 2 mm cortical breach) was 4,781 screws

(95.38%), while the balance of 232 screws (4.61%) ranged

from 2 mm to 6 mm when comparing the planned to actual

final positions. Solomiichuk et al41 reported on 192 screws

implanted in 35 patients. Trajectories were Grade A or B (less

than 2 mm) in 162 (84.4%) of screws. The malposition rate of

2 mm to 6 mm was present in 30 of 192 screws (15.6%) with

23 of these occurring in the thoracic spine, where pedicle

widths are significantly less than the lumbar region.103 125

Devito et al93 reported on the technical accuracy placement

of 646 pedicle screws inserted in 139 patients using postopera-

tive CT scans. 577 were centered in the pedicle, 58 were less

than 2 mm off center, 9 breached 2 mm to 4 mm off center and

2 screws deviated greater than 4 mm from the pedicle wall.

Schatlo et al39 reported on the technical accuracy of 244 lumbar

pedicle screws. 204 screws (83.6%) were graded as a perfect

trajectory (A) compared to the pre-operative plan, 19 (7.8%)

were less than 2 mm (B), 9 (3.7%) breached 2 mm to 4 mm off

center (C), 4 (1.6%) breached from 4 mm to 6 mm (D),

2 (0.8%) were greater than 6 mm off center and 6 (2.5%)

screws required revision.

A comprehensive study from Keric et al107 reviewed the

technical accuracy of 1857 screw positions based on postopera-

tive CT scans. Of the 1857 screws, 1799 (96.9%) were graded

as acceptable or good position, 38 screws (2%) exhibited devia-

tions from 3 mm to 6 mm and 20 screws (1.1%) were greater

than 6 mm from the planned trajectory. The 58 malpositioned

screws (3 mm to 6 mm deviations) were located primarily in

the upper and lower thoracic regions versus the lumbar spine.

These deviations were considered secondary to smaller pedicle

morphometry126 and instrument skiving.107

In consideration of the range for “acceptable” deviations

(best case ¼ <2 mm) between planned and actual positions

in the clinical setting, attention must be directed toward the

anatomical pedicle morphology from the cervical to lumbar

regions. For typical cervical vertebrae (C3 to C6) the mean

pedicle width was reported 4.9+ 0.9 mm.127,128 In the thoracic

region, pedicle width progressively decreases from T1 to T5

(mean 3.65 + 0.40 mm) and increases from T6 though the

T12 levels (mean 7.89 + 0.70 mm).103,125 The lumbar verteb-

rae allow greater cross sectional areas for “ideal” pedicle screw

placement, however, the proximity of adjacent exiting nerve

roots ranges from 2.9 mm to 6.2 mm proximally and 0.8 mm to

2.8 mm distally. Moreover, the distance between the medial

borders of pedicle to thecal sac ranges from 0.9 mm to

2.1 mm.129

Basis for Disparity in Optoelectronic Accuracy

A key consideration pertaining to optoelectronic accuracy in

the clinical environment compared to the laboratory setting is

the dynamic nature of the operating room. The basis for dis-

parity in accuracy when equating the laboratory versus clinical

operative platforms is a result of the combined, cumulative

errors secondary to the intraoperative workflow process, varia-

bility in anatomic morphology, and spinal flexibility. Of fun-

damental importance, and the crux of the matter, related to

error propagation in navigation and robotic-assisted spinal sur-

gery is the assumption that the workflow platform and patient’s

spine is rigid, and as such, motion of any type is perceived as a

rigid body transformation. Optoelectronic error reduction in the

clinical flow requires stabilization of the camera source, rigid

fixation of surveillance arrays in the iliac crest, stable attach-

ment of patient reference and registration arrays to anatomic

landmarks, and end effector instruments arrays which are

inflexible. The end effector is the last link where the robotic

enters the workspace and small rotations or translations in the

array references can lead to large errors in instrument position.

Although accurate, close-to-ideal reference reproducibility of

these steps will reduce errors, the reality is that fixed arrays do

move—leading to increased relative motions between arrays

and subsequent error propagation and disparity between the

physical, real time world and virtual world. Moreover, spatial

errors can be further magnified due to geometrical distortion of

preoperative images, and tracking error of the surgical instru-

ments.130 To register the physical patient to the virtual patient,

Grunert et al67 proposed a series of transformation matrices,

including fiducial-based paired-point transformation, surface

contour matching, and hybrid transformation. The hybrid trans-

formation process is most applicable to robotic assisted spinal

surgery as it includes the methods of surface-based and pair-

point based methods with implanted fiducials. As such, tracing

at least 3 anatomic landmarks with navigational confirmation

serves to reduce error potential.
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Several publications on optimizing clinical workflow pro-

cess have been reported31,38,42,76 130-133 Lieberman et al31

provides an excellent description of the step-by-step workflow

process in robotic assisted spinal surgery. The report provides a

concise methodological approach to operative workflow, while

at the same time providing a collective basis for potential

error(s) propagation in the clinical setting. The sequential

description of process flow/error potentials includes pre-

operative and intra-operative registration, dislodgement of ref-

erence arrays, damaged or bent navigation tools134-136 and

arrays occlusions (e.g., distance and blood), skiving or tool

deflection secondary to sloped anatomic topology or muscle

retraction, and untracked patient movement during the spinal

destabilizing procedure. In addition to unintended motion or

bending of fiducial arrays, the inherent differences in anatomic

topology, bone mineral density and flexibility of the patient’s

spine, both before and following destabilization and recon-

struction procedures, cannot be overemphasized. The challenge

is the spine is often flexible—the drill and robotic arm may be

properly located, but highly mobile, multi-segmental spinal

reconstructions with minimal deflection force leads to unin-

tended rotation or translation of the operative vertebral ele-

ments, skiving or tool deflection, and effects precision rate

during screw insertion.31,38 132 133 135 137 The basis for

decreased technical accuracy in the clinical operative platforms

is a result of combined, cumulative errors secondary to the

intraoperative workflow process, number of kinematic linkages

and variability in patient spinal morphology and flexibility

(Figure 8).

Discussion

In reviewing the intrinsic technical accuracy and registration

accuracy, there exists a substantial burden of proof that the

potential performance in optoelectronics is nearly identical

between the 2 platforms—laboratory versus clinical opera-

tive—under static conditions. The downstream difference in

optoelectronic technical accuracy and disparity between the 2

platforms is secondary to the dynamic factors unique to each.

The laboratory workflow methods and array registration for

experimental musculoskeletal kinematic studies are rigid,

highly controlled, with limited experimental coordinate trans-

formations between data input/output—reducing error propa-

gation and maximizing optoelectronic accuracy. Unique to

robotic-assisted spinal surgery and in difference to the labora-

tory setting, the dynamic intra-operative process necessitates

considerably more steps in the transference of optoelectronic

kinematic data. The complex data flow process integrates cor-

relation and mapping algorithms to register the physical patient

to the virtual patient via the navigation system, optoelectronic

source, surveillance markers, patient reference markers, end

effector instruments, and patient CT images. Essentially, this

Figure 8. Clinical platform for optoelectronic data transference process. Schematic illustration demonstrating the operative clinical workflow
and process for data transference utilizing optoelectronic tracking. Unique to robotic assisted spinal surgery and in difference to the laboratory
setting, the intra-operative process requires considerably more steps in the transference of optoelectronic kinematic data. This complex
workflow process integrates correlation and mapping algorithms to register the physical patient to the virtual patient via the navigation system,
optoelectronic source, surveillance markers, patient reference markers, end effector instruments in the operative field, and patient CT images.
Accurate, close-to-ideal reference reproducibility and maintenance of this dataset is the primary intra-operative objective and challenge.
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is a comparison of technical accuracy between a rigid, highly

controlled setting and a variable environment with multiple

data input factors. The collective effect results in an increased

potential for error propagation from experimental coordinate

transformations, data processing and optoelectronic kinematic

linkages in the clinical setting.

Although workflow and patient related factors provide a

basis for decreased accuracy in the clinical setting, with differ-

ences between planned versus actual final implant position

ranging from 1.5 mm to 3 mm, it could be argued with some

degree of confidence that these technical inaccuracies are

inconsequential and of no clinical significance in anatomic

zones permitting such deviation (e.g., L5 pedicle). However,

in cases of cervical or thoracic operative procedures with pedi-

cular dimensions less than 3.5 mm diameter and neural struc-

tures within 0.8 mm proximity to pedicular cortices, technical

errors of 2 mm to 3 mm are significant, and navigational integ-

rity and reliability of the data transformation process are of

paramount importance. With this level of technical inaccuracy,

there is basis for contraindication in the use of navigation and

robotic-assisted spinal surgery depending on the indications

presented and extent of confounding factors that may decrease

registration accuracy and subsequent technical accuracy of

implant placement.

The fundamental technological challenge of navigation and

robotic-assisted spinal surgery is the virtual world needs to

clearly represent the physical, real time world. Navigational

integrity and maintenance of fidelity in the transference of

optoelectronic data is the cornerstone of robotic-assisted spinal

surgery. Transitioning from the controlled laboratory setting to

clinical operative environment requires an increased number of

steps in the optoelectronic kinematic chain and potential for

error propagation in experimental coordinate transformations.

Moreover, intra-operative challenges of array location, system

registration, spinal flexibility, anatomic topography and work-

flow affect navigational integrity and provide a basis for the

disparity of optoelectronic accuracy in the clinical environment

compared to the controlled laboratory setting. A continuum of

decreased accuracy is demonstrated when comparing the

optoelectronic camera source itself to application in musculos-

keletal platforms, and finally, clinical operative environment.

Diligence in the areas of pre-operative planning, source camera

and fiducial positioning, system registration and intra-operative

process workflow have the potential to improve accuracy and

decrease disparity between planned and final implant position.
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