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Background: Chronic coronary syndrome (CCS) is a newly proposed concept and is
hallmarked by more long-term major adverse cardiovascular events (MACEs), calling for
accurate prognostic biomarkers for initial risk stratification.

Methods: Data-independent acquisition liquid chromatography tandem mass
spectrometry (DIA LC-MS/MS) quantitative proteomics was performed on 38 patients
with CCS; 19 in the CCS events group and 19 in the non-events group as the controls.
We also developed a machine-learning-based pipeline to identify proteins as potential
biomarkers and validated the target proteins by enzyme-linked immunosorbent assay in
an independent prospective cohort.

Results: Fifty-seven differentially expressed proteins were identified by quantitative
proteomics and three final biomarkers were preliminarily selected from the machine-
learning-based pipeline. Further validation with the prospective cohort showed that
endothelial protein C receptor (EPCR) and cholesteryl ester transfer protein (CETP) levels
at admission were significantly higher in the CCS events group than they were in the
non-events group, whereas the carboxypeptidase B2 (CPB2) level was similar in the
two groups. In the Cox survival analysis, EPCR and CETP were independent risk factors
for MACEs. We constructed a new prognostic model by combining the Framingham
coronary heart disease (CHD) risk model with EPCR and CETP levels. This new model
significantly improved the C-statistics for MACE prediction compared with that of the
Framingham CHD risk model alone.

Conclusion: Plasma proteomics was used to find biomarkers of predicting MACEs
in patients with CCS. EPCR and CETP were identified as promising prognostic
biomarkers for CCS.
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INTRODUCTION

The Guidelines for chronic coronary syndrome (CCS) were
announced at the annual meeting of the European Society
of Cardiology (ESC) in August 2019 (1). The ESC updated
the “Guidelines for Treatment of Stable Coronary Artery
Diseases (SCAD)” released in 2013 (2) and defined the
concept of CCS. This changed the previous inherent concept
of SCAD and reflected the current deeper understanding of
the pathophysiological mechanism of coronary artery disease.
Traditionally, the term SCAD was used to describe CCS which
often shaped the disease as “stable.” Although CCS is often
“relatively stable” compared with acute coronary artery disease,
the underlying pathophysiological state can become “unstable”
at any time, causing plaque rupture or erosion, leading to acute
thrombosis. Therefore, the risk of future cardiovascular events
in patients with CCS can be different; hence, predicting major
adverse cardiovascular events (MACEs) will have great clinical
significance for patients with CCS.

The purpose of genomics is to collectively characterize and
quantify all genes, and transcriptomics refers to the study of
gene transcription in cells and the regulation of transcription
regulation at the overall level. However, in recent years, many
researchers have found that the results for proteins are often not
highly consistent with those for genomes or transcriptomes (3).
This is partly because the products of transcription or translation
are usually metabolized or modified, thereby changing the
downstream protein abundance (4). Proteins are key regulators
of many biological processes, and are directly related to the
occurrence of many diseases and their clinical prognosis (5).
Proteomics approaches have become increasingly mature, from
the discovery of a single biomarker for early disease to the
comprehensive characterization of protein abundance profiles
of specific diseases. Indeed, some diseases are affected by more
than one biological pathway. The advent of high-throughput
proteomics has made research on such processes possible, and
the study of differentially expressed proteins (DEPs) has provided
insights into the molecular mechanisms of many human
diseases (6–8). Currently, liquid chromatography tandem mass
spectrometry (LC-MS/MS) is the main tool used to analyze whole
proteomes, and it has been applied in studies of cardiovascular
diseases, including the recently redefined CCS.

In this study, we performed a proteomics analysis to discover
potential biomarkers of CCS, used machine learning methods
to screen the identified biomarkers (9, 10), and validated the
selected biomarkers in an independent prospective cohort. Two
proteins were identified as new biomarkers for predicting the risk
of adverse cardiovascular events in patients with CCS.

MATERIALS AND METHODS

The overall design of this study is shown in Figure 1. The
discovery cohort was a retrospective cohort. We selected 38
patients who had undergone a physical examination conducted at
the People’s Liberation Army (PLA) General Hospital from April
to July 2015. The inclusion criteria were: (1) patients who were

asymptomatic or had stable symptoms within 1 year after onset
of acute coronary syndromes; (2) patients who were stable more
than 1 year after initial diagnosis or revascularization regardless
of symptoms; (3) patients with angina pectoris, suspected
vasospasm, or microvascular disease; and (4) Males aged more
than 65 years old. The exclusion criteria were: (1) patients with
severe heart failure; (2) patients with CHD in the acute phase; and
(3) patients with other diseases that made them unsuitable for this
study. According to whether MACEs (including cardiovascular
related death, non-fatal myocardial infarction, unstable angina,
and heart failure) occurred until June 2019, the participants
were divided into a CCS events group (Group A, n = 19) as
the cases and a non-events group (Group B, n = 19) as the
controls for the proteomics analysis. The validation cohort was an
independent prospective cohort that included 352 patients who
were recruited from those who had undergone a routine physical
examination at the PLA General Hospital from April to July 2017.
The inclusion and exclusion criteria were the same as those for
the discovery cohort above. This cohort was followed up until
April 2021. All methods were carried out in accordance with
relevant guidelines and regulations. All experimental protocols
were approved by Ethics Board of the Chinese PLA General
Hospital. All informed consent was obtained from all subjects
and/or their legal guardian(s).

Blood Sampling
Plasma samples were collected after fasting
12 h. The samples were stored at −80◦C with
ethylenediaminetetraacetate until analysis.

Proteomics Analysis
Quantitative proteomics analysis was performed using liquid
chromatography tandem mass spectrometry (LC-MS/MS) to
identify potential protein biomarker candidates among those
proteins differing in abundance between event group and non-
event group.

We used an integrated approach involving data-independent
acquisition (DIA) strategy, HPLC fractionation to quantify the
dynamic changes of the whole proteome.

Protein Extraction
Firstly, the cellular debris of plasma sample was removed
by centrifugation at 12,000 g at 4◦C for 10 min. Then, the
supernatant was transferred to a new centrifuge tube. The top
12 high abundance proteins were removed by PierceTM Top 12
Abundant Protein Depletion Spin Columns Kit (Thermo Fisher).
Finally, the protein concentration was determined with BCA kit
according to the manufacturer’s instructions.

Trypsin Digestion
For digestion, the protein solution was reduced with 5 mM
dithiothreitol for 30 min at 56◦C and alkylated with 11 mM
iodoacetamide for 15 min at room temperature in darkness. The
protein sample was then diluted by adding 100 mM TEAB to urea
concentration less than 2 M. Finally, trypsin was added at 1:50
trypsin-to-protein mass ratio for the first digestion overnight and
1:100 trypsin-to-protein mass ratio for a second 4 h-digestion.
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FIGURE 1 | Study design.

HPLC Fractionation
The tryptic peptides were fractionated into fractions by high pH
reverse-phase HPLC using Agilent 300Extend C18 column (5 µm
particles, 4.6 mm ID, 250 mm length). Briefly, peptides were first
separated with a gradient of 8–32% acetonitrile (pH 9.0) over
60 min into 60 fractions. Then, the peptides were combined into
18 fractions and dried by vacuum centrifuging.

Data-Independent Acquisition—Liquid
Chromatography Tandem Mass Spectrometry
Analysis
The iRT kit was added to all the samples according to
manufacturer’s instructions. The tryptic peptides were dissolved
in solvent A (0.1% formic acid, 2% acetonitrile), directly loaded
onto a home-made reversed-phase analytical column (25-cm
length, 100 µm i.d.). Peptides were separated with a gradient
from 4 to 32% solvent B (0.1% formic acid in 90% acetonitrile)
over 114 min, and climbing to 80% in 3 min then holding at
80% for the last 3 min, all at a constant flowrate of 450 nL/min
on an EASY-nLC 1200 UPLC system (Thermo Fisher Scientific).
The separated peptides were analyzed in DDA mode by Q

ExactiveisTM HF-X (Thermo Fisher Scientific) with a nano-
electrospray ion source.

The separated peptides were analyzed in Q ExactiveTM HF-X
(Thermo Fisher Scientific) with a nano-electrospray ion source.
The full MS scan resolution was set to 120,000 for a scan range of
385–1200 m/z. The data acquisition was performed in DIA mode.
Each cycle contains one full scan followed by 70 DIA MS/MS
scans with predefined precursor m/z range. The higher-energy
collisional dissociation (HCD) fragmentation was performed at
a normalized collision energy (NCE) of 27%. The fragments
were detected in the Orbitrap at a resolution of 15,000. Fixed
first mass was set as 200 m/z. Automatic gain control (AGC)
target was set at 5E5.

Data Analysis
Spectral library generation: the resulting DDA data were
processed using MaxQuant search engine (v.1.6.6.0). Tandem
mass spectra were searched against the human SwissProt database
(20,387 entries) concatenated with reverse decoy database.
Trypsin/P was specified as cleavage enzyme allowing up to 2
missing cleavages. The mass tolerance for precursor ions was
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set as 20 ppm in First search and 4.5 ppm in Main search,
and the mass tolerance for fragment ions was set as 0.02 Da.
Carbamidomethyl on Cys was specified as fixed modification.
Acetylation on protein N-terminal and oxidation on Met were
specified as variable modifications. FDR was adjusted to <1%.
The false discovery rates of the PSMs and proteins were set
to less than 1%.

Data-independent acquisition data analysis: all DIA data were
analyzed in Skyline (v 4.1.0). The DDA search results were
imported to Skyline to generate the spectral library, and the
retention times were aligned to iRT reference values. Transition
settings: precursor charges were set as 2, 3, 4, 5, ion charges
were set as 1, 2. The ion match tolerance was set as 0.02 Da. Six
most intense fragment ions from the spectral library were selected
for each precursor. Decoy generation was based on shuffled
sequences, and the FDR was estimated with the mProphet
approach and set to 1%. Relative quantification of proteins was
performed using MSstats package.

Bioinformatics Analysis
For the Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses, we used the two-tailed
Fisher’s exact test to determine the significance of the functional
enrichment of the DEPs against all the identified proteins.
A corrected p-value < 0.05 was considered significant.

Machine Learning-Based Selection of
Biomarkers
Construction of Voting Classifier
We used three machine learning classification algorithms,
Logistic Regression, Support Vector Machine, and Random
Forest, as the base classifiers (Supplementary Figure 1). On
the basis of these classifiers, we built a voting classifier. When
a new sample had to be assigned to a category, each base
classifier was used to predict the probability that the new sample
belonged to a particular category. The final classification result
was determined by the weighted value of the predicted probability
of each category by all three base classifiers. This is an integrated
method that used the Voting Classifier model in Python.

Feature Ranking
Each sample was represented by a feature vector composed
of numerous expression data. To quantify the ability of
these expression features to distinguish different samples, we
performed univariate feature analysis using a variance test to
calculate the correlation between each feature and the sample
category one by one. In this way, the ability of each feature
to distinguish the sample category was obtained and the score
and the corresponding p-value was calculated. The expression
features were sorted according to the calculated p-value, and used
in the subsequent analysis.

Accuracy Evaluation Index
To compare the difference between the category predicted by the
model and the actual sample category, we calculated an accuracy
index using the Matthews coefficient value as an indicator of the

accuracy of the predictive power of the model as

Matthews coefficient = (TP × TN − FP × FN)/
√
[(TP + FP)(TP + FN)(TN + FN)(TN + FP)] (1)

where, TP, TN, FP, and FN are true positive, true negative, false
positive, and false negative, respectively.

Feature Selection
We plotted the calculated accuracy index results against
the number of features in the expression feature subset as
the incremental feature selection curve. When the Matthews
coefficient reached the maximum value, we considered the
expression feature subset corresponding to the model as the
optimal expression feature subset.

Cross-Validation
The expression feature subset and sample category were used
as input of the Voting Classifier model, and 10-fold cross-
validation was used to calculate the prediction accuracy of the
local optimal expression feature subset for a sample. The results
were expressed by the receiver operating characteristic curve
(ROC). This is a dynamic validation that reduced the impact of
data partitioning.

Statistics Analysis
Data are presented as numbers and frequencies for categorical
variables and as means ± SD for continuous variables. Baseline
characteristics were compared using the Chi-square test for
categorical variables and analysis of variance test for continuous
variables. The effect of the candidate biomarkers was evaluated
using a Cox proportional hazards model, and p-values were
calculated using the log-rank test. The ROC was compared using
a z-test (DeLong’s method) between the classic Framingham
CHD risk model alone and the Framingham CHD model
combined with the candidate biomarkers EPCR and CETP. The
Framingham CHD model included age, sex, total cholesterol,
high-density lipoprotein cholesterol (HDL-C), systolic blood
pressure, current smoking, and diabetes status as confounding
factors. p-Value of <0.05 was considered to indicate statistically
significant difference for all the analyses. The statistical analyses
were performed using SPSS (version 23.0), STATA (version 12.0),
and MedCalc Software.

Data and Code Availability
The datasets generated and/or analyzed during the current study
are available in the PRIDE repository.1 Project ID: PXD029473.

RESULTS

Baseline Characteristics
The baseline clinical data of the discovery and validation cohorts
are shown in Table 1. The discovery cohort comprised 19
cases (including 2 cardiovascular death, 4 non-fatal myocardial

1http://proteomecentral.proteomexchange.org
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TABLE 1 | Baseline clinical and laboratory characteristics of the study patients.

Discovery cohort Validation cohort

Event (n = 19) No event (n = 19) Event (n = 86) No event (n = 266)

Age, years 79.13 ± 12.12 78.39 ± 6.55 83.78 ± 9.66 80.41 ± 9.15*

Waistline (cm) 91.00 ± 10.18 90.20 ± 7.45 91.75 ± 12.20 92.85 ± 11.64

BMI (kg/m2) 23.89 ± 1.94 23.70 ± 1.66 24.26 ± 2.90 24.72 ± 3.41

Current smokers, n (%) 1 (5.3) 1 (5.3) 5 (5.8) 38 (14.3)*

Hypertension, n (%) 14 (73.7) 16 (84.2) 86 (75.6) 194 (72.9)

Diabetes mellitus, n (%) 12 (63.2) 9 (47.4) 35 (40.7) 97 (36.5)

Stroke, n (%) 3 (15.8) 3 (15.8) 10 (11.6) 28 (10.5)

Systolic pressure (mmHg) 129.84 ± 17.98 137.73 ± 15.31 134.30 ± 16.50 132.92 ± 17.54

Diastolic pressure (mmHg) 64.42 ± 11.49 67.15 ± 11.85 65.72 ± 9.82 68.43 ± 9.59*

Fibrinogen (g/L) 3.46 ± 0.66 3.46 ± 0.52 3.52 ± 0.63 3.35 ± 0.61*

D-dimer (mmol/L) 0.66 ± 0.62 0.26 ± 0.23 0.96 ± 1.79 0.64 ± 0.65*

Total cholesterol (mmol/L) 3.97 ± 0.76 3.78 ± 0.67 3.97 ± 0.77 4.03 ± 0.79

Triglyceride (mmol/L) 1.44 ± 0.79 1.19 ± 0.35 1.42 ± 0.75 1.26 ± 0.70

HDL-C (mmol/L) 1.24 ± 0.28 1.28 ± 0.38 1.25 ± 0.40 1.41 ± 0.50*

LDL-C (mmol/L) 2.55 ± 0.67 2.25 ± 0.55 2.49 ± 0.67 2.44 ± 0.70

HBA1c (%) 6.27 ± 1.14 6.24 ± 0.86 6.36 ± 1.17 6.10 ± 0.79*

NT-proBNP (pg/ml) 225.04 ± 230.82 201.21 ± 181.24 344.21 ± 499.52 213.06 ± 400.00*

BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; HBA1c, hemoglobin A1c; NT-proBNP: N-terminal-pro-
brain natriuretic peptide. *p-value < 0.05.

infarction, 12 unstable angina, and 1 heart failure) and 19
controls, with an average follow-up time of 47.6 months. In the
validation cohort, after an average of 41.6 months of follow-
up, 86 patients (24.3%) had MACEs (including 9 cardiovascular
death, 12 non-fatal myocardial infarction, 57 unstable angina,
and 8 heart failure). Age, fibrinogen, D-dimer, glycosylated
hemoglobin, and NT-proBNP (N-terminal-pro-brain natriuretic
peptide) were significantly higher in the events group than they
were in the non-events group. Current smoking, diastolic blood
pressure, and HDL-C were significantly higher in the non-events
group than they were in the events group.

Proteomics Analysis
Quality control results for the proteomics data are shown in
Supplementary Figure 2. The length distribution showed that
70% of the identified peptides were 7–20 amino acids long,
which is consistent with the general rules of trypsin enzymatic
hydrolysis and HCD. Peptides shorter than 5 amino acids cannot
be effectively identified, and peptides longer than 20 amino
acids are not suitable for HCD because of their high mass
and charge. The distribution of peptides per protein showed
that there were more than two peptides for most proteins.
In general, proteins that have multiple corresponding specific
peptides increase the precision and accuracy of the quantification
results. The mass distribution of the proteins showed that the
mass was relatively well-distributed, indicating that there was
no significant molecular weight bias for proteins during sample
preparation. These results confirm that the overall proteomics
data meet the quality control requirements.

A total of 5,480 peptides were identified in the mass spectrum.
By comparing the peptides back to proteins, we identified a total
of 1,120 proteins, of which 783 were quantified.

We used the proteomic data to identify signatures of MACEs
by analyzing the plasma proteins that underwent significant fold
changes (FCs) between Group A and Group B (FC > 1.2 or
FC < 0.8; unpaired two-sided Welch’s t-test; p < 0.05). As shown
in the volcano map (Supplementary Figure 3), a total of 57 DEPs
were identified under this condition.

Functional Analysis of the Differentially
Expressed Proteins
The DEPs were annotated with GO terms and assigned
KEGG pathways for the functional enrichment analyses
(Figure 2). The highly enriched processes included cellular
lipid metabolic process, acylglycerol transport, inflammatory
response, response to bacterium, glycerolipid metabolism,
hypertrophic cardiomyopathy, complement and coagulation
cascades, and PI3K-Akt signaling pathway. These analyses
pinpointed specific pathways (lipid metabolic, coagulation, and
inflammation) that may operate in the events group compared
with the non-events group, and highlighted CCS-related
pathways for further functional investigation.

Machine Learning-Based Selection of
Biomarkers for Prognosis of Chronic
Coronary Syndrome
We used the plasma proteomic data of the discovery cohort and
developed a series of algorithms to identify potential biomarker
combinations to classify CCS cases. The feature analysis was used
to rank the expression features based on scores and p-values,
as shown in Supplementary Figure 4. To visualize the ranking
results of the protein expression characteristics, we plotted a
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FIGURE 2 | GO (A) and KEGG (B) pathway enrichment analyses.

ranking histogram of the top 30 features with the highest scores
(Supplementary Figure 5).

The incremental feature selection curve (Supplementary
Figure 6) shows that when the top eight ranked features were
selected, the Matthews coefficient value of the model reached the
maximum for the first time. These eight features were analyzed
further. Next, we selected the protein combinations with the
highest area under the curve (AUC) value from the 10-fold cross-
validation. The ROC curve (Figure 3) showed that the AUC
of the first six proteins in the final trained model were >0.8.
These six proteins were identified as candidate proteins and the
detailed information is shown in Supplementary Table 1. The
distribution of these six proteins between the events and non-
events groups was significantly different as shown in the box plots
in Supplementary Figure 7.

Validation of the Biomarkers of Different
Chronic Coronary Syndrome Outcomes
By combining the results of the DEP selection, GO and KEGG
pathway analyses, machine learning, previous knowledge and
clinical relevance, we selected three proteins EPCR (Q9UNN8),
CPB2 (Q96IY4), and CETP (P11597) as the target proteins
for validation. The expression levels of the three proteins are
shown in Supplementary Figure 8. EPCR and CETP levels at
admission were significantly higher in the CCS events group
than in the control non-events group, whereas the CPB2 levels
were similar. The Cox survival analysis showed that EPCR and
CETP were risk factors for MACEs (Table 2). After correcting
for the confounding factors in the Framingham CHD risk
model, EPCR and CETP were still found to be independent risk
factors for MACEs. Additionally, a new prognostic model was
constructed by combining the Framingham CHD risk model
with the candidate biomarkers EPCR and CETP. This new model
significantly improved the C-statistics for MACE prediction

FIGURE 3 | ROC curve of the model using the candidate proteins in machine
learning.

compared with that of the Framingham CHD risk model alone
(AUC 0.732 vs. 0.684, p < 0.05) (Figure 4). These results showed
that EPCR and CETP were independent risk factors for MACEs
in patients with CCS, and combined with the classic Framingham
model, EPCR and CETP provided better prediction metrics than
the Framingham model alone.

DISCUSSION

We performed a series of studies on the plasma proteins
of patients with CCS, followed by global proteomic mass
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TABLE 2 | Relation of target proteins and MACEs in univariate and multivariate survival analysis.

Univariate models Multivariate models

HR (95% CI) p-Value HR (95% CI) p-Value

CPB2 0.843 (0.690–1.030) 0.096 0.824 (0.676–1.004) 0.055

CETP 1.063 (1.005–1.125) 0.034 1.058 (1.000–1.120) 0.048

EPCR 1.086 (1.021–1.155) 0.008 1.075 (1.013–1.142) 0.017

CPB2, carboxypeptidase B2; CETP, cholesteryl ester transfer protein; EPCR, endothelial protein C receptor. Multivariate model included age, sex, total cholesterol,
high-density lipoprotein cholesterol, systolic blood pressure, current smoking, and diabetes status. CETP is calculated as per 100 mmol/L and EPCR is calculated
as per 10 mmol/L.

FIGURE 4 | Comparative ROC curves of Framingham CHD risk model
combined with CETP and EPCR.

spectrometry identification, machine learning-based selection of
biomarkers, and enzyme-linked immunosorbent assay (ELISA)
for prospective validation of expanded samples. First, we used
discovery mass spectrometry to quantify thousands of different
proteins without the need for previous knowledge, and thus
identify proteins not previously associated with CCS. After
protein relative quantification between the CCS events and non-
events groups, the classification power was evaluated by machine
learning-based selection. On the basis of the results and clinical
relevance, we identified three proteins, endothelial protein C
receptor (EPCR), carboxypeptidase B2 (CPB2), and cholesteryl
ester transfer protein (CETP) as candidate biomarkers. Finally,
in the independent validation cohort, we found that EPCR and
CETP were better than CPB2 for predicting MACEs in patients
with CCS by ELISA and, when combined with the Framingham
coronary heart disease (CHD) risk model, they improved the risk
prediction beyond the Framingham CHD risk model alone.

Cardiovascular disease is one of the leading causes of
death worldwide (11). One of the main risks of developing
cardiovascular disease is vascular endothelial dysfunction (12).
In a healthy state, endothelial cells maintain a balanced

hemostatic state by producing procoagulants and anticoagulants,
as well as proinflammatory and anti-inflammatory cytokines.
In the disease state, endothelial cells are activated and exert
procoagulant and proinflammatory effects. Endothelial cell
dysfunction leads to thrombosis and coagulation imbalance
(13). The new international guidelines consider that CHD is
a dynamic process of atherosclerotic plaque accumulation and
changes in coronary circulatory function. Plaques can show
the following trends: gradually increased instability or even
rupture, stability maintained for a long time, and gradual
shrinking. The composition of plaques also continues to change.
However, about one-third of patients with a cardiovascular
disease have angina pectoris, but have no obstructive coronary
artery disease (14). Therefore, patients with CCS can have
a relatively stable period, but the relatively stable vascular
environment and circulatory function may become unstable
because of inflammatory reactions, vulnerable plaques, and
abnormal lipid metabolism (15). Therefore, “stability” is only
temporary and relative, not absolute. The clinical evaluation and
management of such seemingly “stable” patients with CCS is
of great significance to improve the prognosis. In this study,
we found EPCR and CETP were closely related to vascular
endothelial homeostasis.

There are two variants of EPCR: mEPCR (membrane EPCR),
which is present on endothelial cell membranes, and soluble
EPCR (soluble EPCR), which circulates in the blood (16).
Protein C is a vitamin K-dependent serine protease that is
synthesized mainly in the liver and circulates in the plasma.
Protein C binds to mEPCR with high affinity, and is converted
to activated protein C (APC) by the thrombin–thrombomodulin
complex on the surface of endothelial cells through a limited
proteolytic process (17). The mEPCR variant can bind to APC
and plays important roles in anticoagulation, anti-inflammatory,
cell protection (anti-apoptosis), protecting endothelial barrier
function, and promoting neovascularization (18–22). When
activated by the thrombin–thrombomodulin complex, APC
dissociates from the membrane-bound receptor mEPCR, and
functions as an anticoagulant by inactivating coagulation factors
Va and VIIIa (23). When APC is combined with mEPCR, it
shows strong anti-inflammatory and cytoprotective activities.
The cytoprotective signal activity of APC is mediated by protease
activated receptor 1 (PAR1) on endothelial cells bound by
mEPCR (24). The APC–mEPCR complex relies on the anti-
inflammatory activity of PAR1 to mediate the inhibition of
inflammatory gene expression, including c-Fos and FosB, which
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belong to the activator protein 1 (AP-1) family. Protective signals
can also inhibit the release of inflammatory cytokines (such
as IL-1β, IL-6, and tumor necrosis factor-α) and the nuclear
translocation of NF-κB, and downregulate the expression of genes
that encode endothelial cell adhesion proteins (such as ICAM1,
VCAM1, and E-selectin), thereby restricting the penetration
of white blood cells through the vascular system, protecting
the endothelial barrier function, and inhibiting inflammation
(25). Conversely, the sEPCR variant detaches from the cell
membrane surface through shedding and enters the circulation.
Possible reasons for shedding include a systemic inflammatory
response and vascular endothelial damage (26). The sEPCR plays
a negative competitive role in blood circulation. It binds protein
C and APC with similar affinity and inhibits protein C activation
on the endothelium. It also inhibits the anticoagulant activity
of APC by blocking the binding of APC to phospholipids. It is
the sEPCR variant in blood circulation that was tested in this
study. Elevated levels of sEPCR can disturb vascular homeostasis,
promote coagulation, aggravate inflammation, and accelerate
endothelial cell apoptosis, which is associated with increased risk
of thrombosis (27).

Cholesteryl ester transfer protein is a plasma protein secreted
by the liver. It is one of the most effective endogenous regulators
of plasma HDL-C, which protects the cardiovascular system
in many ways (28). It can promote the transfer of cholesterol
ester from HDL-C to apolipoprotein B (ApoB). In addition to
removing excess cholesterol from the arterial wall, HDL-C can
also inhibit lipid oxidation, restore endothelial function, and
exert anti-inflammatory and anti-apoptotic effects (29, 30). CETP
leads to a net reduction of HDL-C in plasma, which increases
the risk of atherosclerosis development. Some large randomized
controlled trials have studied the effects of CETP inhibitors on
lipid metabolism and MACEs, but the results are inconsistent
(31–33). Possible reasons include incomplete function of the
CETP inhibitors and side effects of drugs. A study explored
whether CETP was related to atherosclerosis through its role
in HDL-C and low-density lipoprotein metabolism. In a case–
control study of 50 patients with coronary atherosclerosis and
50 controls, no significant difference was detected in the lipid
profiles between the two groups, even though the serum CETP
level of the case group was significantly higher than that of
control group (34). This finding indicated that CETP may have
atherogenic effects. However, no further studies have reported
the long-term adverse prognosis risk of CHD. In our study, we
included both case–control and prospective cohorts, which more
fully illustrated the relationship between CETP and the poor
prognosis of patients with CCS.

On the other hand, several studies are designed to provide
the genomic or metabolomic background of CHD (35–37). All
these studies, once combined together, might provide essential
evidence for the efficient risk-stratification of patients with CHD.

To our knowledge, this is the first study to evaluate the
relationship between plasma proteomics and the prognosis of
patients with CCS. This study was layered involving three
different methods, and the results are accurate and reliable. In
addition, we analyzed more cases with longer follow-up times
than most of the other studies. Our study has some limitations.

First, the discovery and validation cohorts were from a single
center and had relatively fewer older adult female patients.
Therefore, to reduce bias, only male patients were included in
this study. Second, we identified 57 DEPs that could predict the
occurrence of MACEs, which may provide a rich biomarker pool
for CCS, but further refinement of the diagnostic biomarkers is
needed. Third, whether EPCR and CETP will act as prognostic
predictors of CCS caused by other etiologies needs further study.

CONCLUSION

We performed plasma proteomics analysis to find biomarkers for
predicting MACEs in patients with CCS. We identified EPCR and
CETP as independent risk factors for MACEs. The Framingham
CHD risk model combined with EPCR and CETP was found to be
a high-performance prognostic model for CCS. EPCR and CETP
may be associated with vascular homeostasis, involving lipid
metabolism, and inflammatory, coagulation, and cell protection
processes. Further investigations are needed to understand the
specific mechanisms involved.
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