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and proven practical in the ablation
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exchange at the plant surface to optimize

photosynthesis and water transport in

response to a multitude of environmental

conditions.
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THE BIGGER PICTURE A major challenge for biologists studying cell dynamics in 3D is labor-intensive
manual segmentation and measurements of cells. Plant biologists seek to study the dynamic deformations
of stomatal guard cells, which can allow plants to use water more efficiently, a major limiting factor in global
agricultural production and an area of increasing concern due to climate change.With this aim, we present a
one-stage automated segmentation network for 3D images of stomatal guard cells (3DCellNet) that enables
rapid and accuratemorphological measurements. When applied to 3D confocal data, it allowed us to quan-
titatively test how neighboring pavement cells in the epidermis of Arabidopsis thaliana plants impose phys-
ical constraints on stomatal complexes, a refinement of the ‘‘polar stiffening’’ model of stomatal biome-
chanics. We anticipate that our model will allow biologists to efficiently test new hypotheses on cell
dynamics and biomechanics with a handful of labeled 3D images of their own.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Automating the three-dimensional (3D) segmentation of stomatal guard cells and other confocal microscopy
data is extremely challenging due to hardware limitations, hard-to-localize regions, and limited optical reso-
lution. We present a memory-efficient, attention-based, one-stage segmentation neural network for 3D im-
ages of stomatal guard cells. Our model is trained end to end and achieved expert-level accuracy while
leveraging only eight human-labeled volume images. As a proof of concept, we applied our model to 3D
confocal data from a cell ablation experiment that tests the ‘‘polar stiffening’’ model of stomatal biome-
chanics. The resulting data allow us to refine this polar stiffeningmodel. This work presents a comprehensive,
automated, computer-based volumetric analysis of fluorescent guard cell images. We anticipate that our
model will allow biologists to rapidly test cell mechanics and dynamics and help them identify plants that
more efficiently use water, a major limiting factor in global agricultural production and an area of critical
concern during climate change.
INTRODUCTION

Guard cells surround stomatal pores on the leaf surface of

plants, and the degree to which stomata are open or closed con-

trols the rate of CO2 influx and water loss and is thus critical for
This is an open access article under the CC BY-N
plant physiology. Stomata help plants maintain a balance be-

tween water loss and carbon gain during photosynthesis, water

transport, and responses to environmental stresses.1,2 By study-

ing the underlying mechanics of stomata, we can gain more in-

sights into how they help balance gas exchange at the plant
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C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:jwang@ist.psu.edu
https://doi.org/10.1016/j.patter.2022.100627
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2022.100627&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


ll
OPEN ACCESS Article
surface to optimize photosynthesis and water transport in

response to a multitude of environmental conditions, including

stressors such as drought and excessive heat. To gain a closer

view of stomatal guard cells and study their physiology and

biomechanics in detail, we need to be able to accurately and

quantitatively measure their three-dimensional morphology.3

For example, despite decades of study, it remains unclear

exactly how stomatal aperture is determined by the structures

and mechanical properties of paired guard cells and their neigh-

boring pavement cells. Cell ablation has been used to investigate

the relationship between mechanical stress and biological

responses such as cell polarity and microtubule orientation4

and is thus a useful tool to study guard cell biomechanics. Em-

ploying single-cell ablation combined with confocal microscopy

has the potential to help reveal the mechanical interactions and

functional interdependencies between guard cells and pave-

ment cells.

One challenge in such efforts is the tremendous amount

of time required to manually count and measure a large

number of stomata. Software solutions such as 3D Slicer,5

CellProfiler,6 MorphoGraphX,7 and Imaris (Oxford Instru-

ments, Santa Barbara, CA, USA) aim to automate this pro-

cess, but these software programs require experts to either

manually mark certain features of cells or to tune a large set

of parameters.

Earlier approaches have relied on traditional image processing

and machine-learned features to detect stomata in two-dimen-

sional (2D) images.8–11 Recently developed methods use

more sophisticated features, including histogram of gradients

(HOGs), maximum stable external regions (MSERs), wavelet

spot detection, and template matching techniques, to identify

stomata.12–15 However, classical image processing techniques

are susceptible to noise and perform poorly if the image is not

sharply in focus, making analysis of 3D datasets from confocal

microscopy challenging since light scattering often blurs cell out-

lines deeper into the sample. These earlier methods either

require the image to contain rich background features, the sto-

mata to be in focus and visible, or the user to pre-select proper

shapes and parameters.

Recent advancements in deep learning, especially convolu-

tional neural networks (CNNs), have shown promising perfor-

mance in object detection, localization, and segmentation in

various fields of biomedical imaging. Toda et al.16 firstly de-

tected stomata with the HOGs feature followed by a CNN to

classify cropped pores as open or closed; subsequently,

they used binary image segmentation to complete automatic

pore measurement. Vialet-Chabrand et al.17 used a Haar

feature-based cascade classifier to determine whether the im-

age contains stomata or not. Bhugra et al.18 employed a

super-resolution CNN (SRCNN) along with a single-shot

multi-box to detect stomatal pores in scanning electron mi-

croscopy (SEM) images, followed by the use of a fully convo-

lutional network (FCN)19 to segment the pores. A method for

stomatal pore segmentation that used the Chan-Vese (CV)

model was presented by Li et al.20 The authors first used a

faster region-based CNN (faster R-CNN) to localize stomata

and then extracted the detected stomata, but the method re-

quires manually adjusting the parameters of the CV model.

Recently, Jayakody et al.21 proposed a three-stage pipeline
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where a feature pyramid network is embedded in the mask

R-CNN to identify stomata at different scales. However, all

of these methods use a localization step to detect stomata

before performing the segmentation, and none of them

accomplish volumetric guard cell or stomatal segmentation.

In the medical imaging field, methods for volumetric semantic

segmentation work based on 3D augmentation of a U-Net archi-

tecture22 such as 3D U-Net23 have shown promising results in

segmentation tasks for brain tumor images.24 Recently, the stan-

dard 3D U-Net and 2D U-Net models have been used as the

main segmentation networks for general cellular segmentation

works such asCellpose25 and PlantSeg.26 Series of convolutions

are used to reduce the initial image dimension to a set of high-

level features. These features are then upsampled back into a

scale equivalent to the original image. Annotating volumetric im-

ages is very time consuming as it requires consistent labeling in

all three orthogonal views. Another challenge associated with 3D

images is that they require large amounts of memory when

training deep-learning models. Therefore, we aimed to leverage

very few annotated patches of the dataset while targeting high

accuracy in terms of segmentation.

Here, we developed a patch-wise, attention-gated, fully

convolutional 3D framework for guard cell segmentation (Fig-

ure 1), which only requires a few hand-annotated volumetric

images to train. There are three key parts to our model: (1)

two subnetworks for different image resolutions are trained

and fused to improve the model’s robustness towards

different scales. (2) Input images are divided into small

patches, and the model is only trained with those patches.

This makes the model more memory efficient when analyzing

large volumetric images. (3) We improve the model’s sensi-

tivity and accuracy with volumetric attention gates by making

the model automatically target relevant regions while sup-

pressing irrelevant regions. This eliminates the need to employ

an external network for volume of interest (VOI) localization,

which has been used frequently in previous approaches.

Also, we employ combined dice and focal loss to reduce the

inherent class imbalance issue. In addition, we provided an

extended pipeline to automatically measure the volume of

each guard cell and the width and length of each stomatal

complex. This allowed us to perform analyses of these param-

eters, which are relevant to stomatal biology, in a fully auto-

mated fashion. We applied our automated segmentation pipe-

line to analyze 3D confocal imaging data from an experimental

study wherein different subsets of neighboring pavement cells

were ablated to determine the effects of these ablations on

guard cell morphology. The results of these analyses allow

us to refine existing notions of the biomechanical properties

of stomatal guard cells and their interactions with neighboring

cells into an updated biomechanical model. In the updated

model, epidermal cells adjoining the junctional regions be-

tween sister guard cells constrain guard cell volume to a

greater degree than epidermal cells flanking the sides of the

guard cells, potentially due to the heterogeneity of the guard

cell wall or higher cell wall permeability at the junction sides

than the other sides. This finding highlights the importance

of intrinsic and externally imposed mechanical constraints

on the poles of stomatal complexes in modulating stomatal

opening in response to water influx into the guard cells.
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Figure 1. The overall pipeline of the guard cell segmentation network

(A) Final segmentation map results from the fusion of two separate models: one for a patch size of 128 3 128 and the other for a patch size of 256 3 256.

(B) The main segmentation network architecture is shown. The raw image goes through a pre-processing step, which includes automatic noise reduction. Then,

the image is resized to a depth of 32 slices and divided into small volume patches.Nz refers to the number of slices in the z stack, andNp refers to the total number

of patches. The encoder part of the network leverages pre-trained, densely connected convolutional networks. The decoder employs an attention gate at the skip

connection. Finally, post-processing operations are performed to clean out the raw segmentation map and make it useful for further analysis.

(C) The flow diagram shows the sequence of post-processing steps. Morphological transformations are applied to fill the holes, remove the extrusions, and

smooth out the surface. Small artifact blobs are then removed after thresholding on a certain volume dimension. Finally, separate connected 3D objects are

classified into different classes, allowing for morphological measurements on individual guard cells.
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RESULTS

Model design
Previous segmentation approaches for stomata used localiza-

tion networks to first localize the region of interest before seg-

menting, which also helped deal with large images to fit them

into the computer’s memory. We aimed to build an end-to-
end, fully automated network without using any external net-

works to aid the segmentation pipeline. We collected 3D stacks

of images with a 633 objective on a spinning disk confocal mi-

croscope. To make the model flexible with an arbitrary number

of z-slices, we resized the original image with linear interpolation

so that the input dimension to themodel is 323 5123 512. Since

this image size exceeds the GPU memory when training the
Patterns 3, 100627, December 9, 2022 3



Table 1. Ablation study on model architecture

Models mIoU Precision F1 score

Baseline (B) 0.6933 ± 0.014 0.7841 ± 0.022 0.8187 ± 0.084

B + combined loss 0.7557 ± 0.027 0.8409 ± 0.028 0.9517 ± 0.014

B with Dense121 (BD) 0.7061 ± 0.011 0.8047 ± 0.018 0.8276 ± 0.024

BD + combined loss 0.7886 ± 0.010 0.9019 ± 0.023 0.8816 ± 0.017

BD + 3D Attention (Attn) + combined loss (ours) 0.8003 ± 0.014 0.9387 ± 0.018 0.9589 ± 0.020

ResNet50 + 3D Attn + combined loss 0.7219 ± 0.032 0.7995 ± 0.012 0.8018 ± 0.019

SeResNet50 + 3D Attn + combined loss 0.7221 ± 0.019 0.8111 ± 0.020 0.8332 ± 0.013

Efficient Net + 3D Attn + combined loss 0.5844 ± 0.024 0.6654 ± 0.025 0.6977 ± 0.044

Ours with 128 3 128 0.8413 ± 0.009 0.9087 ± 0.015 0.9623 ± 0.020

Ours with multi-resolution (final) 0.8200 ± 0.010 0.9034 ± 0.018 0.963 ± 0.026
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segmentation model, we divided the original image into two

different sizes of patches: 2563 256 and 1283 128. Using large

image patches provides more abundant contextual information

compared with small patches. When limited to a small amount

of data for training, the patch-based model provides efficiency

and has been shown to improve localization accuracy in the

medical imaging domain.27

The model architecture for guard cell segmentation from the

patches is based on traditional encoder-decoder architecture.

We performed an ablation study on different backbone models

and modalities to attest to our proposed model’s efficacy as

demonstrated in Table 1. The baseline model here is the stan-

dard and pre-trained 3D U-Net model. The encoder part of the

model leverages pre-trained, densely connected convolutional

layers (DenseNet)28 as the model performance was much better

compared with the other backbones. By using a pre-trained

network, we can avoid training a large number of parameters.

We trained two models of the same architecture for each patch

size and employed late fusion to regenerate the final segmenta-

tion map.

To capture a sufficient receptive field and contextual informa-

tion, the feature map grid is gradually downsampled in standard

CNN architectures. However, it remains difficult to minimize

false-positive predictions for small objects that show a large

shape variability, such as plant and animal cells. To improve

the accuracy, current segmentation frameworks in the biomed-

ical imaging domain17,20 rely on additional preceding object

localization models to simplify the task into separate localization

and subsequent segmentation steps. Oktay et al.29 demon-

strated that attention gates (AGs) could replace the localization

step in a standard CNN model without introducing a large num-

ber of parameters. In contrast to the localization model in multi-

stage CNNs, AGs progressively suppress feature responses in

irrelevant background regions without the requirement to crop

a VOI between networks.We further expanded this AG approach

in a 3D setting.

One of the main challenges in volumetric image segmentation

is the class imbalance issue. In our confocal datasets, there are

at most three to five guard cells in the volume, and neighboring

pavement cells occupy large portions of the images. When

training small patches, the class imbalance issue is further

aggravated. In the training, we avoided using patches that do

not include any part of the guard cell and found out the weighted

combination of dice and binary focal loss performs the best
4 Patterns 3, 100627, December 9, 2022
among the different loss combinations we tried in our ablation

experiment.

Training dataset
For a training dataset, we used fluorescent 3D images of the

cotyledon epidermis in seedlings of Arabidopsis thaliana that

were collected via spinning disk confocal microscopy. Figure 2

shows training image samples. Overall, training images varied

extensively in terms of voxel intensity even after normalization

as shown in Figure 2C. We ran a labeling trial among three cell

biologists who are well trained in guard cell labeling. Our results

(Figures 3B and 3C) show that there can be large discrepancies

in volume measurements even among experts. Toward the

beginning and end of the z stack, the human labelers tended

to disagreemore as it is challenging to distinguish a clear bound-

ary in all three orthogonal views. The average mean intersection

over union (IoU) score among the labelers was lower than our

model accuracy, indicating that the 3D CellNet model is as

good as or better than manual labeling for determining cell vol-

ume. A total of eight volumes were fully labeled by expert users

in orthogonal xy, yz, and xz slices using Slicer3D5 into two clas-

ses: guard cell and background. Unlike 2D image annotation, la-

beling 3D images requires continuous adjustment of the labels in

all three dimensions. Also, experience in detecting the bound-

aries between guard cells and neighboring pavement cells is

needed. On average, it takes 5 to 8 h to segment one volumetric

image for a trained annotator. Therefore, we aimed to leverage

as few annotated images as possible for model training. We con-

ducted 5-fold cross-validation on our model and other bench-

mark models to test their stability with sparse dataset training.

The results are shown in the Table 2.

Benchmarks
We compared our model performance with 3D U-Net,23 2D

U-net22 pre-trained on ImageNet, and mask RCNN30 models

pre-trained on the COCO dataset. The 2D U-Net and mask

RCNN networks were trained with 2D slices and 3D U-Net was

trained with 3D image patches identical to the input to our pro-

posedmodel. Previousmethods for automated analysis of stoma-

tal images only segment stomata pores rather than guard cell vol-

umes and require at least a two-step process with some manual

interpretation. Thus, we decided it was not relevant to compare

our model with existing algorithms for stomatal pore segmenta-

tion. Figure 3A shows the performance comparison in mean IoU
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Figure 2. Sample training images

(A) Orthogonal views of a sample image.

(B) 3D rendering of a sample image.

(C) Intensity histogram of the training images.

(D) 3D rendered sample training images (non-

ablation).

(E) 3D rendered sample training images (ablation).
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(mIoU) score, F1/Dice score, and precision. Quantitative results

from 5-fold cross-validation for the models are shown in Table 3.

Here, inference time (Inf/T) is reported in seconds. These results

show only segmentation performance before any post-process-

ing. Also, we calculated the inference time to segment a single im-

age on both CPU and GPU for all the models. Visual, qualitative

results for each segmentation network are shown in Figure 4.

Post-processing stepswere performed for only qualitative results.

It can be seen that 3D models (3D CellNet and 3D U-Net)

outperform 2D models (U-Net and MaskRCNN) by a large

margin, further supporting the concept that utilizing volu-

metric contextual information over slices provides much richer

information than separately processing individual slices. When

compared with 3D U-Net, 3D CellNet achieves consistently

higher scores on all metrics and showed greater accuracy in

terms of localization of the VOI.

Stomatal biomechanics study
The ‘‘see-saw’’ hypothesis31 states that the opening and clos-

ing dynamics of grass stomatal complexes are aided by oppo-

site changes in osmotic and turgor pressure between guard

cells and neighboring subsidiary cells, which are specialized

rounded cells that flank the narrow, dumbbell-shaped guard

cells of those species. However, in many eudicot plants,

e.g., A. thaliana, morphologically distinct subsidiary cells are

absent, bringing the see-saw hypothesis into question for

those species. Although pavement cells have recently been

implicated in guard cell dynamics at the molecular level,32

how the epidermal pavement cells that surround stomatal

complexes on their flanks or across the junctions between

the guard cells might differentially influence stomatal biome-

chanics has not been studied in detail. We applied targeted

cell ablation in combination with our 3D CellNet method to

test the hypothesis that pavement cells that flank stomatal

complexes constrain the widening of the stomatal pore,

whereas junctional pavement cells prevent the stomatal com-

plexes from lengthening, potentially synergistically with polar

stiffening of the guard cells themselves.33 We employed

confocal microscopy to image stomatal complexes and sur-

rounding cells in the cotyledon epidermis before and after

the laser-based ablation and depressurization of some or all

neighboring pavement cells, using the plasma membrane

marker LTI6b-GFP to both assess protoplast integrity and
detect cell boundaries. We collected a

total of 50 images for four different abla-

tion types: (1) all neighboring pavement

cells are killed; (2) only pavement cells

across guard cell junctions are killed; (3)

only pavement cells flanking guard cells

are killed; and (4) no cells are ablated.
Sample images for the first three ablation types are shown in

Figures 6F–6H. After pre-processing followed by segmentation,

we calculated stomatal complex width (which scales with pore

width) and complex length by computationally fitting a rectangle

to each complex andmeasured the volume of each guard cell by

calculating the total voxel numbers in each connected compo-

nent as demonstrated in Figure 5A. Figures 6A–6D show the

before and after width, length, and volume changes for each

type of ablation. As shown in Figure 5B, ground-truth width,

length, and volumemeasurements correlate closely with the pre-

dicted values.

R-squared values for lines with slope = 1 are shown in each

graph. Our data revealed that stomatal complexes responded

differently to the ablation of different subsets of neighboring

pavement cells. The stomatal complex became wider and

shorter after all surrounding pavement cells were ablated (Fig-

ure 6A), suggesting the existence of a lateral, but not longitudi-

nal, compression force from pavement cells on the stomatal

complex. Ablating junctional cells resulted in no change in com-

plex length but increases in both complex width and guard cell

volume (Figure 6B). Consistent with the above model of lateral

constraint, ablating pavement cells from the flanking sides of

the stomatal complex had a larger effect on complex width

than ablating junctional cells (Figures 6B, 6C, and 6E). The

finding that neither flanking nor junctional ablation affected com-

plex length, in combination with the fact that ablating all sur-

rounding cells caused the complexes to shorten on average,

suggests that surrounding cells might exert longitudinal tension

on stomatal complexes (Figures 6B and 6C). Given that the

‘‘after’’ images were collected within seconds of ablation, a sig-

nificant volume change in guard cells was unexpected, but cell

volume in fact increased when all pavement cells or junctional

pavement cells were killed. This suggests that constraints at

the poles of the stomatal complex limit guard cell inflation. We

were also able to compute the cell depth bymeasuring the height

of the stomata in the other orthogonal view (xz). The model-pre-

dicted values and the ground-truth measurements are shown in

Figure S1.

DISCUSSION

Precise, rapid segmentation of volumetric images of stomatal

guard cells is crucial for biologists performing analyses of
Patterns 3, 100627, December 9, 2022 5
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Figure 3. Model performance comparison and annotation analysis between labelers
(A) Comparison between benchmark models on IoU score, F1 score, and precision.

(B) Mean IoU score with standard error per slice for three different volumetric images. The shaded area represents high variance regions.

(C) Violin plot for labelers’ IoU score distributions per volumetric image.
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stomatal biomechanics. Manual segmentation of such volu-

metric images is challenging and time consuming as it requires

simultaneous labeling in all three orthogonal views. From our

experience, these shortcomings can lead to months-long delays

in cell mechanics analyses. We provide a single automated solu-

tion to the guard cell segmentation that can achieve expert-level

accuracy. Our framework leverages only a few volumetric im-
Table 2. 5-fold cross-validation result

Test set mIoU Precision F1 score

1 0.8076 0.9497 0.8933

2 0.8020 0.9424 0.8229

3 0.7941 0.8936 0.8947

4 0.8184 0.9001 0.9013

5 0.7877 0.8991 0.8427

Training datasets were divided into 5 sets, and each set was used as a

test set.
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ages while tackling inherent class imbalance and memory

exhaustion issues with patch-wise, attention-gated mecha-

nisms. Hence, our work can serve as a benchmark framework

for many types of volumetric cell segmentation work as it yields

accurate segmentation prediction when the inevitable chal-

lenges inherent to volumetric images are presented.

We further challenged our framework’s effectiveness in cell

mechanics study by evaluating stomatal morphological

changes after ablating neighboring pavement cells. Analysis

of the experimental data suggests that differential lateral and

longitudinal compression forces generated by pavement cells

are critical for maintaining stomatal complex shape and guard

cell volume. This idea is consistent with the previous notion

that turgor pressure in subsidiary cells has antagonistic effects

with turgor pressure in guard cells in determining stomatal

aperture31,34–36 and allows the expansion of the see-saw hy-

pothesis to include eudicot stomatal complexes, which contain

kidney-shaped guard cells and lack morphologically distinct

subsidiary cells. Instantaneous increases in guard cell volume



Table 3. Result comparison of stomata segmentation

Method mIoU Precision F1 score Inf/T (GPU) Inf/T (CPU)

3D U-Net 0.7557 ± 0.027 0.8409 ± 0.028 0.9517 ± 0.014 20.7 157.2

2D U-Net 0.4967 ± 0.033 0.6070 ± 0.025 0.7062 ± 0.169 10.1 22.6

MaskRCNN 0.4438 ± 0.037 0.5776 ± 0.021 0.6343 ± 0.011 11.2 25.7

3D CellNet 0.8240 ± 0.017 0.9034 ± 0.010 0.9630 ± 0.016 26.7 177.2

ll
OPEN ACCESSArticle
after ablating all or only junctional side pavement cells suggest

either a sudden influx of water and/or the release of a restrain-

ing force that is exerted mainly at poles of the stomatal com-

plexes by junctional pavement cells. Future challenges in

exploring stomatal dynamics in the intact epidermis using a

combination of targeted biomechanical interventions and auto-

mated, quantitative image analysis include the need for seg-

menting neighboring pavement cells with as few labels as

possible. Our framework sets a new standard for a wide range

of future volumetric cell analyses as it provides solutions to the

common hurdles encountered in most high-resolution, 3D mi-

croscopy images of living cells.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Request for information and resources used in this article should be addressed

to Dr. James Wang (jwang@ist.psu.edu).

Materials availability

We used A. thaliana images in this study. Please refer to preparation of the ma-

terials for more details.

Data and code availability

The dataset and code for the model training and evaluation are available at

Mendeley Data: https://data.mendeley.com/datasets/2dvtw8cyhx/draft?

a=6673d3a7-fd16-49c0-bad2-f790c8cddb16. The reserved DOI is https://

doi.org/10.17632/2dvtw8cyhx.1. We also published our repository at

https://github.com/Dolzodmaa/GuardCellSegmentation.

Preparation of the materials

Arabidopsis LTI6b-GFP37 seeds were sterilized in in 30% bleach + 0.1% SDS

for 20 min, then stratified at 4�C for 3 to 10 days before being plated on Mur-

ashige and Skoog (MS) plates containing 2.2 g/L MS salts (Caisson Labora-

tories, Smithfield, UT, USA), 0.6 g/L MES, 1% (w/v) Suc, and 0.8% (w/v)

agar (Sigma) (pH 5.6). Seedlings were grown at 22�C under 24 h of approxi-

mately 800 PPFD illumination.

Ten-day-old LTI6b-GFP seedlings that were grown under continuous light

conditions were ablated using aMicropoint laser (Photonic Instruments, South

Windsor, CT, USA). A Zeiss Cell Observer SD microscope with a Yokogawa
CSU-X1 spinning disk head and 633 oil 1.4 numerical aperture (NA) objective

was used to take z stack images before and after the cell ablated.

We first pre-processed the images by reducing the noise with a non-local

means denoising algorithm.38 The non-local means algorithm replaces the value

of a pixel with an average of a selection of other pixels values: small patches

centered on the other pixels are compared with the patch centered on the pixel

of interest, and the average is calculated only for pixels that have patches close

to the current patch. As a result, this algorithm can restore well textures that

would be blurred by other denoising algorithms. The denoising operation was

performed in a 3D setting. Confocal images are prone to glares in the top and

bottom layers of the z stack due to light reflection off the coverslip and/or light

scattering deeper into the biological sample. We excluded images with too

much glare as they are regarded as rare outliers. This issue affects the model

performance on the earlier and latter layers of the slices (Figure S2).
Model architecture

Our segmentation architecture was built on the basis of the U-Net model.22

U-Net architecture has been shown to perform better with very few labeled

biomedical images than sliding-window-based architectures. However, if

we input the entire image into the architecture, it will not fit into the GPU

memory. To overcome these limitations, we proposed an overlapping

patch-wise U-Net architecture with DenseNet as an encoder and AGs in

the decoder. The main advantage of our proposed architecture is the

patch-wise splitting of a slice obtained from the volumetric image, which

helps in better localization because the trained network can focus more on

local details in a patch. Moreover, small patches require much less memory

for training and testing.

Figures 1A and 1B show the splitting of an input slice into a number of

patches. The input slices with 323 5123 512 pixel size are divided into over-

lapping patches with 128 3 128 and 256 3 256 pixels and a step size of 32.

During the training stage, slices of each guard cell volume and their corre-

sponding ground-truth segmentation maps are divided into different patches.

These small patches are applied as input to the model for training. We em-

ployed the late fusion method to enhance the resulting segmentation maps

from the two models. The predictions from the two models are averaged to

output the final segmentation.

We designed and evaluated a dual fully CNN (3D CellNet) with a pre-

trained 3D DenseNet encoder for each patch size. Pre-trained weights on

ImageNet39 dataset were transferred from 2D to 3D, as demonstrated in So-

lovyev et al.40 Using a pre-trained model, we can leverage the learned fea-

tures from the large dataset and reduce the total number of parameters to
Figure 4. Model comparisons on sample

test set

Volumetric segmentation result on sample images

from the test set. Post-processing steps are applied

on the results from all models. If only tiny portions of

the cells are detected, then it is highly likely to be

removed in the post-processing step.
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Figure 5. Cell morphological analysis on the predicted segmentation map

(A) Before and after ablation image prediction and correspondingmorphological measurement demonstration. Cell width and length aremeasured from the fitting

rectangle on the maximum intensity projection image of the volumetric segmentation map.

(B) Ground-truth (GT) and prediction comparisons on complex width, length, and guard cell volume measurements. Each bar on the bar plots refers to a

single cell.

(C) Linear regression between the GT and predicted measurements for complex width and length, as well as guard cell volume for each sample.

(D) Mean absolute error (MAE) of predicted measurements compared with GT values in percentage.
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Figure 6. Guard cell volume measurements and comparisons in four different ablation settings

(A–D) Width, length, and volume changes in all-around, junction, flanking, and none-ablation settings, respectively.

(E) Width, length, and volume changes in all four settings. Wilcoxon two-sided signed-rank test is used for the statistical analysis; ** p < 0.01;

***p < 0.001; ****p < 0.001.

(F–H) Comparison between predicted and original images for guard cell complex in before and after ablation for three types of settings: (F) all around, (G) junction,

and (H) flanking.
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train. DenseNet28 introduced the concept of shortcut connection, where the

input of each layer includes the outputs of all previous layers in a feedforward

manner. These connections imply deep supervision and maximum informa-

tion flow throughout the network, which yielded consistent improvement in

accuracy and efficiency. In a CNN, we denote xl as the output of lth layer.

xl is computed by
xl = Hlðxl� 1Þ; (Equation 1)

where Hl is a non-linear transformation, usually composed of convolution,

pooling, batch normalization (BN), and non-linear activation rectified linear

units (ReLU) layers. As the network becomes deeper, the performance of
Patterns 3, 100627, December 9, 2022 9
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the network saturates due to exploding or vanishing gradients calculated in the

backpropagation. DenseNet mitigates this degradation issue by concate-

nating feature maps of all previous layers as

xl = Hlð½x0; x1; $ $ $ ; xl� 1�Þ; (Equation 2)

where ð $Þ refers to concatenation operation. The encoder part of the network

performs downsampling to reduce the feature map resolution while

increasing the receptive field. In our model, the downsampling is performed

by four dense blocks and three transition blocks in between the dense

blocks. Dense blocks are composed of BN-ReLU-Conv3D (1 3 1 3 1)-BN-

ReLU-Conv3D (3 3 3 3 3) with a growth rate of 16, and the transition blocks

include BN-ReLU-Conv3D (1 3 1 3 1) followed by AveragePool3D(2) to

reduce the feature map.

In the upsampling path, we used UpSampling3D to recover the resolution

and ensure the size of the prediction map is consistent with the corresponding

input size, which is important when using skip connections. Skip connections

directly concatenate the output of feature maps in encoder layers to the corre-

sponding prediction map in the decoder layers to further strengthen the deep

supervision and stabilize the model learning.

3D AGs

It is challenging to reduce false-positive predictions for small objects and cells

in microscopic images. With gradually downsampled feature maps in the

encoder part of the segmentation, model prediction is conditioned on

the collected information from a large receptive field. To improve the segmen-

tation accuracy, existing cell segmentation frameworks usually include a local-

ization step to help with detecting small objects prior to the segmentation.

Recent work on introducing the attention mechanism in the CNN29,41 has

shown promising results on segmentation work without needing multi-

stage CNNs.

The AGs are incorporated into the upsampling stage of our segmentation

architecture to direct the attention to salient features that are passed through

the skip connections (see Figure 1B). AGs filter the neuron activations both in

the forward pass and the backward pass. Gradients originating from non-

relevant regions are downweighted during the backpropagation. This allows

model parameters in earlier layers to be updated mostly based on spatial re-

gions that are relevant to the task. In the skip connection, to merge only rele-

vant activations, information from the coarse scale is used in gating to filter

out the irrelevant regions in skip connections. The gating signal for each

voxel i is denoted as gi ˛R. The other input to the AG comes from the

skip connection and is denoted as xli ˛RFl , where Fl denotes the number

of feature maps in layer l. Since it comes from the earlier layers, it contains

better spatial information. The output of AGs is the element-wise multiplica-

tion of the input feature maps and attention coefficients: bxli;c = xli;c$ a
l
i , where

ai ˛ ½0; 1� are the attention coefficients that identify salient image regions to

preserve only activations relevant to the task. Attention is formulated as

follows:

al
i = s2

�
jT

�
s1

�
WT

x x
l
i + WT

g gi + bg

��
+ bj

�
; (Equation 3)

where s1 is ReLU and s2ðxi;cÞÞ = ð1+ expð� xi;cÞÞ� 1 is the sigmoid activation

function. Here, the AG is characterized by linear transformations Wx and Wg,

which are computed using Conv3D (1 3 1 3 1) and biases bg and bj. Lastly,

the UpSampling3D operation is used to restore the resolution before the

concatenation.

Loss function

We used a combined loss function that helps the model to focus more on the

hard-to-find class, as the dataset has a high class imbalance. The total loss

function equation is the weighted sum of Dice and binary focal losses:42

LDice = 1 � 2
P

pigiP
p2
i +

P
g2
i

; (Equation 4)

LBinaryFocal = � að1 � piÞggi logðpiÞ � pg

i ð1 � giÞlogð1 � piÞ; and
(Equation 5)
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LTotal = LDice + bLBinaryFocal (Equation 6)

where pi ˛P and gi ˛G are the predicted and ground-truth segmentation vol-

umes, respectively. In the binary focal loss, we set a as 0.25, g as 2, and in the

total loss, we chose b as 2. Focal loss introduces amodulation term to the reg-

ular cross-entropy loss, and by setting g> 0, the focal loss puts more focus on

hard and misclassified examples.

Evaluation metrics

The metrics used for evaluating the performance of the segmentation are

mIoU, F1 score, and precision. mIoU values are calculated by taking the ratio

of the intersection of the segmentation volume and the union of the segmen-

tation volume between ground-truth and predicted segmentation. mIoU is

equivalent to TP/(TP + FP + FN), the F1 score, also known as the Dice coeffi-

cient,43 is equivalent to 2TP/2TP + FP + FN), and the precision score is TP/

(TP + FN), where TP is true positive, FP is false positive, and FN is false

negative.

Experimental setting

We trained the network on five volumetric images and tested it on the remain-

ing three images. To allow the model to analyze images with various depths,

we resized the image into constant a depth size of 32 pixels. Each slice size

is 5123 512 pixels. We trained with a batch size of 4 for 500 epochs. To avoid

overfitting, we employed an early stopping mechanism. Usually, models tend

to converge at around 100 epochs. We implemented the proposed framework

in TensorFlow and used NVIDIA Tesla V100.

Post-processing

The resulting segmentation maps still produced some artifacts around the

guard cell. With proper post-processing algorithms, we could clean the seg-

mentation results further. First, morphological dilation and erosion operations

were performed on each slice to fill small holes in the guard cells (Figure 1C).

Then, a morphological opening operation was applied to the whole 3D image

to separate the connected guard cells. This step is crucial to calculate the vol-

ume for each guard cell in the image. Secondly, we identified 3D connected

components44 in the segmentation map. All guard cells were identified as

one class in the segmentation map, but with the classification of 3D connected

components, we could further expand themodel to 3D instance segmentation.

Figure S3 shows false and true positive rates for before and after post-pro-

cessing. Finally, 3D volumes were rendered from z stack segmentation

maps in 3D Slicer with boundary-smoothing filters.
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