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The importance of E. coli as an indicator organism in fresh water has led to numerous
studies focusing on cell properties and transport behavior. However, previous studies
have been unable to assess if differences in E. coli cell surface properties and
genomic variation are associated with different environmental habitats. In this study,
we investigated the variation in characteristics of E. coli obtained from stream water and
stream bottom sediments. Cell properties were measured for 77 genomically different
E. coli strains (44 strains isolated from sediments and 33 strains isolated from water)
under common stream conditions in the Upper Midwestern United States: pH 8.0,
ionic strength 10 mM and 22◦C. Measured cell properties include hydrophobicity,
zeta potential, net charge, total acidity, and extracellular polymeric substance (EPS)
composition. Our results indicate that stream sediment E. coli had significantly greater
hydrophobicity, greater EPS protein content and EPS sugar content, less negative net
charge, and higher point of zero charge than stream water E. coli. A significant positive
correlation was observed between hydrophobicity and EPS protein for stream sediment
E. coli but not for stream water E. coli. Additionally, E. coli surviving in the same
habitat tended to have significantly larger (GTG)5 genome similarity. After accounting
for the intrinsic impact from the genome, environmental habitat was determined to be
a factor influencing some cell surface properties, such as hydrophobicity. The diversity
of cell properties and its resulting impact on particle interactions should be considered
for environmental fate and transport modeling of aquatic indicator organisms such as
E. coli.

Keywords: E. coli, water quality, stream, surface property, particle

INTRODUCTION

Currently, pathogens are the leading cause of water quality impairments in rivers and streams in the
United States, as often indicated by elevated levels of E. coli (USEPA, 2014). Therefore, improved
understanding the variations of E. coli properties is needed for predicting fate and transport of
the bacteria and to support the development of plans to reduce bacterial contamination of waters.
Recent studies have indicated that there is high diversity of E. coli isolates in the environment
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FIGURE 1 | Schematic depiction of E. coli surface properties. ⊕ cation in solution; 	 anion in solution; − negative charge due to dissociation. (A) E. coli outer
membrane has several components that contribute to cell surface properties, such as hydrophobicity, surface charge, zeta potential, and components of
extracellular polymeric substance (EPS). (B) Cells that are absence of hydrophilic function groups are more hydrophobic than cells with hydrophilic function groups.
(C) Surface is negatively charged due to the dissociation of carboxylic acid and phosphate functional groups; similar dissociation can also occur on the EPS and
phospholipids of the membrane. Therefore, more cations than anions exist in solution, and that separation of charge is measured by the zeta potential. (D) EPS are
mainly composed of sugars and proteins, but they may also include other macromolecules such as DNA.

(Lu et al., 2005; Bolster et al., 2009; Cook et al., 2011). This
strain-level diversity has been described by differences in both
genotype and phenotype, and therefore it likely impacts the fate
and transport of E. coli. Moreover, bacterial survival and growth is
a dynamic process affected by bacterial surface properties, such as
extracellular polymeric substance (EPS), hydrophobicity, and net
charge; both genomic and environmental factors regulate those
properties (Goulter et al., 2009).

Under typical stream pH in the Upper Midwestern United
States (Dickson and Koohmaraie, 1989; Fein et al., 2005;
Warnes et al., 2012), E. coli surfaces are negatively charged
due to the dissociation of carboxyl and phosphate groups
in the peptidoglycan and lipopolysaccharides of cell walls
(Goulter et al., 2009; Warnes et al., 2012), as shown by
Figure 1. While the magnitude of the surface charge of
bacteria is highly environment-dependent (Fein et al., 2005),
it can impact the bacterial state by repulsion of similarly
charged particulates and by attraction of oppositely charged
particulates (Dickson and Koohmaraie, 1989; Bolster et al.,
2009). The hydrophobicity of a bacterial cell is determined
by functional groups of both residues and structures on
the surface of the cell, which can be either hydrophilic or

hydrophobic (Vandermei et al., 1991). Hydrophobicity may
change according to growth phase and growth condition, while
the carbon content of the growth medium could positively
impact hydrophobicity. Such impacts are partially due to the
effects on lipid composition (Zikmanis et al., 2007). The presence
of divalent cations, such as Ca2+ and Mg2+, could increase
bacterial hydrophobicity (Khemakhem et al., 2005), since the
cations principally attach to proteins on the bacterial surface and
decrease their hydrophilicity (Jorand et al., 1998; Hoa et al., 2003;
Wilen et al., 2003).

Extracellular polymeric substance are high-molecular-mass
compounds secreted by microorganisms at the outer cell
surface (Liao et al., 2015). They are mainly composed of
polysaccharides and proteins, but they may also include other
macromolecules such as DNA, lipids, and humic-like substances.
EPS contribute to the overall heterogeneity of the bacterial
surface (Walker et al., 2005; Zhao et al., 2014) and play
an important role in cell aggregation, cell adhesion, and
protection of cells from hostile environments (Dogsa et al.,
2005; Vu et al., 2009; Bruckner et al., 2011). For example,
the formation of biofilms in stream bottom sediments requires
involvement of EPS (Sheng et al., 2010). The sugar/protein
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ratio of EPS has been positively correlated with the cell surface
charge (Shin et al., 2001). Bolster et al. (2009) reported that
EPS production mostly occurred in the late growth phase of
bacteria. Moreover, EPS structure has been found to become
more compact as environmental pH decreases (Dogsa et al.,
2005).

Current water quality assessment techniques are based
on environmental sampling, for which only the suspended
populations of fecal indicator bacteria are collected (Bai
and Lung, 2005; Pandey and Soupir, 2013); this procedure
does not assess microbial contamination of stream bottom
sediments. However, previous research has indicated that after
entering surface waters, microorganisms often partition into the
planktonic state or they attach to suspended soil and organic
particles (Jeng et al., 2005; Hipsey et al., 2006; Pachepsky et al.,
2008; Liang et al., 2014). The populations of bacteria surviving
in bottom sediments are protected from ultraviolet radiation
(Bitton et al., 1972; Schillinger and Gannon, 1985), resulting in
an extended survival time. When stream bottom sediments are
disturbed during changes in flow, there is increasing likelihood
of resuspension back into the water column (Song et al., 1994;
Davies and Bavor, 2000; Jamieson et al., 2005). Therefore,
improved understanding of the properties of sediment-associated
E. coli is critically important for understanding bacterial fate in
the environment.

An assessment of the variation of E. coli cell properties
in different environments (stream bottom sediments versus
the overlying water column) is needed to better understand
environmental fate and transport. In this study, we divided
the potential impacts on bacterial surface properties into two
parts: genomic impact (intrinsic) and environmental impact
(extrinsic). The overall goal was to determine if differences in
E. coli cell surface properties were due primarily to extrinsic
or intrinsic properties or to an interaction of the two. We
assessed 77 genomically distinct E. coli strains with respect to
hydrophobicity, zeta potential, net charge, total acidity, and EPS
composition (protein and sugar). The objectives of our study
were: (1) to compare bacterial properties between E. coli isolated
from two environmental habitats, stream sediments, and stream
water; (2) to determine the correlations among bacterial surface
properties within each environmental habitat and compare the
correlations obtained from different environmental habitat; (3)
to explore the relationship between genomic similarity and
environmental habitat; and (4) to investigate bacterial surface
properties as a function of environmental impact (extrinsic),
regardless of genomic similarity (intrinsic).

MATERIALS AND METHODS

To investigate the potential impacts from intrinsic genomic
and extrinsic environmental aspects, E. coli strains collected
from two environmental habitats were studied. For each E. coli
strain, several bacterial surface properties were measured:
hydrophobicity, zeta potential, net charge, total acidity, and EPS
composition by extraction and colorimetric techniques. Genome
similarities were also analyzed for each pair of E. coli strains.

E. coli Sampling and Analysis
Stream sediment and water were collected six times from
two locations along Squaw Creek in Ames, IA, USA, in
2012 and 2013: Cameron School Road (latitude 42.0707,
longitude −93.6728), and Brookside Park (latitude 42.0290,
longitude −93.6288). Water samples were collected by lowering
a horizontal polycarbonate water bottle sampler (2.2 L, Forestry
Suppliers Inc., Jackson, MS, USA) from a bridge into the center
of the creek at both of the locations. Sediment samples were
collected from the top 2–3 cm of the streambed using a shallow
water bottom dredge sampler (15 cm × 15 cm opening, Forestry
Suppliers Inc., Jackson, MS, USA) at the same location as
the water samples were collected. Immediately after collection,
samples were placed on ice. The sediment-associated E. coli were
detached by stirring a mixture of sediment and deionized water
(ratio 1:1) for 15 min at approximately 200 rpm using a magnetic
stir bar under room temperature (Pandey et al., 2012). One
milliliter of the resulting sediment solution was filtered through
a 0.45-µm cellulose filter paper (EMD Millipore; Pittsburg, PA,
USA). E. coli strains were incubated on the filter paper using
modified mTEC agar plates (USEPA, 2002). A single colony was
selected from each agar plate and the plate-streaking method was
applied to ensure that the selected colony was formed by only one
E. coli strain. Two hundred strains were isolated from the stream
sediment. Each 100-mL water sample was filtered through a 0.45-
µm filter paper, and another 200 strains were obtained from the
water samples. After isolation, frozen stocks were made according
to standard technique. The strains were inoculated in Luria–
Bertani liquid media (BD Biosciences; San Jose, CA, USA), grown
to the stationary phase, and stored at−80◦C in 15% glycerol.

Computer-Assisted Rep-PCR DNA
Fingerprint Analysis
Rep-PCR was performed (Rademaker and de Bruijn, 1997) with
(GTG)5 (5′-GTGGTGGTGGTGGTG-3′) as primer (Mohapatra
and Mazumder, 2008; Mohapatra et al., 2008; Ma et al., 2011). The
PCR reaction contained 12.5 µL PCR-master-mix (2X, Qiagen),
10 µL primer (50 pmol), and 2.5 µL water. A small fraction
of a fresh E. coli colony was transferred to the PCR mixture
as the template by using a 1-µL loop. PCR was conducted in
a C1000 Thermal Cycler (Bio-Rad, Hercules, CA, USA). The
thermo cycler program was set for an initial denaturation (95◦C
for 2 min), 32 cycles of denaturation (94◦C for 3 s and 92◦C for
30 s), annealing (40◦C for 1 min), extension (65◦C for 8 min), and
a final extension (65 ◦C for 8 min). Then 10 µL of resulting PCR
products and 2 µL of 6X loading dye mixture (Life Technology,
Grand Island, NY, USA) were loaded onto 1.5% agarose gel, and
the 1 Kb Plus DNA ladder (Life Technology, Grand Island, NY,
USA) was loaded into every tenth well and was used as an external
control for normalization. Electrophoresis was applied at 4◦C and
80 V for 13.5 h, and the sample was stained for 20 min in TAE
solution containing 0.5 µg mL−1 ethidium bromide. Gel pictures
were captured with a Molecular Imager ChemiDoc (Bio-Rad,
Hercules, CA, USA).

The resulting gel image files were imported into
Bionumerics (version 7.1, Applied Maths, Kortrijk, Belgium) for
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normalization, band identification, and cluster analysis. Bands of
more than 5000 bp and less than 300 bp were eliminated from
analysis to avoid false clustering. Similarity coefficients for each
strain pair were generated by Pearson’s correlation method with
a band matching tolerance of 0.5%, and an optimization value
of 0.5% (BioNumerics, 2013). Unweighted pair groups with
mathematical averages (UPGMA) was used for clustering and
generating the dendrogram. Strains with similarity less than 90%
were considered genomically different. E. coli- (GTG)5 genomic
similarity matrix was also obtained from Bionumerics.

Genomically different E. coli strains were assigned to one
of seven phylotypes (A, B1, B2, A/C, D/E, E, or F) using the
revised Clermont method (Clermont et al., 2013). Strains were
inoculated in M9 broth (minimal media) with 0.4% (w/w) glucose
at 37◦C and incubated to early stationary phase (OD600 = 1.0–
1.5). To harvest the cells, E. coli were centrifuged for 15 min at
4,000 rpm/1878 × g (Centrifuge 5430R with Rotor F-35-6-30,
Eppendorf, Hauppauge, NY, USA) at 4◦C. The supernatant was
discarded, and the cell pellet was used for property analysis.

Cell Properties
The microbial adhesion to hydrocarbon (MATH) method was
employed to estimate the hydrophobicity of the E. coli strains
(Rosenberg et al., 1980; Pembrey et al., 1999). Briefly, the
cell pellet was resuspended in 4 mL of deionized water and
OD546 of the cell suspension (initial OD546) was measured
by spectrophotometer (HACH, Loveland, CO, USA). Then the
cell suspension was transferred to individual glass test tubes
(1.7 cm in diameter, 15 cm in length), each of which contained
1 mL of dodecane (99%, Fisher Scientific, Fair Lawn, NJ, USA).
The tubes were vortexed (Fisher Scientific, Fair Lawn, NJ,
USA) at full speed for 2 min and then left vertically at room
temperature for 15 min for phase separation. The OD546 of the
aqueous phase was determined and hydrophobic partitioning of
the bacterial suspension was calculated by using this equation
from Pembrey et al. (1999): hydrophobic partitioning = (initial
OD546 − OD546 of aqueous phase)/initial OD546. The analysis
was performed in triplicate.

Zeta potential measurements were performed at room
temperature using a Zetasizer Nano-ZS. To mimic typical stream
environments of the Upper Midwestern United States, a solution
of CaCO3 was prepared by diluting saturated CaCO3 solution to
pH 8.0 and an ionic strength of 10 mmol L−1. The E. coli cell
pellet was washed twice with CaCO3 solution then suspended in
CaCO3 solution to OD600 = 0.1. The resulting suspension was
poured into a disposable capillary cell (DTS1070). The average
and standard deviation of 12 runs were recorded.

Potentiometric titration of E. coli cells was conducted to
measure the acidity of the bacterial surface. The harvested cell
pellet was suspended in CaCO3 solution (pH = 8.0, ionic
strength of 10 mmol L−1). The concentration of E. coli cells
in the suspension was then determined by cellometer (Auto
M10, Nexcelom Bioscience LLC, Lawrence, MA, USA). Then
the solution pH was adjusted to 4.0 by addition of 0.01 mol
L−1 HCl. Next, the E. coli suspension was purged with nitrogen
gas for 1 h to remove dissolved carbon dioxide (Walker et al.,
2005), and then it was titrated with NaOH (0.01 mol L−1) from

pH 4.0 to 10.0 using a titrator (Multitasking titration system,
Lab synergy, Goshen, NY, USA). A blank titration with CaCO3
solution without E. coli was run separately. The number of moles
of deprotonated sites was calculated as described by Fein et al.
(2005):

[NC]Net charge meq per 108 cells =
(CA − CB − [H+] − [OH−])sample
− (CA − CB − [H+] + [OH−])blank

Nbact

× 10−3

where Nbact is the total number of cells per mL of solution
obtained by the cellometer; CA and CB are the concentrations
(in mmol L−1) of acid and base (including initial amounts of
acid or base added to the suspension prior to the titration);
[H+] and [OH−] are the concentrations of H+ and OH−,
calculated from themeasured pH. The net charge was determined
as the difference of charge between the E. coli suspension
sample and the blank. The total acidity was obtained by
subtracting the net charge at pH 10.0 from the net charge at
pH 4.0. The surface charge at pH 8.0 and the point of zero
charge (PZC) were also points of interest. The sample analyses
were performed in duplicate while the blank solutions were
titrated in triplicate and averaged. Supplementary Figure A1
shows an example of the potentiometric titration curve to
demonstrate the useful information which can be obtained from
this measurement.

The EPS, specifically the total protein and the polysaccharide
content, was determined by an extraction method (Chang, 2005).
Briefly, E. coli cells were incubated on a 0.45-µm filter membrane
on multiple mTEC agars overnight at 37◦C to obtain the total
amount of E. coli cell within the range of 3 × 1010 to 6 × 1010

cells, and then the membrane was placed in 30 mL of 0.85%
(w/v) NaCl solution. The E. coli concentration was measured
by cellometer. After centrifugation at 16,300 × g for 30 min
at 4◦C, the supernatant was filtered through a 0.45-µm filter.
The filtrate was then added to 90 mL of ice-cold 100% ethanol
and stored at −20◦C for 24 h. Finally, the EPS pellet was
harvested by centrifugation at 16,300 × g for 30 min at 4◦C
and air-dried in a fume hood. The analysis of EPS protein
was conducted using the Lowry method (Lowry et al., 1951),
which is a spectrometric method based on measurement at a
wavelength of 500 nm using bovine serum albumin (Sigma-
Aldrich, St. Louis, MO, USA) as the standard. The EPS sugar
was analyzed by the phenol-sulfuric acid method, which is
based on measurement at a wavelength of 488 nm using
xanthan gum as the standard (Dubois et al., 1956; Im et al.,
2010).

Data Analyses
Statistical analysis of data was performed using R project software
(version 3.1.3, Institute from Statistics and Mathematics, Vienna
University of Economics and Business, Vienna, Austria). The
non-parametric Wilcoxon signed-rank test was used to determine
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if any of the properties varied between sediment E. coli strains
and water E. coli strains. To investigate the correlation between
any two E. coli properties, the Kendall-tau correlation method
and the LOESS-smoothing method were applied. The Mantel
test was conducted to determine the correlation between E. coli-
(GTG)5 genomic similarity and environmental habitat (stream
bottom sediments or overlying water). Moreover, phylogenetic
generalized least squares was employed to explore the impact of
environmental habitat on bacterial properties, by excluding the
potential impact from genomic similarity. Phylogenetic methods
are used in the analysis of interspecies data because species are
non-independent for statistical analysis (Revell, 2010). When
applying the phylogenetic generalized least squares analysis (R
package ‘pGLS’), one bacterial property was considered as the
response (Y), environmental habitat was considered as the
binary predictor (X), and similarity matrix was considered as
the variance-covariance matrix. The method uses a variance-
covariance matrix to weight the predictors (Mao, 2015).

RESULTS AND DISCUSSION

E. coli Strain Selection, Dendrogram, and
Phylo-Type
By computer-assisted rep-PCR DNA fingerprint analysis, 45
sediment strains (22.5% of 200 strains) and 33 water strains
(16.5% of 200 strains) were considered genomically distinct on
the basis of the 90% similarity criterion. Phylo-type analysis was
conducted to query the origin of the isolates and to put the
work into the context of other recently published environmental
studies. Figure 2 shows the dendrogram of these 78 selected
strains based on the genome similarity score from the rep-
PCR fingerprint as well as the phylo-type, while Supplementary
Figure A2 shows the dendrogram of the electrophoresis image.
There was no obvious cluster pattern for E. coli-(GTG)5 genomic
profiles of strains from the same environmental habitat (stream
water or sediment). Phylo-typing revealed that sediment isolates
had more diverse phylo-type (25% classified as D/E, 23% as B1,
20% as B2, 16% as A/C, 11% as A, 2% as E, and 2% as F)
when compared to water isolates in which 56% of isolates were
classified as B1 (additionally, 19% classified as D/E, 9% classified
as A, 9% classified as A/C, 3% as E, and 3% as F). Previously
E. coli from phylogenetic groups A and B1 were associated with
livestock (Cortes et al., 2010; Schulz et al., 2016) while B2 and
D strains are more likely to be associated with extraintestinal
infections. Note that one sediment strain (strain No. 122) had
insufficient growth in M9 broth to proceed, so further analyses
were based on 44 sediment strains and 33 water strains. This
analysis demonstrates that each of the isolates characterized here
was genomically distinct from the others, and variation in phylo-
types existed.

E. coli Property Comparison between
Two Environmental Habitats
Although each E. coli strain was subjected to the same storage
and growth conditions, diversities in properties of E. coli derived

FIGURE 2 | The 78 strains selected for characterization showed less
than 90% genomic similarity, based on a unweighted pair groups with
mathematical averages (UPGMA) cluster analysis. Strains 1–200 (italic
and bold) were collected from stream sediment; while 201–400 were collected
from stream water. The strain number is followed by the phylotype analysis.
∗Strain 128 could not be recovered for phylotype analysis.
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FIGURE 3 | Boxplots of property results from stream sediment E. coli and stream water E. coli. Each plot shows five numerical values: the smallest
observation ( [Q1 = Q2 − 1.5(Q4 − Q1) ], the low end of the whisker), 25% quartile (Q2, low boundary of box), median (Q3, the band near the middle of box), 75%
quartile (Q4, high boundary of box), and largest observation ( [Q5 = Q4 + 1.5(Q4 − Q1) ], the high end of the whisker). Outliers, if any, are indicated by dots. Within
each subplot, values with the same letter are not different at the significant level. The difference is determined by a Wilcoxon test with significance level set at
α = 0.05.

from stream water and sediment were observed, as shown by
Figure 3. Hydrophobicity, as measured by the MATH assay,
ranged from 0.01 to 0.90. Zeta potential ranged from −6.76
to −39.87 mV. Total EPS protein content ranged from 0.30
to 0.86 µg/108 cells, while total sugar content of EPS ranged
from 0.80 to 1.74 µg/108 cells. The EPS protein/sugar ratio
ranged from 0.07 to 8.78. Net charge at pH 8.0 varied from
−2.48 × 10−4 to 1.60 × 10−5 meq/108 cells. Variation was also
observed in the total acidity and PZC. While previous studies
have reported surface property ranges for E. coli isolates, here
we have measured all of these properties for this large number
of distinct isolates. This framework could be applied to other
organisms.

Figure 3 shows the boxplots of property results analyzed for
sediment E. coli strains and water E. coli considered separately.
Statistically significant differences in cell properties were
observed between stream sediment E. coli and water E. coli

in many cases. For example, according to the Wilcoxon test,
sediment E. coli had a significantly greater hydrophobicity
than water E. coli (p-value = 0.005). Previously, Stenstrom
(1989) and Zita and Hermansson (1997), reported that
higher hydrophobicity coincided with greater adhesion
to mineral particles in water and sludge flocs in sludge
liquor from wastewater treatment plants. In addition to
hydrophobicity, sediment E. coli also had greater EPS
protein content (p-value = 0.006) and sugar content (p-
value = 0.036), less negative net charge (p-value = 0.026),
and higher PZC (p-value = 0.009) than stream water
E. coli.

The zeta potential of suspended E. coli cells reflects the
electrokinetic potential of the cell surfaces. Colloid stability
(i.e., the likelihood that cells will not coagulate with one
another) will increase as the absolute value of the zeta
potential increases. Previous studies have indicated that zeta
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potential ranged from −4.9 to −29 mV for 280 different
E. coli strains (Morrow et al., 2005) or ranged from −3.5
to −49 mV for 12 different E. coli strains (Bolster et al.,
2009), which are similar with the range of our results. In
our study, there was no significant difference between zeta
potentials measured for sediment E. coli strains and water
E. coli strains. Similarly, previous research has found no clear
correlation between the zeta potential of bacterial cells and
their adhesion to a negatively charged polystyrene surface (van
Loosdrecht et al., 1987) or quartz particles (Bolster et al.,
2009).

Our results also indicated that stream sediment E. coli
strains had significantly higher EPS protein and sugar content
than stream water strains, which is consistent with the fact
that cell adhesion and biofilm formation require EPS (Dogsa
et al., 2005; Vu et al., 2009). The EPS protein/sugar ratio can
be dramatically impacted by environmental pH (Dogsa et al.,
2005), culturing time (Shin et al., 2001), culturing medium, and
extraction method (Nielsen Per and Jahn, 1999; Sheng et al.,
2010). However, while the absolute values of EPS protein and
sugar contents differed between the two habitats, no significant
difference in the EPS protein/sugar ratio was observed in our
study.

Moreover, the net charge at pH 8.0 of stream sediment E. coli
was significantly less negative than the net charge of water E. coli.
E. coli cells in both water and sediment carry an overall negative
surface charge at pH 8.0. Those strains carrying more negative
net charge need to overcome a greater barrier from electrostatic
force when attaching to negatively charged sediment surfaces,
as demonstrated in previous studies (Dickson and Koohmaraie,
1989; Bolster et al., 2009). The cell surfaces of sediment E. coli
also had a lower PZC.

E. coli Property Correlations
Correlation analyses were used to determine whether any
two measured cell properties were dependent. Pair-wise
correlations between the different cell properties measured in
this study were generally low and not statistically significant
when analyzed for all 77 E. coli strains (Table 1). Of the
statistically significant correlations observed in this study,
some were between properties which had shared parameters
or measurements so the correlations were artificially inflated.

Such correlations include: the EPS protein/sugar ratio with
EPS protein and EPS sugar, net charge with acidity, and net
charge with PZC. On the other hand, the strong positive
correlation between hydrophobicity and EPS protein content
[r (correlation coefficient) = 0.283; p-value = 3.914 × 10−4]
is novel and useful. Interestingly, the correlation between
hydrophobicity and the EPS protein was not the same for
stream sediment E. coli and water E. coli. Using scatterplots
with smoothing curves, histograms of each property, and the
results from the Kendall-tau correlation method, Figure 4
shows the correlations between E. coli hydrophobicity and
EPS protein content for stream sediment E. coli and water
E. coli, respectively. For sediment E. coli, there was significant
positive correlation (r = 0.407, p-value = 1.274 × 10−4)
between hydrophobicity and the EPS protein; while for water
E. coli, no significant correlation was observed (r = −0.103
with p-value = 0.416). Previous research has found that
hydrophobic components of EPS are mainly comprised
of proteins (Jorand et al., 1998; Gerbersdorf et al., 2008).
Perhaps the identity or abundance of those EPS proteins
lead to the partitioning of these strains into the sediment
where they can be protected from environmental stresses such
as ultraviolet radiation. Additional studies to characterize
EPS proteins associated with the two groups of E. coli
would be helpful to determine the mechanisms behind these
observations.

By definition, surface charge and zeta potential are related.
However, our results indicate only a very weak correlation
between net charge and zeta potential with r = 0.008 with
p-value = 0.316. Thus our results may temper the conclusions
of some previous research in which zeta potential has been
used to estimate surface charge (Alves et al., 2010; Zhang et al.,
2012).

Correlation between Genomic Similarity
with Environmental Habitat
To explore possible relationships between E. coli-(GTG)5
genomic similarity and environmental habitat (stream sediment
or water), the Mantel test was applied. The results showed a
significantly positive correlation between genomic similarity and
environmental habitat (r = 0.063; p-value = 0.002). This finding
indicates that genomic similarity was larger within habitat, as

TABLE 1 | Correlation coefficient matrix for cell properties for all E. coli strains (n = 77) obtained from Kendall-tau correlation method.

Hydrophobicity Zeta potential EPS protein EPS sugar Ratio (EPS
protein/sugar)

Net charge at
pH 8.0

Acidity

Zeta potential −0.047

Extracellular polymeric
substance (EPS) protein

0.283 −0.179

EPS sugar −0.060 −0.177 0.095

Ratio (EPS protein/sugar) 0.203 −0.016 0.403 −0.522

Net charge at pH 8.0 0.131 0.078 0.035 −0.141 0.066

Acidity 0.016 −0.085 0.148 0.064 0.078 −0.540

Point of zero charge 0.237 0.075 0.149 −0.121 0.136 0.403 −0.170

Statistically significant (p < 0.001) are in italic and bold.
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FIGURE 4 | Correlation between E. coli hydrophobicity and EPS protein
content for (A) sediment E. coli strains and (B) water E. coli strains.
The upper panels show the correlation coefficient r with associated p-value
analyzed by Kendall-tau method; the diagonal panels show histograms of
each property; the lower panels are scatterplots with the smoothing curves
using the Lowess method.

compared to between habitat types. Thus, genomic factors may
ultimately influence whether certain strains remain in the water
or sediment.

E. coli Property Comparison Integrating
Phylogenetic Correlation
Phylogenetic generalized least square method was employed
to explore the impact of environmental habitat (extrinsic)
on bacterial properties, while excluding potential impacts

from genomic similarity (intrinsic). The results indicate
that some bacterial properties were significantly regulated
by environmental habitat: e.g., E. coli strains occurring
in stream sediments were more likely to have higher
hydrophobicity (p-value = 2.935 × 10−7), EPS sugar content
(p-value = 3.953 × 10−3), net charge (p-value = 3.414 × 10−4),
and PZC (p-value = 6.165 × 10−8), but lower acidity (p-
value= 0.016) when compared to E. coli strains suspended in the
water column.

Previous studies have been unable to determine if differences
in environmental E. coli cell surface properties and genomic
variation residing in different environmental habitats (stream
bottom sediments versus overlying water) are due primarily to
environmental habitat (extrinsic), genomic similarity (intrinsic),
or an interaction of these two. Below is a summary of our major
conclusions:

• Statistically significant differences in cell properties were
observed between stream sediment E. coli and water E. coli;
most notably, sediment E. coli had significantly greater
hydrophobicity, EPS protein content, and EPS sugar content;
less negative net charge; and higher PZC when compared to
water E. coli.
• Hydrophobicity and EPS protein were positively correlated for

stream sediment E. coli but not for water E. coli.
• Genomic similarity was greater within environmental habitat,

as compared to between habitat types.
• When the impacts of genomic similarity were accounted for,

the impact of environmental habitat on hydrophobicity, EPS
sugar, net charge, PZC, and acidity was significant among
the strains, indicating that habitat was a regulating factor for
expression of these properties.
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FIGURE A1 | Potentiometric titration curve example from strain number
53. Three pieces of information can be obtained from the curve: (1) Point of zero

charge of E. coli strain = pH 5.8; (2) Net charge at pH 8.0 carried by E. coli =
−7.5 × 10−6 meq/108 cells; (3) Total acidity of E. coli strain = 2.8 × 10−5

meq/108 cells.

FIGURE A2 | The dendrogram shows the percent similarity of rep-PCR
fingerprint banding patterns for 78 strains with similarity smaller than
90%, based on UPGMA cluster analysis. Strains 1–200 (italic and bold) were
collected from stream sediment, while 201–400 were collected from stream
water.
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