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Abstract: Clathrin-mediated endocytosis (CME) is a fundamental process for the regulated 
internalization of transmembrane cargo and ligands via the formation of vesicles using a 
clathrin coat. A vesicle coat is initially created at the plasma membrane by clathrin assembly 
into a lattice, while a specific cargo sorting process selects and concentrates proteins for 
inclusion in the new vesicle. Vesicles formed via CME traffic to different parts of the cell 
and fuse with target membranes to deliver cargo. Both clathrin assembly and cargo sorting 
functions are features of the two gene family consisting of assembly protein 180 kDa 
(AP180) and clathrin assembly lymphoid myeloid leukemia protein (CALM). In this 
review, we compare the primary structure and domain organization of CALM and AP180 
and relate these properties to known functions and roles in CME and disease. 
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1. Introduction 

Clathrin mediated endocytosis (CME) is a fundamental multi-functional biological process. These 
functions include the internalization of receptors, recycling of membrane components, internalization 
of toxins and viruses, nutrient uptake and activation of signaling pathways including those controlling 
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development and immune responses (for a review of CME, see [1,2]). In CME, cargo bearing clathrin 
coated vesicles are created de novo at the plasma membrane (PM), internalized and then traffic either 
back to the surface or to early endosomes, which act as traffic way-stations, then to other intracellular 
locations such as recycling endosomes, multi-vesicular bodies and lysosomes [1]. Vesicles produced 
by CME or synaptic vesicle endocytosis (SVE) [3] must include proteins for targeting and fusion of 
the vesicle with the correct intracellular membranes [4]. Thus, how vesicles are made and what  
cargo is included has major downstream effects on broad cellular functions and may contribute to 
disease states. 

CME is the production of a vesicle using a clathrin coat and many adapter and accessory proteins 
that are evolutionarily conserved in different cell types and organisms [1,3]. SVE is a specialized version 
of CME that occurs in neurons to produce synaptic vesicles (SVs). SVE uses some brain specific 
homologs of the ubiquitously expressed CME protein machinery. A major difference between vesicles 
made by CME and SVE is that SVs are smaller in diameter, which is likely due to mechanistic differences 
in how adapter proteins sort cargo and assemble the clathrin coat [1,5]. We will discuss the genetically 
related proteins CALM and AP180, which have roles in both cargo sorting and assembly in CME and 
SVE. In particular, we will relate their sequence similarities and differences to their known functions. 

2. The Early Stages of CME 

The first stage of CME is initiation, followed by formation of a clathrin coated pit and cargo 
selection [1,2] (Figure 1). The exact mechanism of initiation of CME is not yet fully understood [6], 
although the key components are well known. Clathrin has no lipid binding ability on its own [7–9],  
so must be recruited to nascent sites of endocytosis by adapters that can bind both clathrin and lipid. 
Accessory proteins that bind adaptors and have other endocytic functions, such as membrane remodeling, 
may also be present during initiation or soon after. Rather than an ordered event, initiation might be 
achieved by different combinations of protein components that associate stochastically [6,9]. An essential 
component for initiation is a high local concentration of phosphatidylinositol (4,5)-bisphosphate 
[PtdIns(4,5)P2] in the PM to define the site of adapter and clathrin nucleation [9]. 

The interactions of clathrin and adapter proteins during the early stages of CME is shown in  
Figure 1. CALM and adaptor protein complex 2 (AP2) accumulate at sites of enriched PtdIns(4,5)P2, 
via binding of specific basic sequences. CALM interacts directly with the α subunit of AP2. Cytosolic 
clathrin is recruited by the β2 subunit of AP2. CALM may also have a role in recruitment but this has 
not been proven. CALM and AP2 co-assemble clathrin using clathrin binding motifs in disordered 
domains to form a coated pit. AP2 binds receptor cargo. The CALM AP180 N-terminal homology 
(ANTH) domain (represented by the crystal structure from Protein Data Bank entry 3ZYK in Figure 1) 
binds the soluble NSF (N-ethylmaleimide-sensitive fusion protein) attachment protein receptor 
(SNARE) domain of vesicle associated membrane proteins (VAMPs) [10,11]. The knockout/depletion 
phenotype of CALM suggests that it has a role in ordering and tightening the clathrin cage [12–15]. 
The interactions and role of AP180 in CME is essentially the same as CALM in Figure 1, except that 
AP180 has a longer disordered chain with more clathrin binding motifs that might be responsible for 
producing smaller clathrin coated vesicles. 
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The ubiquitous adaptor protein complex 2 (AP2) is a heterotetramer of four subunits (α, β2, µ2 and 
σ2 [16]) and is specific for CME at the PM. AP2 binds to PtdIns(4,5)P2 via binding sites on the α and 
µ2 subunits [17] and is able to recruit clathrin triskelia via the β2 subunit and drive clathrin  
assembly [9,18,19] (Figure 1). Both α and β2 subunits can bind clathrin, but also a wide range of 
adapter and accessory proteins, e.g., CALM and AP180, epidermal growth factor receptor substrate 15 
(eps15), epsins, amphiphysins and intersectins [8,20,21]. The µ2 subunit recognizes protein cargo 
binding motifs [8,16,22]. In this way, AP2 is a major protein interaction hub due to its ability to recruit 
numerous transmembrane, adaptor and accessory proteins to CME nucleation points, while binding to 
clathrin [23,24]. Initiation often involves recruitment of one clathrin triskelion by two AP2  
complexes [9]. Fully formed clathrin coated vesicles (CCVs) contain a reduced ratio of one clathrin 
triskelion for each AP2 complex, but AP2 is still the equal most abundant CCV-associated protein [25]. 

Figure 1. The interactions of CALM during the early stages of CME. 

 

The other major adaptor proteins are CALM and AP180, which are equally abundant with AP2 in 
CCVs (in CME and SVE, respectively) at a ratio of one adapter molecule per clathrin triskelion [25,26], 
but have often been overlooked for detailed study of their role in CME/SVE. CALM and AP180 are 
monomeric adapter proteins that bind to the PM via their N-terminal ANTH  domain [27] and bind 
clathrin and AP2 via an unstructured C-terminal assembly domain (AD) [28] (Figures 1 and 2). Many 
other less abundant monomeric adapters have a similar domain structure that allows for lipid, clathrin, 
cargo and accessory protein binding [29]. The arrival of AP2 during initiation has been well defined 
using single molecule resolution microscopy of CME, but this does not rule out a role for monomeric 
adapters in initiation [9]. Another high resolution imaging study demonstrated that clathrin and CALM 
have the same profile of localization during CME [30], indicating co-recruitment. An in vitro study 
showed that AP180 can recruit clathrin to synthetic lipid monolayers and that the monomeric adapter, 
epsin, could assemble a clathrin lattice and drive budding of CCVs [31]. This suggests that AP2 might 
be redundant in a subset of CME events. CALM and epsin, but not AP2, are required for CME of 
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notch ligands [32]. However, knockdown experiments have argued against an essential role of 
AP180/CALM in the early stages of CME. When CALM is knocked down, there are still clathrin 
coated pits at the PM, but pits are greatly depleted when AP-2 is knocked down [19]. There are many 
PM localized monomeric adapters that could potentially compensate for some of the lost functions of 
CALM or AP180 knockdown, but it is likely more difficult to replace the AP2 interaction hub function 
at the PM since the other AP complexes are localized to organelle membranes [1]. 

Figure 2. Domain structure of human CALM and AP180. AP180 consists of an AP180  
N-terminal homology (ANTH) domain and an assembly domain (AD). The AD has two 
subdomains: a clathrin and adapter (CLAP) domain and the remainder is an unnamed 
domain (ADΔCLAP). CALM has a nuclear export signal (NES). AP180 is nitrated (“N” in 
orange circle), phosphorylated (“P” in purple circle) and O-GlcNAc-6-phosphate modified 
(blue square with “P” in purple circle above). CALM is phosphorylated and O-GlcNAc 
modified (blue square only). Clathrin heavy chain (CHC), AP2 and eps15 homology (EH) 
domain binding motifs are shown. 

 

Maturation of clathrin coated pits requires interaction of AP2 with adapter and accessory proteins 
via its α subunit [33]. Clathrin, adapter and accessory proteins bind to the α and β2 subunit appendage 
domains with differing affinities [21,24]. Other adapters and accessory proteins with BAR  
(bin-amphiphysin-rvs) domains are able to sense lipids with different curvature and induce  
curvature [34]. The globular N-terminal domain of clathrin heavy chain has multiple binding sites for 
adapter proteins, allowing influence over clathrin coated pit dynamics [35]. Arising from this 
knowledge is a model where sensing/inducing lipid curvature and affinity for AP2 and clathrin defines 
how adapter and accessory proteins are spatially and temporally recruited and localized to fulfill their 
specific role in CME. This spatiotemporal regulation must also ensure that cargo selection occurs prior 
to budding. CALM andAP180 ensure that VAMPs/synaptobrevins are sorted into nascent vesicles by 
direct binding to the ANTH domain [10,11]. Thus, CALM and AP180 are abundant CME proteins 
with domains and sequence motifs that bind lipid, cargo, AP2 and clathrin, which predict roles in 
initiation, CME protein nucleation, cargo selection and clathrin coat assembly, but not all of these 
potential roles have been proven or fully investigated. 
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3. CALM and AP180 Domain Structure and Sequence Similarities 

CALM and AP180 have two domains with known functions; a folded ANTH domain, which binds 
PtdIns(4,5)P2 and VAMPs; and a C-terminal assembly domain (AD), which has no known secondary 
structure (Figure 2). 

3.1. A Structured ANTH Domain 

In 2001, two groups reported the ANTH domain crystal structure, one using the sequence from the 
Drosophila melanogaster homolog, LAP (like-AP180) [36] and the other using Rattus norvegicus 
CALM [37]. They showed that the ANTH domain is a globular structure consisting of ten folded alpha 
helices and is similar to the smaller epsin N-terminal homology domain. A lysine in α1 and a KKKH 
sequence in helix α2 bind PtdIns(4,5)P2 [36,37]. The ANTH domain in mammalian AP180 sequences 
is highly homologous (Figure 2). The rat, mouse and human ANTH (1-289) share >98.9% identity; in 
CALM the three mammalian sequences are 100% identical (Figure 2, aligned using ClustalW2. See 
also [38]). A comparison of AP180 and CALM ANTH domains within each of these mammals 
indicates an average of 81.4% identity. The identity drops when comparing the human CALM and 
AP180 ANTH domains to that of LAP (69.6% and 67.1%), the Caenorhabditis elegans homolog 
uncoordinated protein 11 (Unc11, 65.1% and 63.0%) or the Saccharomyces cerevisiae homolog yeast 
AP180A (YAP180A, 23.7% and 23.7%). Despite low identity with mammalian CALM and AP180, 
the role of the ANTH in VAMP internalization [10,11,39] seems to be evolutionarily conserved, since 
YAP180 has a role in the cargo-specific internalization of the yeast VAMP2 homolog, Snc1 [40]. 
YAP180A and YAP180B are coded by different yeast genes and are functionally redundant in sorting 
Snc1. The homolog of CALM and AP180 in Dictyostelium discoideum has also been shown to sort 
VAMP7B into clathrin coated vesicles on contractile vacuoles [41]. 

3.2. A Disordered Assembly Domain with Short Protein Binding Motifs 

The sequence of the AP180 AD has been studied in the most detail. The AP180 AD is a disordered 
random coil which occupies the same space as would a much larger globular protein [42]. The physical 
properties of the AD account for the slower migration of the full length protein on SDS-PAGE gels [43] 
at an apparent 180 kDa, despite its molecular mass of 92.5 kDa. CALM and AP180 AD sequences are 
not as evolutionarily conserved as the ANTH domain. The human, rat and mouse CALM and AP180 
ADs have high average identities (96.0% and 90.3%, respectively). However, the AD of other 
organisms are generally shorter. The AD of LAP is 54% and 73% shorter than human CALM and 
AP180. Unc11 is 23% and 55% shorter and YAP180A is 42% and 1% shorter. Thus, non-mammalian 
AD identities are low. By comparison with human CALM and AP180, LAP is 17.0% and 23.6% 
identical, Unc11 is 11.8% and 16.43% identical and YAP180A is 12.4% and 12.1% identical. This 
lack of identity does not prevent the various ADs from performing functions involving clathrin and 
AP2 binding, since these interaction rely on the presence of short binding motifs [20,28], but likely 
reflects differing requirements and specialization of CME in different organisms and tissues. A subset 
of CALM and AP180 homologs also have NPF motifs, which bind eps15 homology domains [44]. 
Mammalian AP180 harbors the most clathrin and AP2 binding motifs, but has no NPF motifs. 
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Figure 3. Alignment of isoform 1 of CALM and AP180 family members. Uniprot accessions: 
O60641, Q05140, Q61548, Q13492, Q498N4, Q7M6Y3, Q9VI75, Q9XZI6 and P38856. 
Domains, motifs and post-translational modifications are boxed using Figure 2 color scheme, 
except that all CLAP motifs are blue and O-GlcNAc-P (AP180 only) and O-GlcNAc (CALM) 
are pink. Identical residues in mammalian CALM and AP180 are shaded grey. Similarity 
across commonly researched organisms are indicated below: “*”, identical; “:”, strong 
similarity; “.”, weak similarity. Only phosphosites listed at PhosphoSite.org with ≥3 journal 
article references, or manually verified by our group [45] are shown. 
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Figure 3. Cont. 
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The clathrin and AP2 motifs in mammalian CALM and AP180 do not extend all the way to the  
C-terminus and thus form a central clathrin and adaptor protein binding (CLAP) sub-domain (Figures 2 
and 3). A three domain structure is supported by isoelectric point analysis of rat [46] and mouse [47] 
AP180 domains. The CLAP domain is acidic (human AP180 290-729; pI 3.2; human CALM 290-525, 
pI 5.2, our results using [48]. Sequence alignment does not support a central CLAP domain for LAP, 
Unc11 or YAP180, which have CLAP motifs that extend to near or at the extreme C-terminus [49] 
(Figure 3, aligned using ClustalW2 [50], settings were default except that five tree iterations were 
done). Nevertheless, the ADs of these homologs are acidic (pI 3.7, 6.0 and 5.8, respectively). In 
contrast, the isoelectric points of the ANTH domains of CALM, AP180 and homologs are basic: 
human AP180, 9.1; human CALM, 9.3; LAP, 8.5; Unc11, 8.1; and YAP180A, 9.1. The remaining  
C-terminal tail of the mammalian CALM and AP180 ADs, which we are calling the ADΔCLAP, is 
also basic. The human CALM and AP180 ADΔCLAPs have a pI of 9.5 and 10.2. The ADΔCLAP has 
no specific function in CME, but was recently found to harbor a nuclear export signal (NES) in  
CALM [51,52] (human CALM, 544-LANLVGNLGI-533). The NES consensus sequence is  
ΦX1-3ΦX2-3ΦXΦ, where Φ is most often leucine. The CALM NES appears to be a conserved sequence 
in mammalian CALM and AP180 (Figure 3). Evidence for nucleocytoplasmic shuttling of epsin, eps15 
and CALM was found over a decade ago but the role of these endocytic proteins in the nucleus is 
unknown [53]. Also, CME proteins have a role in mitosis which is independent of endocytosis [54]. 
CALM depleted HeLa cells have increased multinucleation and show delayed formation of the 
cleavage furrow. In summary, each CALM or AP180 homolog has short binding motifs for clathrin 
and adapter/accessory protein binding and mammalian CALM and AP180 appear to have a three 
domain structure which includes a central acidic CLAP domain. 

4. The Function of the CALM and AP180 Assembly Domain 

4.1. Clathrin Binding and Assembly 

A major tool for determining the role of the AD has been the use of truncated recombinant CALM 
and AP180 to compare each fragment’s ability to bind proteins and assemble clathrin, in vitro. The 
recombinant AP180 AD was found to be the minimum sequence required to assemble clathrin cages  
in vitro as efficiently and rapidly as the full length sequence [28,55]. A 42 kDa AP180 fragment, 
similar to the CLAP domain, could bind triskelia and cages but had no assembly function [55]. A 16 kDa 
C-terminal fragment bound clathrin cages, but had no assembly function [55], unless high concentrations 
were used in the assay [28]. Therefore, the entire AD of AP180, i.e., the CLAP plus the ADΔCLAP,  
is required for efficient clathrin assembly function. 

Full length CALM assembles clathrin cages in vitro [56,57]. Truncated CALM sequences have not 
been tested for assembly activity, but have been used to assess their ability to bind clathrin. These 
fragments do not correlate with the three domain structure we have proposed for CALM (Figure 2). 
Nevertheless, a similar pattern has emerged. C-terminal fragments approximating the AD, human 
CALM 414-652 [58] or 256-652 [59], can bind clathrin similar to the full length sequence, but 
sequences with a truncated C-terminus, i.e., 1-413, 414-613 [58] or 256-583 [59] bind clathrin poorly. 
This indicates that, similar to AP180, the entire AD of CALM is required for efficient clathrin binding. 
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These in vitro observations are supported by transferrin (Tfn) uptake assays [58,59]. Full length  
GFP-CALM has a dominant negative effect when transfected, partially blocking CME. GFP fusions 
with most of the AD plus an intact C-terminus similarly block Tfn uptake, but C-terminally truncated 
CALM has reduced or no effect on Tfn uptake [58,59]. The effect of partial AD truncation on Tfn 
uptake has not been tested for AP180. Thus, the entire AD is required for efficient clathrin binding by 
CALM in vitro and in vivo. 

The CALM and AP180 assembly functions are required for the production of small uniform 
vesicles, in CME and SVE, respectively, as shown in a number of studies [12,13,60–62]. Several 
groups showed by electron microscopy that purified or bacterially expressed mammalian AP180 
assembled clathrin into cages of narrower diameter compared to when AP180 was absent [60–62]. 
These in vitro assays highlighted that a modest variation in SV diameter would lead to a large 
difference in SV volume and neurotransmitter content. The quantal theory of neurotransmitter 
packaging reflects the observation that SV size is tightly regulated. Thus, it has been proposed that 
AP180 and homologs are crucial for SV size regulation [61]. This proposal has been confirmed by  
in vivo observations of cells lacking LAP [12] and Unc11 [13], which are present in all cells of  
D. Melanogaster and C. Elegans, respectively, but are also enriched in nerve terminals and have a 
synaptic phenotype. Functional knockout of lap and Unc11 resulted in an increase in SV size and 
quantal neurotransmitter release [12,13]. Additionally clathrin and VAMP2 were mis-localized, 
synapses failed to produce a sufficient number of SVs and the probability of neurotransmitter release 
was reduced [12,13]. Depletion of CALM [14] or AP180 [15] also results in abnormally large and 
deformed vesicles. VAMP2 knockout has a similar phenotype to knockout of CALM and AP180, 
including a change in SV size and shape [63]. This, and the observation that knockout of other SV cycle 
proteins also affect vesicle size [64], led to uncertainty surrounding the role of the CALM and AP180 
AD in shaping vesicles. However, it has recently been shown, by ablation of the VAMP2 sorting 
function, that the regulation of vesicle size and shape by CALM is independent of its VAMP sorting 
function [65], i.e. it is a clathrin assembly defect. Thus, CALM and AP180 have an evolutionarily 
conserved role in the high fidelity production of vesicles with a consistent size and shape. 

4.2. Mechanism of Clathrin Assembly 

The identification of multiple short clathrin binding motifs in the AD of AP180 provided a 
structural basis for the ability of CALM and AP180 to rapidly assemble clathrin [28,66]. AP180 
contains eleven D(L/I)(L/F) motifs (Figures 2 and 3), more than any other CME adapter protein, which 
may account for its ability to assemble clathrin in vitro four times faster than AP2 [67]. These same 
motifs are found in CALM, LAP, Unc11, other homologs, other CME adapters [28] and the clathrin 
cage disassembly protein, auxilin [68]. A high concentration of a D(L/I)(L/F) motif peptide was shown 
to block endocytosis [28]. AP180 binds the clathrin heavy chain (CHC) terminal domain (TD) [28] and 
these short motifs are expected to bind to similar grooves that clathrin box motifs use to bind the  
TD [69,70], but the D(L/I)(L/F) motif TD binding site is not known. A high number of D(L/I)(L/F) 
motifs in AP180 may explain its high clathrin assembly activity. A linear relationship between clathrin 
assembly and the number of D(L/I)(L/F) motifs was established in AP180 by progressive N-terminal 
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truncation [28]. Multiple motifs may also explain how a tighter clathrin cage is achieved in the production 
of SVs. AP180 D(L/I)(L/F) motifs are hypothesized to cross-link multiple clathrin TDs [28]. 

More recently, a nuclear magnetic resonance experiment using the CHC TD and a fragment of 
AP180 containing two D(L/I)(L/F) motifs revealed that these motifs have weak affinity (Kd~250 µM), 
fast on and off rates and have localized β-turn-like structures that do not change in the free or bound 
state [66]. Apart from the detailed study of these two motifs, systematic analysis of the contribution of 
AP180 clathrin binding motifs to AP180 function has not been done. The current knowledge on 
AP180-clathrin binding motifs has led to the line of baited hooks model [42,66,71], i.e., multiple 
D(L/I)(L/F) motif “hooks” along the AD “line” of AP180 are free to “fish” for clathrin to allow 
dynamic recruitment and assembly. AP180 likely co-assembles clathrin with AP2, since AP180 also 
has multiple binding motifs for the AP2 α subunit (Figure 2) and an AP180-AP2 complex has been 
shown to assemble clathrin cages in vitro faster than either protein alone [72]. 

CALM has only a single DLL motif. A DIF motif could potentially bind clathrin, but this motif is 
also one of three sites shown to bind the AP2 α subunit [14]. Nevertheless, in vitro peptide affinity 
experiments indicate that clathrin and AP2 can potentially bind to a quite broad set of motifs and share 
these short binding motifs [68]. Therefore, CALM may appear underequipped for multivalent binding 
to clathrin, but there may be additional unidentified clathrin binding sites. Two studies have shown that 
CALM C-terminal sequences that do not contain the DLL motif are involved in clathrin binding and 
influence receptor uptake assays [58,59]. This indicates there are at least two clathrin binding  
sites in CALM. 

The longest isoform of human CALM has two NPF motifs (Figure 2), but no binding to EH domain 
proteins eps15 or eps15R has been observed [58]. However, squid AP180 binds eps15 and may 
stimulate clathrin assembly [44]. YAP180A and B have five NPF motifs and knockout studies in yeast 
suggest that adaptor-accessory protein (i.e., NPF-EH domain) interactions regulate the transition from 
early to late endocytic events [73]. 

5. The Cargo Sorting Function of the CALM and AP180 ANTH Domains 

Different types of cargo are recognized by various CME adapter proteins that concentrate cargo 
within clathrin coated pits to ensure their internalization [74]. The CALM and AP180 ANTH domains 
bind to cargo proteins in the VAMP family [10,11,39,65,75]. VAMP is an essential component of the 
SNARE complex, along with other core components: synaptosomal associated protein 25 (SNAP25) 
and syntaxin [76,77]. CALM and AP180 bind directly to VAMP2, 3 and 8 and sort them into vesicles 
at the PM [10,11] and this role has been recently reviewed [75,78]. More recently, it has been shown 
that CALM also has the potential to sort VAMP4 and 8, indicating the universality of CALM-VAMP 
interactions [65]. 

Since VAMP2 is the most abundant synaptic vesicle protein component [79] and is required for fast 
calcium triggered SV fusion [80], there is a strong synaptic phenotype following CALM or AP180 
knockout/depletion. Lap knockout results in reduced neurotransmitter release [12], disrupted calcium 
coupling to exocytosis and mis-localization of a VAMP2 homolog [81]. Likewise, Unc11 knockout 
mis-localizes a VAMP2 homolog and reduces neurotransmitter release [13]. More recently, LAP 
function was studied using a system which allowed acute photoinactivation of a lap transgene [82].  
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It was shown that acute lap knockout had no effect on exocytosis, but was required for endocytosis and 
maintenance of the protein composition of SVs. Mammalian CALM knockdown was shown to  
affect VAMP2 surface levels in HEK293 cells [11,39], PC12 cells [39], HelaM cells [10] and  
hippocampal neurons [11]. 

Structural studies identified specific CALM-VAMP interaction sites. CALM does not use short 
linear motifs to recognize cargo [4,74], but binds VAMPs via their SNARE domains [10,11,83], the 
same domain VAMPs use to form four-helical bundles with other SNAREs to drive membrane  
fusion [77]. VAMPs bind in a long groove on the ANTH domain surface and can bind PtdIns(4,5)P2 
simultaneously to increase ANTH affinity for membranes [10]. SNARE complex formation and 
ANTH binding was shown to be mutually exclusive for VAMP8. Knowledge of the residues involved 
in VAMP binding has provided tools to study the VAMP sorting function of CALM and AP180 
independently of the clathrin assembly function, e.g., the M244K mutant does not bind VAMPs [10,65]. 
Thus CALM and AP180 load VAMP into vesicles, ensuring their competence for future SNARE 
mediated membrane fusion. 

Evidence for direct binding of AP180 to VAMPs is weaker than for CALM. One study showed that 
GST-AP180 ANTH could extract recombinant VAMP2 from solution better than GST, but with a 
greatly reduced ability in comparison to CALM [11]. Another study found no evidence of direct 
AP180-VAMP interaction [10]. This is surprising, since the CALM and AP180 ANTH domain 
sequences have few non-identical/similar residues (Figure 3), but may hint at differences in the VAMP 
sorting mechanism or different roles of CALM and AP180 in neurons. 

6. Role of CALM in Receptor Uptake 

Overexpression of CALM or AP180 blocks uptake of standard cargoes, i.e., Tfn and the epidermal 
growth factor receptor (EGFR), via CME by dominant negative sequestration of clathrin [37,58,59,84]. 
The AD of AP180 has been used as a tool to block CME in dozens of studies (e.g., see [85]), although 
one study reported no change in Tfn uptake [86]. However, depletion of CALM has little or no effect 
on uptake of Tfn or EGFR. In early studies, CALM depletion appeared to have no effect on Tfn 
uptake, but a specific effect on EGFR uptake [14,87]. Two later studies confirmed that CALM depletion 
had no effect on Tfn uptake [10,39]. A small but non-significant effect on EGF uptake was observed in 
a recent study [10]. In a different type of experiment, Tfn uptake was affected in CALM knockout 
mouse embryonic fibroblasts [88] and CALM-deficient mice suffered growth retardation and severe 
anemia. This highlights the difficulty in establishing the role of CALM in receptor uptake when using 
approaches that allow cells to potentially adapt and compensate after CALM depletion. 

7. Post-Translational Modifications of CALM and AP180 

AP180 and other SVE adapters and accessory proteins, are known to be phosphorylated in 
unstimulated nerve terminals then undergo coordinated dephosphorylation by the calcium stimulated 
phosphatase calcineurin [89]. The model for this paradigm is endocytosis fission protein dynamin 1, 
which is required to be dephosphorylated at particular phosphorylation sites to allow dynamin 1-protein 
interactions that promote endocytosis [90,91]. Thus, dephosphorylation of AP180 is likely to promote 
AP180-protein interactions and SVE. This has not been shown, but comparison of native and 
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recombinant AP180 has demonstrated that modification of AP180 is not required for the clathrin 
assembly function [61,92]. AP180-AP2 binding and cooperative clathrin assembly is weakened when 
AP180 is phosphorylated by casein kinase 2 in vitro [72]. 

Using 32P metabolic labeling, it was found that AP180 is relatively heavily phosphorylated on 
predominantly serine residues [93,94] and phosphorylation occurs mainly in the AD [92]. Many 
phosphorylation sites have been identified on AP180 in both targeted [45] and large scale 
phosphoproteomics studies [95–99] (Figures 2 and 3). None of the published AD in vivo phosphorylation 
sites match the casein kinase 2 substrate consensus sequence, (S/T)Xn(D/E) where n is often three but  
also one or two [100]. However, in the acidic AD there are peptides produced from trypsin cleavage of 
AP180 that contain multiple potential casein kinase 2 sites but are >10 kDa and not amenable to 
conventional phosphorylation site analysis. The use of small molecule protein kinase inhibitors on 
synaptosomes has ruled out protein kinase C and cyclin-dependent kinase 5 as major protein kinases 
for AP180 [90,101]. DYRK1A is able to phosphorylate AP180 to dissociate it from clathrin coated 
vesicles in an in vitro assay [102], but there is no evidence that this occurs in vivo. Thus, the in vivo 
protein kinases that phosphorylate AP180 remain to be discovered and the functions of the known 
AP180 phosphorylation sites in SVE are yet to be determined. 

AP180 is also a glycoprotein. AP180 was the first known protein to be modified by the  
O-GlcNAc-6-phosphate modification [45]. Other synaptic proteins also contain this modification [103]. 
O-GlcNAc and O-GlcNAc-6-phosphate have been found at the same site in AP180 (Thr-310, Figure 2). 
Thus, these modifications have the potential to dynamically regulate AP180 protein interactions at the 
phosphorylation and glycosylation levels in perhaps a stepwise manner [104]. CALM is also modified 
by O-GlcNAc [105,106] and phosphorylated at multiple sites [107]. Since very few of these site 
localizations have been independently verified, we have included only those repeatedly or confidently 
identified in Figure 2. A phosphorylation site detected at Ser107 in both neuronal and  
non-neuronal cells could be from either CALM or AP180 since the tryptic peptide sequence is identical. 
AP180 purified from the human pituitary was found to be modified by nitration at Tyr237 [108]. Both 
CALM and AP180 are also subject to additional types of modification, e.g., ubiquitination and  
di-methylation [107,109,110]. The roles of these post-translational modifications in regulating CALM 
and AP180 functions remain to be determined. 

8. CALM and AP180 in Disease 

8.1. Leukemia 

CALM was discovered as product of a t(10;11)(p13;q14) translocation in the U937 cell line, derived 
from a diffuse histiocytic lymphoma [111,112]. This translocation gives rise to the PICALM-MLLT10 
fusion gene and CALM-AF10 fusion protein, which is found in patients with acute myeloid leukemia, 
T-cell acute lymphoblastic leukemia and malignant lymphoma [113–115]. Multiple breakpoints have 
been identified, but the major protein product is always a mildly C-terminally truncated CALM  
fused to a mildly N-terminally truncated AF10. Recent studies have shed light on the mechanism of 
CALM-AF10 mediated leukemogenesis. AF10 interacts with DOT1L, a methyltransferase that 
methylates H3K79 (histone H3 lysine 79), through its OM-LZ (octapeptide motif–leucine zipper) 
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interaction domain. H3K79 hypermethylation upregulates HOXA gene clusters, which is critical for 
CALM-AF10 induced leukemogenesis [52,116]. It was later demonstrated that direct inhibition of the 
methyltransferase activity of DOT1L via genetic inactivation and small molecule inhibition prevented 
CALM-AF10 mediated leukemogenesis [117]. 

The CALM contribution to leukemogenesis from the CALM-AF10 protein was independently 
discovered by two laboratories and attributed to the presence of an NES (Figures 2 and 3) in  
CALM [51,52]. The CALM NES fused to AF10 was necessary and sufficient for immortalization of 
cells in vitro and to induce leukemia in mice [51,52]. However, it is not clear how cytoplasmic 
localization or nucleocytoplasmic shuttling of CALM-AF10 induces leukemia, since DOT1L is only 
partially mis-localized by CALM-AF10 [51], if at all [52]. It is also not known how the endocytic 
function of CALM impacts leukemogenesis. CALM-AF10 expression was associated with altered Tfn 
uptake efficiency in 293T cells; however, endocytosis and proliferation were unaffected in a leukemia 
cell line [118]. 

8.2. Alzheimer’s Disease 

The gene for CALM, PICALM, was identified as a risk factor for late onset Alzheimer’s disease 
(LOAD) in genome wide association studies [119,120]. PICALM is one of a small group of genes 
associated with LOAD that code for endocytic proteins. This group includes the BIN1 gene, which 
codes for amphiphysin 2, an accessory protein with a CLAP domain. Which CALM functions impact 
on LOAD are not clear. The most significant single nucleotide polymorphism (SNP), rs3851179 [119,121], 
has an odds ratio (0.85 [119]) that indicates this SNP results in a protective allele. This correlates with 
a study showing improved episodic memory performance for the minor allele [122]. The rs3851179 
SNP is in a non-coding region ~80 kb 5′ of PICALM with no known function. Less significant SNPs 
are located in regions that may be involved in transcription factor binding and exon splicing and may 
be in linkage disequilibrium with rs3851179 [119]. This suggests that the association between 
PICALM and LOAD may relate to changes in expression of CALM or particular CALM isoforms. 
Although much focus has been on this highly significant SNP, rare PICALM mutations might be found 
to have greater penetrance. 

A number of studies have examined PICALM/CALM expression. PICALM mRNA levels and 
LOAD associated SNPs have not correlated with LOAD pathology in brain tissue samples [123–125]. 
In support of a role for CALM, increased expression was found in the cortex of Tg2576 mice that 
overexpress the Swedish mutation in amyloid precursor protein (APP) [126]. Also, CALM was  
found to be cleaved in diseased brain tissue and associated with hyper-phosphorylated tau in  
neurofibrillary tangles [127] (Figure 4). Technical difficulties in handling and obtaining sufficient  
numbers of post mortem samples may contribute to the lack of a conclusive link to  
LOAD-associated SNPs. 

A potential confounding factor is that CALM is expressed more highly in the microvasculature of 
the brain than neurons [127–129] and is highly expressed in microglia in individuals with LOAD [127]. 
These two observations have led to two hypotheses (Figure 4).  
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Figure 4. Current hypotheses of the mechanism of CALM involvement in late onset 
Alzheimer’s disease (LOAD). (A) CALM may influence the efficiency of Aβ clearance into 
the bloodstream [127–129], possibly by changing the LRP1 and CME dependent  
brain-to-blood transcytosis of Aβ; (B) CALM is highly expressed in microglia in individuals 
with LOAD [127]. CALM dysfunction in microglial cells of the innate immune system may 
affect immune system signaling and Aβ clearance; (C) CALM is cleaved in LOAD brain tissue 
and associated with hyper-phosphorylated tau in neurofibrillary tangles (NFTs) [127];  
(D) CALM may be involved in Aβ generation by influencing amyloid precursor protein (APP) 
processing. Altered CALM function/expression could change the steady-state localization of 
APP and γ-secretase via CME and thus alter the rate of APP cleavage and production of Aβ. In 
this latter hypothesis, decreased CALM expression might be protective. Conflicting evidence 
relates the level of CALM expression to the production of Aβ [86,134,136]. 
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First, CALM might contribute to LOAD in endothelial cells by changing the efficiency of clearance 
of amyloid-beta (Aβ) through the blood-brain-barrier [127–129]. Since Aβ likely enters endothelial 
cells via low-density lipoprotein receptor-related protein 1 (LRP1) [130] using CME [131], a change in 
CALM abundance or function would affect uptake and transcytosis to the bloodstream. Second, 
aberrant CALM function in the microglial cells of the innate immune system might result in reduced 
Aβ clearance or an inflammatory state that contributes to LOAD [127], perhaps by influencing the 
recycling of immune receptors or secretion of cytokines (via CME and VAMP dysregulation, 
respectively). Genes coding for proteins related to the immune system or expressed in microglia have 
also been associated with LOAD [132,133]. However, these hypotheses have not been tested and both 
imply that CALM contributes only after LOAD pathology has been established in neurons by another 
mechanism. 

Knock-down of CALM was shown to affect the trans-Golgi network (TGN)/endosomal sorting 
system in non-neuronal cells [14], which has led to molecular and biochemical studies on how CALM 
influences APP processing [86,134] (Figure 4). APP is initially synthesized in the endoplasmic 
reticulum, modified in the Golgi and then transported to the cell surface by the secretory pathway. 
From there it is internalized back into the cell by endocytosis, trafficked from early endosomes to late 
endosomes or the TGN, before being proteolyzed to release toxic Aβ. The role of CALM in Aβ 
regulation has been studied in cellular models, yeast and mice [86,134]. CALM and APP were shown to 
co-localize during endocytosis in neuroblastoma N2a cells stably overexpressing APP. CALM 
knockdown reduced APP internalization and Aβ production, and overexpression reversed this  
effect [86]. A similar effect was found in hippocampal tissue from APPswe/PS1ΔE9 mice injected 
with viral vectors to knockdown/overexpress CALM. CALM overexpression resulted in increased 
amyloid plaque load [86]. In a screen of yeast genes, it was found YAP180B overexpression 
suppressed a model of Aβ toxicity [134]. Overexpressed Unc11 in glutamatergic neurons of C. elegans 
and CALM in cortical neurons also suppressed models of Aβ toxicity [134]. A recent study showed 
CALM depletion reduced production of toxic Aβ and this was because of a shift in CALM-dependent 
CME of γ-secretase, the enzyme responsible for APP cleavage [135]. Not all of these studies agree, but 
they demonstrate the potential for CALM to influence APP processing by changing the membrane  
steady-state localisation of APP and/or γ-secretase (Figure 4). 

Alzheimer’s disease brains have reduced expression of AP180 and other SV cycle proteins and 
fewer synapses overall [136,137]. Knockdown of AP180, but not CALM, reduced Aβ generation in a 
neuronal cell line [138], contradicting other studies. Also, AP180 was identified as a causal regulator 
of LOAD in a large scale gene expression and network analysis of post mortem samples [133]. 
Although CALM is ubiquitously expressed and AP180 is brain-specific, the gene for AP180, SNAP91, 
has not been genetically linked to LOAD. However, SNAP91 has been associated with mood-incongruent 
psychotic bipolar disorder [139] and, as with other SV cycle proteins, continues to be a potential 
therapeutic target for diseases related to aberrant neurotransmission. 

9. Conclusions 

The overall functions of the ANTH and AD of CALM and AP180 in lipid binding, VAMP sorting 
and clathrin assembly are well established. However, there is a lack of mechanistic detail and some 
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unanswered questions about CALM and AP180 function. In what order do clathrin and AP2 interact 
with CALM and AP180? Many clathrin binding sites on AP180 and some for CALM have been 
identified, but what is the mechanism of assembly and how are uniform vesicles achieved? Approaches 
that allow an acute knockout/knockdown or single molecule resolution analysis of CALM and AP180 
may provide this detail. Since the early days of AP180 discovery, a three domain structure has been 
postulated, and sequence similarity suggests the same domain organization for CALM. The function of 
this high pI C-terminal domain/sub-domain remains to be discovered. The VAMP sorting function is 
well established for CALM, AP180 and homologs in multiple organisms. However, there is an 
unexplained difference in VAMP affinity for CALM and AP180. The disruption of TGN/endosomal 
trafficking and receptor internalization when CALM is knocked down, might be a consequence of 
VAMP mis-localization and subsequent inability of vesicles to fuse with correct target membranes. 
This is not yet proven, but is perhaps the most likely way that APP processing might be affected by 
dysregulated CALM. The CALM functions and specific biological process involving CALM in LOAD 
remain to be determined. A greater understanding of the CALM mediated CME mechanisms, cell 
signaling via post-translational modifications and broader biological roles may lead to research tools 
and therapeutics for LOAD and diseases related to neurotransmission. 
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