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de Louvain, Brussels, Belgium, 4 Experimental Medicine Unit, de Duve Institute, Université catholique de Louvain, Brussels, Belgium, 5 StatUa Center for Statistics,
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Abstract

Carboxypeptidase M (CPM) targets the basic amino acids arginine and lysine present at the C-terminus of peptides or
proteins. CPM is thought to be involved in inflammatory processes. This is corroborated by CPM-mediated trimming and
modulation of inflammatory factors, and expression of the protease in inflammatory environments. Since the function of
CPM in and beyond inflammation remains mainly undefined, the identification of natural substrates can aid in discovering
the (patho)physiological role of CPM. CCL1/I-309, with its three C-terminal basic amino acids, forms a potential natural
substrate for CPM. CCL1 plays a role not only in inflammation but also in apoptosis, angiogenesis and tumor biology.
Enzymatic processing differently impacts the biological activity of chemokines thereby contributing to the complex
regulation of the chemokine system. The aim of the present study was to investigate whether (i) CCL1/I-309 is prone to
trimming by CPM, and (ii) the biological activity of CCL1 is altered after C-terminal proteolytic processing. CCL1 was
identified as a novel substrate for CPM in vitro using mass spectrometry. C-terminal clipping of CCL1 augmented
intracellular calcium release mediated by CCR8 but reduced the binding of CCL1 to CCR8. In line with the higher intracellular
calcium release, a pronounced increase of the anti-apoptotic activity of CCL1 was observed in the BW5147 cellular model.
CCR8 signaling, CCR8 binding and anti-apoptotic activity were unaffected when CPM was exposed to the carboxypeptidase
inhibitor DL-2-mercaptomethyl-3-guanidino-ethylthiopropanoic acid. The results of this study suggest that CPM is a likely
candidate for the regulation of biological processes relying on the CCL1-CCR8 system.
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Introduction

Carboxypeptidase M (CPM, EC 3.4.17.12) is a member of the

metallo-carboxypeptidases, which consist of metallo-peptidases

cleaving C-terminal amino acids from peptides and proteins. CPM

specifically removes arginines (Arg) and lysines (Lys) from the C-

terminus of substrates. Its membrane-bound anchoring is

propitious for local processing of peptide hormones at the cell

surface [1]. The processing and modulation of the activity of

kinins, enkephalins and anaphylatoxins quickly pointed towards an

inflammatory role for CPM. This was further substantiated by the

expression of CPM on differentiated immune cells such as

macrophages, and up- or downregulation of CPM in inflamma-

tion, tumor and/or tumor environment (reviewed in [2]).

However, the role of CPM in and beyond inflammation remains

mainly undefined. Therefore, identification of proteolytic regula-

tion of natural substrates by CPM remains crucial to unravel the

function(s) of CPM. A polypeptide group to study in this context is

the chemokine superfamily, which contributes to the inflammatory

and immunological component of many clinically relevant

pathologies [3]. Proteolytic processing affects the activity of

chemokines in vitro and in vivo in different ways [4]. Besides

orchestrating leukocyte chemotaxis and host inflammatory

responses, chemokines can be regulators of fundamental develop-

mental processes. Stromal cell-derived factor-1 alpha (SDF-1a/

CXCL12a) is such a primordial chemokine. CXCL12a regulates

hematopoiesis, lymphocyte trafficking, B-lineage cell proliferation,

and angiogenesis. In serum, the rapid conversion of full length

CXCL12a to CXCL12a des-Lys68 is mediated by carboxypepti-

dase N [5]. However, CPM also catalyzes the C-terminal

truncation of CXCL12a, at least in vitro [6]. Loss of Lys68

negatively affects several functional properties of CXCL12a such

as heparin and cell binding ability, cell proliferation, and

chemotactic response of various cell types [5–7]. However,

CXCR4 binding and internalization in response to CXCL12a
(1–54) were unperturbed [8]. CCL1, ending C-terminally in –
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Lys71-Arg72-Lys73, forms another interesting chemokine target for

CPM. CCL1 is secreted by monocytes, activated macrophages and

T lymphocytes and attracts monocytes, (activated) Th2-differen-

tiated T cells, and a subset of T regulatory cells in vitro [9–11].

CCL1 interacts exclusively with the CCR8 receptor [12–14].

Moreover, CCL1 exerts anti-apoptotic and proliferative activity

on murine thymic lymphoma cell lines when exposed to

dexamethasone (DEX) [15]. The rescue of BW5147 T lymphoma

cells from corticoid-induced death by CCL1 occurs through

CCR8-dependent activation of the RAS/MAPK pathway [16,17].

Together with the specific CCR8 expression in lymphoid tissues

(the thymus in particular), these observations point towards a more

fundamental role for CCL1 in thymocytic migration and

development in vivo [14]. CCL1 is implicated in inflammatory

processes through leukocyte recruitment and inhibition of CCR8-

mediated HIV infection [18]. Moreover, CCL1 could play an

important role in angiogenesis, other viral, and tumoral processes

[19–22]. Hence, like many chemokines, the role of CCL1 goes far

beyond inflammation. The goal of this work was to investigate

whether CPM-catalyzed C-terminal trimming of CCL1 affects its

biological activity. The results of this study show that the removal

of three amino acids from the C-terminus of CCL1 reduces CCR8

binding, but turns CCL1 into a more potent CCR8 agonist,

resulting in, for example, increased intracellular calcium (Ca2+
i)

release and enhanced anti-apoptotic activity.

Results

1. CCL1 is an in vitro substrate for CPM
CPM is a metallo-carboxypeptidase that cleaves off Arg and Lys

from the C-terminus of protein and peptide substrates. We

examined whether CCL1 was prone to processing by CPM. Intact

CCL1 (1–73) (5 mM, produced recombinantly in Escherichia coli)

was incubated with CPM (26 nM) at 37uC. The formation of

CCL1-derived products was examined by determining the ratio of

intact/cleaved polypeptide at indicated time points. Removal of

Lys73 of CCL1 was initiated within 5 min as shown by mass

spectrometry analysis (Figure 1). This step was rate-limiting and

rapidly followed by the cleavage of Arg72 and Lys71. CCL1 (1–70)

already appeared after 15 min. Under the conditions used, full

truncation of CCL1 by CPM was achieved after 90 min at 37uC.

The intermediate CCL1 products (CCL1–Lys71-Arg72 and

CCL1–Lys71) did not accumulate. No degradation products were

observed in control samples (CCL1 without CPM, 15 and 60 min

of incubation at 37uC). A shorter form of the CCL1 polypeptide as

well as an oxidation product were detected as minor contaminants

in the original recombinant CCL1 preparation. Both products

were processed identically by CPM at the C-terminus. The mass

observed for the shorter polypeptide corresponded to CCL1 minus

the five N-terminal amino acids Lys1-Ser2-Met3-Gln4-Val5 [CCL1

(6–73)]. The kcat/KM was 2.16104 M21 s21 as calculated from the

decay curve of intact CCL1. This value was comparable to the

substrate specificity of CPM for CXCL12a [6]. Thus, CCL1 is

efficiently processed at the C-terminus by CPM in vitro to generate

CCL1 (1–70).

2. N-glycosylation of CCL1 slows down enzymatic
cleavage by CPM

In order to investigate a potential effect of N-glycosylation,

similar incubations (90 min at 37uC) were performed with CPM

on CCL1 produced in insect cells (5 mM). The CCL1 of this

preparation was susceptible to cleavage by CPM. A difference in

mass of 413 Da between intact CCL1 and presumed CCL1 (1–70)

was found, which corresponded to the removal of –Lys71-Arg72-

Lys73. However, the molecular masses of CCL1 (1–73) and CCL1

(1–70) (Mr of 9521 and 9108, respectively) determined by mass

spectrometry were consistently higher than those predicted from

the protein sequence or observed after mass analysis of CCL1

produced in E. coli [Mr of 8484 and 8071 for CCL1 (1–73) and

CCL1 (1–70), respectively]. These higher masses are presumably

due to typical glycosylation that occurs during recombinant

production by insect cells. Additionally, when incubated with

50 nM of CPM, only low levels of CCL1 (1–70) were detected.

Yet, N-glycosylated CCL1 was fully converted to CCL1 (1–70)

after the addition of 500 nM of CPM. The conversion was also

verified by Tris-Tricine gel electrophoresis (data not shown). The

relative rate of the conversion was approximatively ten times lower

for glycosylated CCL1 vs. unglycosylated CCL1 (assuming that the

initial rate is directly proportional to the concentration of CPM,

with a known concentration of CCL1).

3. C-terminal processing of CCL1 by CPM enhances CCR8
signaling despite diminished CCR8 binding

We compared the signaling properties of CCL1 (1–73) and

CCL1 (1–70) through CCR8 by measuring the Ca2+
i release. In

CHO cells transfected with CCR8 (CHO-CCR8 cells), CCL1 (1–

73) induced an increase in the intracellular calcium concentration

([Ca2+]i) that was dose-dependent as expected [16] (Figure 2, panel

A). The Ca2+
i release was even more pronounced after stimulation

with truncated CCL1, indicating activation of CCL1 by CPM.

This increase in the release of Ca2+
i was statistically significant for

two out of three CCL1 concentrations tested. When CPM activity

was inhibited with the carboxypeptidase inhibitor DL-2-mercap-

tomethyl-3-guanidino-ethylthiopropanoic acid (MERGETPA) pri-

or to the assay [control for CCL1 (1–73)], the original cellular

responses were restored. Based on the dose-response curves we

concluded that cleavage of CCL1 by CPM led to a significant

three-fold increase of the Ca2+
i signaling potency. The binding

Figure 1. Time course of cleavage of the chemokine CCL1 by
CPM. 5 mM CCL1 (R & D systems) was incubated with 26 nM CPM for
various time intervals. The release of the three C-terminal basic amino
acids –Lys71-Arg72-Lys73 was monitored by mass spectrometry. The
percentage of CCL1 variant [CCL1 (%)] is plotted against time (min).
CCL1 (1–73) (%), CCL1 (1–72) (#), CCL1 (1–71) (n) and CCL1 (1–70) (&).
doi:10.1371/journal.pone.0034199.g001

CPM Enhances CCL1-CCR8 Signaling
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efficiency of CCL1 (1–73) and CCL1 (1–70) to CCR8 was

evaluated by comparing their ability to compete for 125I-labeled

CCL1 (1–73) (Figure 2, panel B). All binding experiments were

conducted in the presence of 10 mM of MERGETPA to

guarantuee the inhibition of any endogenous basic carboxypep-

tidase activity. Both CCL1 variants competed in a dose-dependent

manner for the binding to CCR8. However, truncation of CCL1

by CPM reduced the binding affinity of CCL1 (1–70) towards

CCR8. The reduced CCR8 binding ability of CCL1 (1–70) was

statistically significant for three CCL1 concentrations (e.i. 12 nM,

1.2 nM and 0.35 nM). In order to achieve a displacement of 125I-

labeled CCL1 (1–73) comparable to that caused by CCL1 (1–73),

about ten-fold more CCL1 (1–70) appeared to be necessary. 125I-

labeled CCL1 (1–73) displacement results were comparable for

CCL1 (1–73) and for the control sample for CCL1 (1–73) [CCL1

(1–73)+(CPM+MERGETPA)] (data not shown). CPM, and CPM

and MERGETPA were not able to displace 125I-labeled CCL1 (1–

73) from CCR8. Some cell samples were incubated with 125I-

labeled CCL1 (1–73) and one of the CCL1 variants without the

addition of 10 mM of MERGETPA. There was no difference in
125I-labeled CCL1 (1–73) displacement from CCR8 in the

presence or absence of 10 mM of MERGETPA. Despite a

diminished CCR8 binding efficiency, CCL1 (1–70) thus appeared

to a better inducer of CCR8 signaling than CCL1 (1–73).

4. Significant increase in anti-apoptotic activity of CCL1
after C-terminal truncation

We wondered whether the increase in CCR8-mediated Ca2+
i

release would result in an enhanced biological activity of CCL1

(1–70). The well-known BW5147 cellular model was used to

compare the anti-apoptotic activities of CCL1 (1–73) and CCL1

(1–70), a process that is mediated by CCR8 [16,17]. All the

apoptosis studies all were performed in the presence of 10 mM of

MERGETPA in order to inhibit any endogenous basic carboxy-

peptidase activity. Results are shown in Figure 3. Strikingly, an

eight-fold increase in protective activity against DEX-induced

death of BW5147 cells was observed for CCL1 (1–70) compared to

CCL1 (1–73). Half-maximal protection was obtained at

0.4760.07 nM and 0.0660.01 nM for CCL1 (1–73) and CCL1

(1–70), respectively. Preincubation of CPM with MERGETPA

prior to addition of CCL1 [control for CCL1 (1–73)] yielded a

half-maximal protection of 0.4360.06 nM, meaning that the

original response to intact CCL1 was restored. BW5147 cells did

not survive when incubated with DEX alone, DEX and CPM, or

DEX, CPM and MERGETPA. Overall, these observations

indicate that CPM potentiates the anti-apoptotic activity of

CCL1, concomitant with the enhanced activation of CCR8

signaling by CCL1 (1–70).

5. BW5147 cells express the CPM transcript and show
membrane-associated basic carboxypeptidase activity

CCL1 is a potent protector of T lymphoma cells against DEX-

induced apoptosis. The existence of an autocrine anti-apoptotic

loop in adult T cell leukemia cells (ATLs) mediated by the

overexpression of CCL1 was suggested. Overexpression of CCL1

by ATLs would inhibit apoptosis in ATLs and contribute to their

growth [21]. The anti-apoptotic effect of CCL1 in vitro was

enhanced after CPM-mediated cleavage. Therefore, we wondered

if the T lymphoma cells were capable of influencing the anti-

apoptotic trigger of CCL1 by expressing CPM at the cell surface as

Figure 2. Signaling capacity through and binding properties to CCR8 of CCL1 variants. A, CHO-CCR8 cells were loaded with the
ratiometric Ca2+-binding molecule Fura-2/AM. [Ca2+]i was monitored upon stimulation of the cells with the indicated concentrations of CCL1 (1–73)
and CCL1 (1–70) (nM, logarithmic scale). Values represent the mean (6 SEM) (nM) increase in [Ca2+]i (n$6). The dashed line indicates the detection
limit (15 nM). B, CHO-CCR8 cells were incubated with increasing concentrations of unlabeled CCL1 (1–73) or CCL1 (1–70), together with 125I-labeled
CCL1 (1–73). The mean remaining % of 125I-labeled CCL1 binding (6 SEM) is plotted against the concentration of unlabeled CCL1 (nM) (n$5).
Statistically significant differences were detected using the Mann-Whitney U test (*, p,0.05; **, p,0.01). Comparison of CCL1 (1–70) (N) with CCL1
(1–73) (#) is indicated with dashed arrows, and with [CCL1 (1–73)+(CPM+MERGETPA)] [control for CCL1 (1–73)] (%) is shown with full arrows.
doi:10.1371/journal.pone.0034199.g002

CPM Enhances CCL1-CCR8 Signaling
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a response to the presence of DEX and/or CCL1. We

hypothesized that the T lymphoma cells could augment their

CPM expression when in contact with DEX, thereby enhancing

the possibility of the formation of truncated CCL1 if contact with

CCL1 would occur. This would offer an additional mechanism for

escaping DEX-induced apoptosis and would also mean that CPM

could be one of the players in the process of DEX therapy

resistance observed in hematological malignancies such as acute

lymphoblastic leukemia. From the results described below, it

appeared that the BW5147 T lymphoma cells did not respond to

DEX and/or CCL1 by enhancing their CPM expression at the

cell surface.

Detecting CPM transcript positivity in these cells we determined

whether DEX and/or CCL1 variants affected CPM transcript

expression in time (Figure 4). The time course of CPM regulation

occurred in two phases: (i) a decrease in CPM transcript between

baseline and 8 h (early phase), and (ii) a linear increase until 72 h

(late phase). Two separate statistical analyses of the data for the

early and the late phase were performed, with the measurements

at time point 8 h used twice. The early phase showed a

downregulation of CPM, which was significantly enhanced by

DEX across all CCL1 variants. This effect was independent from

the CCL1 variant added. The late phase was characterized by a

recovery of CPM expression across all CCL1 forms, but the

recovery rate, and the influence of DEX on this recovery rate

differed according to the CCL1 form. For CCL1 (1–73) and

[CCL1 (1–73)+(CPM+MERGETPA)] [control for CCL1 (1–73)],

DEX significantly slowed down CPM recovery. There was no

significant difference in recovery rate between + DEX and 2

DEX for CCL1 (1–70). Finally, comparison of the rate of increase

in CPM between CCL1 (1–73) with CCL1 (1–70) in the late phase

showed a trend towards significance, both in the presence

(p = 0.07) and absence (p = 0.05) of DEX.

Membrane-associated basic carboxypeptidase activity was

measured on intact BW5147 cells. Overall, the basic carboxypep-

tidase activity measured on BW5147 cells after 72 h of incubation

with(out) DEX and/or CCL1 variants was low but still detectable

(Figure 5). No difference in specific activity was seen after

stimulation with CCL1 (1–73) or CCL1 (1–70) in the presence

of DEX. This activity tended to be decreased compared to

BW5147 cells with DEX (although not statistically proven) and

correlated with the results of the CPM transcript analysis.

Stimulation with CPM or CPM and MERGETPA did not

influence the activity measured on BW5147 cells with DEX (data

not shown). Activity on BW5147 cells without DEX was

significantly lower than with DEX, or BW5147 cells with DEX

and a CCL1 variant. The low activity level of BW5147 cells

without DEX was not consistent with the CPM transcript level.

BW5147 cells with(out) DEX showed a similar and the highest

level of CPM transcript at 72 h of all conditions tested.

Discussion

Literature data concerning natural substrates of CPM are rather

scarce. Reported biologically active substrates include bradykinin

[1,23,24], Arg6/Lys6-enkephalins [1,23], dynorphin A (1–13) [1],

epidermal growth factor [25], hemoglobin (a chain) [26], and

CXCL12a [6]. For these substrates, removal of the C-terminal

amino acid specifically modifies some of the peptides’ activities

(reviewed in [2]). On the other hand, post-translational modifica-

tion and N-terminal proteolytic processing of chemokines is

commonly observed and is believed to contribute to the fine-

tuning of the inflammatory response [4]. In contrast to N-terminal

proteolysis, reports describing the truncation of chemokines at the

C-terminus are limited in number. In particular, the chemokine

CXCL12a des-Lys68 loses heparin and cell binding ability partly,

while B cell proliferation and chemotaxis are enhanced [5,7]. In

this study we demonstrate for the first time that another

chemokine, CCL1, is processed at its C-terminus by CPM in vitro.

CPM-mediated release of –Lys71-Arg72-Lys73 from CCL1 oc-

curred very efficiently. The first step in the cleavage process

[removal of Lys73 and (transient) formation of CCL1–Lys71-Arg72]

was characterized by a kcat/KM of 2.16104 M21 s21. This

specificity constant is in good agreement with values reported for

some of the natural substrates mentioned above. Glycosylation at

Asn29 of CCL1 encumbered processing mediated by CPM. Since

CCL1 is secreted as a glycoprotein [27] these results may be of

importance for proteolytic processing in vivo. Obviously, it is

difficult to predict whether the N-glycan of natural CCL1 will

affect proteolytic modification since glycosylation greatly differs

between insect and mammalian cells. Nevertheless, the C-terminus

of glycosylated CCL1 still was susceptible to CPM processing.

CCL1 binds to and interacts selectively with the CCR8 receptor

[12–14]. Following receptor activation, a rapid increase in [Ca2+]i

is elicited that is essential for the initiation of cellular responses.

CCL1-mediated Ca2+
i mobilization through CCR8 has been

described in cells expressing the receptor endogenously, e.g.

monocytes [10], HL-60 clone 15 [14], IL-2-activated natural killer

cells [28], T cell lines [29], BW5147 cells [17], and U87 malignant

glioma cells [30]. Release of Ca2+
i mediated by CCL1 has also

been investigated using CCR8-transfected cells, e.g. CCR8 mouse

pre-B cells 4DE4 [14,31] and 300-19 cells [13], CCR8-transfected

Figure 3. Anti-apoptotic activity of CCL1 variants on BW5147
cells. The anti-apoptotic activity of CCL1 (1–73) and CCL1 (1–70) was
compared using the BW5147 cellular model. BW5147 cells were
incubated with different concentrations of CCL1 (1–73) or CCL1 (1–
70). Apoptosis was triggered by adding 0.25 mM DEX. After a 3-day
incubation cell proliferation was determined by the colorimetric
hexosaminidase assay. The OD measured at 405 nm is plotted against
the concentration of CCL1 variant (nM, logarithmic scale). The graph is
representative for two to three separate experiments, each performed
in triplicate. CCL1 (1–73) (#), CCL1 (1–70) (N), [CCL1 (1–
73)+(CPM+MERGETPA)] [control for CCL1 (1–73)] (%), [(CCL1 (1–
73)+CPM)+MERGETPA] [control for CCL1 (1–70)] (&), CPM (n),
CPM+MERGETPA (m).
doi:10.1371/journal.pone.0034199.g003

CPM Enhances CCL1-CCR8 Signaling
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HEK293 cells [18], and CHO-CCR8 cells [16,32]. In this study

we compared the signaling properties of CCL1 (1–73) and CCL1

(1–70) using the CHO-CCR8 cells. As shown in Figure 2 (panel

A), truncation of CCL1 by CPM potentiated the Ca2+ signaling

capacity of CCL1. CCL1 (1–70) consistently induced higher

increases of the Ca2+
i for the tested CCL1 concentrations.

Although Louahed et al. reported dose-dependent Ca2+
i mobiliza-

tion in CHO-CCR8 cells after stimulation with 0.05, 0.5 and

5 nM CCL1 [16], in other studies midpoints of dose-response

curves usually lie around 1 to 5 nM CCL1, while maxima are

reached at 100 nM [32]. Therefore, the concentrations we tested

(range of 16 nM to 47 nM) lie in a reasonable range for Ca2+
i

release. Remarkably, CCL1 (1–70) bound with less efficiency to

CCR8 than CCL1 (1–73) (Figure 2, panel B). Chemokine receptor

binding and signal transduction represent two distinct processes

that usually go hand in hand. Nonetheless, weaker binding of

CCL1 (1–70) to CCR8 is not exclusive for a more potent receptor

activation. Concomitant with Ca2+
i release, activation of CCL1

was observed when comparing anti-apoptotic activity in the

BW5147 model. CCL1 (1–70) protected BW5147 cells eight times

better against cell death caused by DEX than CCL1 (1–73). When

CCL1 truncation by CPM was blocked, a protective effect almost

identical to that of intact CCL1 was seen. Together with the Ca2+

signaling results, this confirms that the shortened CCL1 is indeed

activated by CPM. The extremely low concentration of CCL1 (1–

70) needed for anti-apoptotic activity (from 0.02 nM onward)

suggests that C-terminal proteolytic processing may be of

particular significance for its biological activity.

The N-terminus of chemokines is regarded as extremely

important for receptor interaction. N-terminal extension of

CCL1 by one serine generates a partial CCR8 agonist [31]. It

was suggested that binding to and/or activation of CCR8 could be

dependent on the interaction between negatively charged residues

of the receptor and positive charges of CCL1 [30,33,34].

However, with the elimination of the C-terminal tripeptide of

CCL1, and therefore three positive charges, we observed a strong

activation of CCR8 in spite of a reduced efficiency in CCR8

binding. One could speculate about this phenomenon. Repulsive

forces between –Lys71-Arg72-Lys73 likely disappear after trunca-

tion. This could expose hidden residues, and perhaps facilitate

their interaction with CCR8. Alternatively, a conformational

change could be induced in the shortened C-terminal region.

Another explanation for enhanced CCL1 activity could lie in the

stabilization of N-terminal residues of CCL1 by –Lys71-Arg72-

Figure 4. CPM transcript expression in BW5147 cells during dexamethasone-induced apoptosis. CPM mRNA expression in BW5147 cells
was investigated by means of real-time PCR. BW5147 cells were incubated or not with 0.25 mM DEX and stimulated or not with 10 nM of a CCL1
variant for 72 h. CPM transcript expression was determined at the indicated time points and normalized against b-actin. The data represent the mean
ratio CPM/b-actin (6 SEM) plotted against time (h) obtained from three independent experiments, each performed in triplicate. BW5147 cells 2 DEX
and BW5147 cells + DEX at time point 0 h were used as calibrators for calculations of the ratio of samples 2 DEX and samples + DEX respectively.
Statistical differences were calculated using multiple linear regression (*, p,0.05; **, p,0.01). Arrows visualize significant differences between 2 DEX
and + DEX on CPM transcript expression. Calibrators (black bars), samples without DEX (dark grey bars), samples with DEX (light grey bars). The
stimulation condition is indicated in the upper left corner of each graph (A, no CCL1 stimulus; B, CCL1 (1–73); C, CCL1 (1–70); D, [CCL1 (1–
73)+(CPM+MERGETPA)] [control for CCL1 (1–73)], respectively). To ease visual interpretation of the results, we connected the means with a line per
stimulation condition (2 DEX, full line; + DEX, dashed line). ‘‘Early’’ and ‘‘late’’ phases of CPM transcript expression (see Results, 5.) are indicated.
doi:10.1371/journal.pone.0034199.g004

CPM Enhances CCL1-CCR8 Signaling

PLoS ONE | www.plosone.org 5 March 2012 | Volume 7 | Issue 3 | e34199



Lys73. Stabilization would be lost during truncation perhaps

making the N-terminus even more flexible and accessible for

receptor interaction. Of interest, it was reported that maximal

binding and activity of CCL2 and CCL7 cannot be attributed

solely to the N-terminus [35]. Alignment of the four CCR8

binding (viral) chemokines (CCL1, vMIP-I, vMIP-II and MC148)

showed that the C-terminal –Lys71-Arg72-Lys73 is not conserved.

However, the Lys equivalent to Lys73 in CCL1 is conserved in

CCL2, CCL7, CCL11 and CCL15 [36]. This residue might be of

importance in the interaction of CC chemokines with their

respective receptors. Since it appeared to be the rate-limiting

amino acid in the reaction with CPM, removal of Lys73 (or the

equivalent Lys) could be the trigger for a more efficient receptor

activation. To conclude, the loss of three positive charges

presumably affects the binding of CCL1 to glycosaminoglycans.

The presentation of CCL1 to CCR8 on the endothelial cell

surface, CCL1 gradient formation, proteolytic cleavage of CCL1,

and in vivo leukocyte migration could thus be altered [37,38]. Two

literature reports describe the interaction of CCL1 with heparin.

Human CCL1 was purified on a heparin-Sepharose matrix, a

standard method used for the purification of most chemokines

[10]. Marro et al. were the first to report the dose-dependent

binding of heparin to human and mouse CCL1 (dissociation

constants of 150 and 100 nM, respectively) [39].

CPM transcript expression in BW5147 cells was differently

regulated by DEX in function of time. Regulation of CPM

transcript expression by a glucocorticoid is an interesting finding.

A functional glucocorticoid responsive element was discovered in

the human carboxypeptidase U (CPU) promoter. DEX increased

both CPU transcript levels and promoter activity by 2-fold [40].

Interestingly, IL-6 countered the increase in CPU mRNA

abundance by DEX. This effect resembles that seen in the late

phase of incubation of BW5147 cells where intact CCL1 plus

DEX slowed down the recovery of CPM. Modulation of CPM

expression by inflammatory chemokines and anti-inflammatory

glucocorticoids would fit in the inflammatory role proposed for

CPM.

Basic carboxypeptidase activity was detected on BW5147 cells.

Very little is known about the expression of CPM on T

lymphocytes, which seems to be dependent on the cell maturation

level. Only a few percentage of mature CD4+ T cells express CPM

at the cell surface. Upon activation however, CPM expression is

enhanced. Also, a small portion of activated CD8+ T lymphocytes

gain CPM. Absence of CPM was reported for T-lineage precursor

cells and most acute myeloid lymphoma samples [41]. To date, the

role of CPM on T lymphocytes remains unclear. If CCL1

truncation is mediated by CPM in vivo, it is unlikely that T

lymphocytes are the source of CPM. The T lymphoma cells that

we tested did not respond to DEX and/or CCL1 by enhancing

their CPM expression at the cell surface. Hence, this is likely not a

mechanism by which the cells enhance their survival and

proliferation capacity in the presence of apoptotic glucocorticoids

such as DEX. However, this does not exclude the participation of

CPM in DEX-induced resistance. CPM can be provided by

numerous other cells at cancer or inflammation sites. CPM and

CCR8 both have been detected on monocytes/macrophages,

dendritic cells, T lymphocytes and endothelium. Alternatively,

CCL1 could be proteolytically processed by CPM if present at the

cell surface of CCL1-producing cells, such as bronchial epithelial

cells, activated CD4+ T lymphocytes and macrophages. Impor-

tantly, CPM can be released from the cell membrane by

phospholipase C action [42] and react with CCL1 in the

extracellular space. Colocalization studies of CPM and the

CCL1-CCR8 system would be worthwhile to investigate the

possible interaction of CCL1 and CPM in vivo. A search for CCL1

(1–70) in tissues or biological fluids would strengthen the biological

importance of the C-terminal truncation of CCL1.

In conclusion, removal of the C-terminal –Lys71-Arg72-Lys73

increases the anti-apoptotic activity of CCL1, which is mediated

by the CCR8 receptor. Since, outside the circulation, CPM is a

likely candidate for catalyzing this C-terminal truncation, these

results warrant further investigation of the expression and activity

of CPM in relation to the CCR8-CCL1 system, for instance at

sites of inflammation.

Materials and Methods

Cell lines, chemokines and other reagents
Mouse thymic BW5147 T lymphoma cells were obtained from

the American Type Culture Collection (ATCC, Rockville,

Maryland, USA), and were subcloned by limiting dilution to

select a clone fully susceptible to DEX-induced apoptosis,

BW5147.C2 [43]. BW5147 cells were cultured in Iscove-

Dulbecco’s Medium supplemented with 10% fetal calf serum

(FCS), 1.5 mM L-glutamine, 0.24 mM L-asparagine, 0.55 mM L-

arginine and 50 mM 2-mercaptoethanol (IMDM+). CHO-CCR8

cells, kindly provided by Prof. M. Parmentier (Université libre de

Bruxelles, Brussels, Belgium), were grown in F12 Nutrient Mixture

(Ham), 10% FCS and 400 mg/mL G418 (complete growth

medium) [16]. All culture media were from Invitrogen (Carlsbad,

California, USA). Recombinant human CCL1 produced in E. coli

was purchased from R & D Systems (Abingdon, Oxon, UK).

Recombinant human CCL1 produced in insect cells with a

baculovirus expression system was a gift from Prof. J. Van Snick

(The Ludwig Institute for Cancer Research, Brussels, Belgium).

Recombinant CPM was purified from Pichia pastoris supernatans as

Figure 5. Basic carboxypeptidase activity on BW5147 cells.
Basic carboxypeptidase activity was measured on intact BW5147 cells
after stimulation with 10 nM CCL1 (1–73) or CCL1 (1–70) for 72 h in the
presence of DEX using DAR as described in the Materials and methods
section. Results represent specific activity in nmol/min/10exp6 cells (6
SEM) of three independent experiments, each performed in duplicate.
Statistically significant differences were detected using 2-way ANOVA
analysis followed by a Dunnett test (BW5147 cells 2 DEX compared
with conditions of BW5147 cells + DEX, **, p,0.01). BW5147 cells 2 DEX
(white bar), BW5147 cells + DEX (black bar), BW5147 cells + DEX+CCL1
(1–73) or BW5147 cells + DEX+[CCL1 (1–73)+(CPM+MERGETPA)] [control
(ctl) for CCL1 (1–73)] (light grey bar), BW5147 cells + DEX+CCL1 (1–70)
(dark grey bar).
doi:10.1371/journal.pone.0034199.g005
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described by Deiteren et al. [44]. The carboxypeptidase inhibitor

MERGETPA was obtained from Calbiochem (San Diego,

California, USA). Murine IL-9 was produced by expression in

baculovirus and purified by affinity chromatography at the Ludwig

Institute for Cancer Research [43].

Hydrolysis of CCL1 by CPM in vitro
Cleavage of CCL1 by CPM in vitro was determined by mass

spectrometric analysis. 5 mM CCL1 (R & D systems) was

incubated with 26 nM CPM at 37uC in 0.1 M HEPES, pH 7.4,

100 mg/mL bovine serum albumin. At several time points, aliquots

were taken and quenched by addition of 1% trifluoroacetic acid

solution. For CCL1 produced in insect cells, 5 mM was incubated

with 400–500 nM of CPM. C18 Zip Tips (Millipore Corp.,

Billerica, Massachusetts, USA) were used to desalt the samples.

Elution was performed progressively with 20 mL of 30%

acetonitrile and 10 mL of 50% acetonitrile in 0.1% acetic acid.

Analysis of the resulting mixture was performed on an Esquire ESI

Ion Trap mass spectrometer (Bruker, Bremen, Germany). The

instrument was used in a scan range from 450 to 1700 m/z and

optimized on a m/z value near the most abundant ion of the intact

polypeptide (849 or 953 m/z). After deconvolution of the spectra,

concentrations of the intact and cleaved polypeptides were

calculated from their relative abundance. The abundance cut-off

was established at 5%. The catalytic efficiency kcat/KM of the

reaction was determined from the decay curve of intact CCL1.

To compare the activities of CCL1 (1–70) with CCL1 (1–73),

CCL1 (1–70) was generated by incubating 5 mM of CCL1 (1–73)

produced in insect cells with 500 nM CPM for 90 min at 37uC.

The controls for (i) CCL1 (1–73) and (ii) CCL1 (1–70) were

obtained by incubating CPM with 10 mM of MERGETPA for

15 min at 37uC (i) prior to the 90 min-incubation with CCL1 (1–

73) [CCL1 (1–73)+(CPM+MERGETPA)], or (ii) after the 90 min-

incubation with CCL1 (1–73) [(CCL1 (1–73)+CPM)+MER-

GETPA].

Signaling capacity through CCR8
CCR8 signaling induced by CCL1 variants was tested by means

of Ca2+
i release using CHO-CCR8 cells. CCR8 expression was

confirmed by flow cytometry using an Allophycocyanin-labeled

monoclonal anti-human CCR8 antibody (R & D systems). CHO-

CCR8 cells (107/mL) suspended in complete growth medium were

loaded with 2.5 mM Fura-2/AM (Molecular Probes, Invitrogen,

Merelbeke, Belgium) and 125 mM Probenecid (ICN Biomedicals

Inc, Aurora, Ohio, USA) for 30 min at room temperature. Cells

were washed and resuspended to 106 cells/mL in Hanks’ balanced

solution with 1 mM Ca2+ and 0.1% (v/v) fetal bovine serum,

buffered with 0.01 M HEPES/NaOH to pH 7.0. Cells were kept

on ice and preincubated for 10 min at 30uC prior to the addition

of the first stimulus. Fura-loaded CHO-CCR8 cells were

stimulated with 16 nM, 32 nM or 47 nM of CCL1 (1–73) or

CCL1 (1–70) at 30uC. In another experiment, CPM activity was

abolished through pretreatment with 10 mM of MERGETPA at

37uC for 15 min [control for CCL1 (1–73)]. Excitation wave-

lengths were 340 and 380 nm; the fluorescence intensity ratio (R)

of Fura-2 was continuously measured at 510 nm in a LS50B

luminescence spectrophotometer (PerkinElmer). 50 mM digitonin

and 0.01 M EGTA in 0.02 M Tris (pH 8.5) were used for the

determination of Rmax and Rmin values. [Ca2+]i were calculated

using the Grynkiewicz equation [45].

Competitive CCR8 binding assay
The binding capacity of CCL1 (1–73) and CCL1 (1–70) was

determined through the measurement of competition with 125I-

labeled CCL1 (1–73) (PerkinElmer). CHO-CCR8 cells (26106),

suspended in binding buffer [0.05 M HEPES, pH 7.2 containing

1 mM CaCl2, 5 mM MgCl2, 0.1% (w/v) BSA and 0.5% NaN3],

were incubated on ice for 2 h with [125I]-CCL1 and varying

concentrations of unlabeled CCL1 (1–73) or CCL1 (1–70).

Incubations were performed in the presence of 10 mM of

MERGETPA to ensure basic carboxypeptidase inhibition [present

in the CCL1 (1–70) sample or endogenously on the CHO-CCR8

cells]. After incubation, the cells were washed twice with 0.9 mL of

binding buffer before determination of the gamma radiation in a

gamma counter. Maximal [125I]-CCL1 binding to CCR8 was

determined in the absence of competing unlabeled chemokine and

was set at 100%. Results are expressed as the percentage of

remaining bound [125I]-CCL1.

Dexamethasone-induced apoptosis assay
36103 BW5147 cells per well were added in a 96-well plate and

stimulated with various concentrations of CCL1 variants in the

presence of 0.25 mM DEX (Sigma Aldrich, Oakville, Ontario,

Canada). Each concentration point was analyzed in triplicate.

Following a 3-day incubation at 37uC and 5% CO2 cell

proliferation was determined using the hexosaminidase assay

[46]. Alternatively, cell proliferation was assessed using Presto-

blueTM Cell Viability Reagent (Invitrogen). All experiments were

conducted in IMDM+ containing 10 mM of MERGETPA to

ensure the inhibition of basic carboxypeptidase activity present in

medium or on the BW5147 cell surface. Murine IL-9 was used as a

positive control for anti-apoptotic activity (The Ludwig Institute

for Cancer Research).

CPM expression in BW5147 T lymphoma cells
CPM expression in BW5147 cells during DEX-induced

apoptosis and rescue by CCL1 was assessed with the assays

described below in a) and b). BW5147 cells were stimulated with

10 nM intact or truncated CCL1 with(out) 0.25 mM DEX at

indicated time points. Cell proliferation was verified systematically

as mentioned in ‘‘Dexamethasone-induced apoptosis assay’’.

a) CPM transcript expression in BW5147 cells. Total

RNA was extracted from BW5147 cells using the InviTrapH Spin

Cell RNA Mini Kit (Isogen Life Sciences, PW De Meern, The

Netherlands). cDNA was generated using the High Capacity

cDNA Reverse Transcription Kit following the manufacturer’s

protocol (Applied Biosystems, Foster city, California, USA). cDNA

was stored at 220uC until analysis. Quantitative real-time PCR

was performed with a ready-to-use Taqman assay targeting the

mouse CPM gene (Mm01250802_m1). b-actin was used for nor-

malization and relative mRNA quantification (Mm00607939_s1)

(Applied Biosystems). Real-time PCR reaction mixtures were

prepared in qPCR MasterMix (Eurogentec, Seraing, Belgium) and

subjected to a standard PCR protocol (50uC for 2 min, 95uC for

10 min, and 45 cycles at 95uC for 15 s and at 60uC for 1 min) on

the ABI Prism 7000 Sequence Detection System (Applied

Biosystems). The relative expression ratio of transcript was

computed based on its real-time PCR efficiency (E) and the

cycle threshold (Ct) value of the unknown sample versus a

calibrator sample DCt (meancalibrator2meansample). E was

calculated using the equation E = 10exp(21/slope), applied

to a dilution series of a randomly chosen sample ranging from

0 to 100 ng cDNA in triplicate. The slope of the efficiency

curve was determined by plotting the logarithm of the amount

of cDNA against the Ct value. Results were calculated using

the equation ratio = [Etarget
DCt (mean

calibrator
2mean

sample
)]/

[Ereference
DCt (mean

calibrator
2mean

sample
) ] according to the

Pfaffl method [47]. Amplicons of 81 bp (CPM) and 115 bp
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(b-actin) were detected on a 2% agarose gel stained with

ethidium bromide and visualized under UV-light.
b) Basic carboxypeptidase activity assay. Basic

carboxypeptidase activity on BW5147 cells was measured using

dansyl-Ala-Arg (DAR) as described [48]. Treatment of the

BW5147 cells with DEX and/or CCL1 variants was performed

identically as described in ‘‘Dexamethasone-induced apoptosis assay’’.

After stimulation, cells were collected by centrifugation, washed

with ice-cold phosphate-buffered saline and concentrated (8X)

prior to incubation with 0.2 mM DAR for 1 h at 37uC (reaction

volume of 125 mL).The reaction was stopped with 1 M citrate

buffer, pH 3.1. After centrifugation, supernatant was transferred

in a glass tube. The product dansyl-Ala was extracted with 600 mL

chloroform. Fluorescence in the chloroform layer was measured

with a spectrofluorimeter (RF-5000, Shimadzu, Duisburg,

Germany) (lex 352 nm, lem 483 nm). Activity was calculated

using a standard curve of dansyl-Ala and expressed in nmol/min

of dansyl-Ala generated during the reaction. Results were

normalized for the number of proliferating cells present

(determined with PrestoblueTM Cell Viability Reagent).

Inhibition tests with 10 mM MERGETPA prior to incubation

with DAR were used to calculate the percentage of measured

activity originating from basic carboxypeptidases.

Statistical analysis
Statistical analyses were carried out with SPSS 16.0 software

(SPSS Inc., Chicago, Illinois, USA). The results are presented as

the mean 6 SEM. Differences were considered significant at

p,0.05. The applied statistical tests are specified in the figure

legends.
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