
INTRODUCTION

Glutathione (GSH) is a ubiquitous thiol-containing tripeptide 
that plays a cellular protective role under oxidative stress [1]. GSH 
modulates the response of a cell to redox changes by regulating 
antioxidant gene expression [2, 3]. Oxidative stress contributes to 
the progression of neurodegenerative diseases [4] and stroke [5]. 
Several studies demonstrated that GSH prevents the apoptotic 

death of endothelial cells in response to oxidative stress [6, 7]. The 
GSH-dependent antioxidant pathway plays a role in cell survival 
[8, 9], and its dysregulation contributes to the initiation and 
progression of the neurodegenerative diseases including dementia 
and Huntington’s disease [10-12]. The blood brain barrier (BBB) 
is a barrier formed by endothelial cells [13], which protects against 
the entry of pathogens and neurotoxic agents into the brain [14]. 
Disruption of the BBB, by degradation of tight junction proteins, 
leads to cell death, brain edema and hemorrhage [15]. Nuclear 
factor erythroid 2-related factor 2 (Nrf2), a leucine zipper redox-
sensitive transcription factor, is a key regulator of antioxidant 
and detoxification gene expression [16-18]. Under oxidative 
stress, Nrf2 translocates from the cytoplasm to the nucleus and 
subsequently activates the transcription of antioxidant genes 
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whose promoters contain the antioxidant response element (ARE) 
[19-21]. Evidence indicates that Nrf2 promotes cell survival by 
preventing an increase in ROS [22, 23] in various conditions of 
oxidative stress [24, 25]. In present study, we investigated whether 
GSH ameliorates oxidative stress-induced damages of brain 
endothelial cells. We show that GSH prevents the decrease of tight 
junction proteins, protects BBB, and activates the Nrf2 pathway. 
Therefore, our results suggest that GSH is a promising therapeutic 
target to protect BBB in central nervous system injury and 
diseases.

MATERIALS AND METHODS 

Cell culture

Murine brain endothelial cells (bEnd.3 cells, Manassas, VA, 
USA) were purchased from ATCC and cultured in Dulbecco’s 
modified Eagle’s medium (DMEM, Hyclone Laboratories, UT, 
USA), supplemented with 10% (v/v) fetal bovine serum (FBS, 
Hyclone Laboratories, UT, USA) and 100 units/ml of penicillin/
streptomycin (Hyclone Laboratories, UT, USA), at 37oC in a 
humidified atmosphere in the presence of 5% CO2. Culture 
medium was changed every 2 days [26].

Drug treatment

GSH (Sigma Aldrich, MO, USA) was melted with PBS. H2O2 
(Invitrogen, CA, USA) was diluted with PBS. Cultured bEnd.3 
cells were divided into six groups as follows: (1) Control group, 
cultured in completed media, (2) H2O2 (500 µM) group, cultured 
in completed media with H2O2 (500 µM) for 24 h, (3) GSH (1 mM) 
group, cultured in completed media with GSH (1 mM) for 24 h, (4) 
GSH (10 mM) group, cultured in completed media with GSH (10 
mM) for 24 h, (5) H2O2 (500 µM) +GSH (1 mM) group, cultured in 
completed media with H2O2 (500 µM) and GSH (1 mM) for 24 h, 
(6) H2O2 (500 µM) +GSH (10 mM) group, cultured in completed 
media with H2O2 (500 µM) and GSH (10 mM) for 24 hr.

Lactate dehydrogenase (LDH) assay

H2O2-induced cytotoxicity was quantified by measuring the 
amounts of LDH released into the culture medium from H2O2-
injured cells [27, 28]. LDH release (cytotoxicity %) was calculated 
by dividing the value at the experimental time point by the 
maximum value. The maximum LDH release was measured 
after freezing each culture at -70oC overnight, followed by rapid 
thawing, which induced nearly complete cell damage.

Measurement of nitrite production 

Nitrite production was determined using the Griess reaction 

[28]. Duplicate 100 µl aliquots of culture media collected from 
each culture were added to a 96-well plate and mixed with 100 
µl modified Griess reagent (Sigma Aldrich, MO, USA). The plate 
was incubated in the dark for 15 min at room temperature. The 
absorbance of the reaction product was measured at 540 nm using 
a microplate reader.

Determination of intracellular ROS

The level of the intracellular ROS in all groups was measured 
using a fluorescent probe, 2’, 7’-dichlorodihydrofluorescein 
diacetate (DCF-DA; Invitrogen, CA, USA) as previously described 
[29]. The 1×106 cells/ml were seeded in the plate and were treated 
with H2O2 or/and GSH for 24 h. Then, b END.3 cells were treated 
with 5 μM DCF-DA for 30 min at 37°C, and after washing with 
PBS, the fluorescence was measured in a microscope (Nikon 
TS100-F ECLIPSE) equipped with a CCD camera (Hamamatsu 
Photonics, Shizuoka, Japan) [30]. 

Western blot analyses

Equal amounts of protein (50 µg) were extracted from bEND.3 
cells. They were electrophoresed on 10%~12% SDS-polya
crylamide gels. Separated proteins were electrotransferred to 
Immunobilon-NC membranes (Millipore). Membranes were 
blocked for 1 hour at room temperature with 5% skim milk in 
Tris-buffered saline and 0.1% Tween-20 (TBST). The primary 
antibodies used were Nrf2 (1:2000, Millipore, MA, USA), 
extracellular- regulated protein kinases (ERK) (1:1000, Millipore, 
MA, USA), p-ERK (1:2000, Millipore, MA, USA) and β-actin 
(1:1000, Santa Cruz, CA, USA). Blots were incubated with the 
primary antibodies overnight at 4oC. Membranes were washed 
three times (5 min each) with TBST. The secondary antibodies 
were anti-rabbit and anti-mouse (1:3000, New England Biolabs, 
CA, USA) and were incubated for 1 hour at room temperature. 
After washing with TBST (0.05% Tween 20) three times, 
immunoreactive signals were detected using chemiluminescence 
and an ECL detection system (Amersham Life Science, UK) with 
the LAS 4000 program.

Immunocytochemistry (ICC)

The expression of  8-Oxo-2’-deoxyguanosine (8-OHdG) 
and Claudin 5 in bEND.3 cells was confirmed by immunocy
tochemistry. All the experimental groups was washed 3 times 
with PBS, fixed with 4% paraformaldehyde for 3 hours, and then 
washed with PBS. bEND.3 cells were permeabilized with 0.025% 
Triton X-100 and were blocked for 1 hour at room temperature 
with dilution buffer (Invitrogen, CA, USA). Primary antibody 
anti-rabbit 8-OHdG (1:500, Santa Cruz, CA, USA), anti-rabbit 
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Claudin 5 (1:500, Millipore, MA, USA) prepared in the dilution 
buffer was added to the samples and incubated for 3 hours at 
room temperature. Primary antibody was removed and cells 
were washed 3 times for 3 min each with PBS. Later samples 
were incubated with FITC-conjugated goat anti rabbit second 
antibodies (1:200, Jackson Immunoresearch, PA, USA) for 2 
hours at room temperature. Cells were washed again 3 times for 
3 min each with PBS and stained with 1 µg/ml 4’,6-diamidino-2-
phenylindole (DAPI) (1:100, Invitrogen, CA, USA) for 10 minutes 
at room temperature. The fixed samples were imaged using Zeiss 
LSM 700 confocal microscope (Carl Zeiss, NY, USA).

Statistical analyses

Statistical comparisons were performed using independent 
t-tests for two groups. SPSS software was used for all analyses. Data 
were expressed as the mean±S.E.M of 3 independent experiments. 
Differences were considered significant at #p<0.1, *p<0.05, and 
**p<0.001.

RESULTS

GSH suppresses H2O2-induced cell death

We first evaluated the cytotoxicity of H2O2 to bEND.3 cells using 
LDH assays. Treating cells with 500 μM H2O2 resulted in 50% 
cytotoxicity, which were partially rescued by co-treatment of GSH 
(1 mM and 10 mM) (Fig. 1A). GSH alone (1 mM and 10 mM) did 
not affect the rate of cell death. The protective effect of GSH was 
dose-dependent (32% cytotoxicity in 10 mM, 39% cytotoxicity in 
1mM) confirming the specificity. We also measured nitrite levels 
using Griess reagent to confirm the production of nitric oxide in 
bEND.3 cells (Fig. 1B). The increase in nitrites in response to the 
treatment of 500 μM H2O2 was partially prevented by 10 mM 
GSH (12 µM in control, 19 µM in H2O2 only, 14 µM in H2O2+GSH 
10 mM). GSH treatment alone did not change nitrite levels (Fig. 
1B). The protective role of GSH was dose-dependent (Fig. 1A, B). 
As 10 mM GSH treatment alone promoted more cell survival 
and decreased more nitrite concentration (Fig. 1A, B), we decided 
to use 10 mM GSH in all the following experiments. Finally, 
we visualized 8-OHdG by immunocytochemistry to measure 
oxidative damages to DNA. 8-OHdG level increased in H2O2 (500 
μM)-treated cells indicating DNA damages. 8-OHdG-positive 
cells were decreased by co-treatment of GSH (10 mM) (Fig. 1C). 
Taken together, these results suggest that GSH attenuates H2O2-
induced damages in bEND.3 cells. 

GSH decreases H2O2-induced ROS production

We measured ROS levels using DCF-DA reagent, a fluorescent 

dye that visualizes ROS. DCF-DA-positive cells were increased by 
H2O2 treatment (500 μM), and these were partially blocked by co-
treatment of GSH (10 mM) (Fig. 2). Co- treatment of GSH (10 
mM) evidently were decreased DCF-DA-positive cells compared 
with H2O2 (500 μM) treatment group. This result indicates that 
GSH prevents H2O2-induced ROS production.

GSH prevents H2O2-induced decrease in tight junction 

proteins

To check the protective effect of GSH on the integrity of tight 
junctions during oxidative stress, we measured the level of 
Claudin 5, a tight junction protein, by immunocytochemisty. 
H2O2 (500 μM) treatment decreased the expression of Claudin 
5 (Fig. 3). GSH treatment alone was not change the expression 
of Claudin 5 compared to normal control group. The expression 
of Claudin 5 was attenuated by GSH co-treatment. This suggests 
that GSH protects the degradation of Claudin 5 and may protect 
deterioration of tight junctions in response to oxidative stress. 

GSH promotes the Nrf2-mediated signaling 

Nrf2 is a key regulator of anti-oxidative responses. To investigate 
whether Nrf2 signaling is activated in H2O2-induced oxidative 
stress, we first measured the phosphorylation status of ERK by 
Western blot analysis because the phosphorylation of ERK means 
the activation of ERK pathway. These results suggested that the 
protein level of phosphor-ERK/ERK in the H2O2 (500 μM) group 
attenuated compared to those of in the normal control (NC) 
group (Fig. 4A). The protein level of phosphor-ERK in the H2O2 
(500 μM) +GSH (10 mM) group was higher than those of the 
H2O2 (500 μM) group (Fig. 4A). Also, we checked the expression 
of Nrf2 and found that H2O2 treatment decreases Nrf2 levels. GSH 
co-treatment attenuated this decrease. These results suggest that 
GSH increases Nrf2 levels and activates its downstream signaling 
pathway. 

DISCUSSIONS

Oxidative stress aggravates neurodegenerative diseases [4] and 
brain injury [5], and excessive ROS and/or reactive nitrogen 
species (RNS) levels are strongly associated with such states 
[31-34]. GSH, the most abundant non-protein thiols, decreases 
ROS levels and activates cellular oxidative stress responses by 
several mechanisms [35, 36]. In present study, we investigated the 
protective effect of GSH on H2O2- induced oxidative stress in the 
brain capillary endothelial cells. Our results that GSH inhibits 
H2O2-induced increases in ROS and nitric oxide suggest that GSH 
may protect brain capillary endothelial cells from oxidative stress. 
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Several studies demonstrated that GSH inhibits the cell death in 
oxidative stress [37, 38]. In addition, recent studies demonstrated 
that GSH inhibits DNA damage of cells against oxidative stress 
[39] and GSH attenuates the generation of ROS under oxidative 
stress [40]. Mitochondrial DNA (mt DNA) is one of the cellular 

components most severely affected by oxidative stress [41]. The 
oxidative modification of deoxyguanosine to 8-OHdG in mtDNA 
is the major DNA lesion induced by oxidative stress [42, 43] and is 
considered as an index of DNA damage [42, 44]. Considering that 
the elevated level of 8-OHdG is related with increased mtDNA 

Fig. 1. The effect of GSH H2O2-induced cell death. bEDN.3 cells were treated with H2O2 (500 µM) and/or GSH (1 mM or 10 mM) for 24 hr. (A) 
Cytotoxicity was determined by the release of LDH into the culture media. GSH reduced H2O2’s cytotoxicity. (B) H2O2-induced nitrite production was 
measured by using Griess reagent. GSH reduced H2O2-induced nitrite production. Data are expressed as mean±S.E.M. (#p < 0.1, *p < 0.05, **p <0.001). (C) 
8-OHdG levels were measured by immunocytochemistry. 8-OHdG-positive cells (green color) were increased in the H2O2 (500 µM) treatment group 
compared to the normal control (NC) group. GSH decreased 8-OHdG levels in bEND.3 cells under H2O2-induced oxidative stress. Scale bar: 600 µm, 
8-Oxo-2’-deoxyguanosine (8-OHdG): green, 4’, 6-diamidino-2-phenylindole (DAPI): blue.
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Fig. 1. Continued. 

Fig. 2. The effect of GSH on H2O2-induced ROS generation. H2O2 (500 µM) and/or GSH (10 mM) were treated in bEND.3 cells for 24 hr. ROS levels were 
measured using DCF-DA. ROS level in bEND.3 cells was increased in the H2O2 (500 µM) treatment group compared with normal control (NC) group. 
Also, ROS level was not change in the GSH (10 mM) treatment group compared with NC group. GSH decreased the H2O2-induced increase of DCF-DA-
positive cells (green). Scale bar: 600 µm, 2’, 7’-dichlorodihydrofluorescein diacetate (DCF-DA): green, 4’, 6-diamidino-2-phenylindole (DAPI): blue.



98 www.enjournal.org http://dx.doi.org/10.5607/en.2014.23.1.93

Juhyun Song, et al.

deletions, mutation, and mtDNA loss [45-47], our result suggests 
that GSH protects the mtDNA in brain capillary endothelial 
cell from H2O2-induced damages. We also showed that Claudin 
5, a tight junction protein [48], is stabilized by GSH. Because 
the degradation of tight junction proteins is associated to the 
disruption of BBB and the progression of central nervous system 
diseases [49-52], our result suggests that GSH may protect BBB 
by inhibiting the degradation of tight junction proteins under 
oxidative stress. ROS regulates directly or indirectly a number 
of transcription factors [53]. Especially, ROS can promote the 
activation of Nrf2, which regulates antioxidant gene expression 
[53, 54]. Several studies demonstrated that Nrf2 activation inhibits 

ROS generation [55] and NO generation [56] to protect cell 
damage against oxidative stress [22]. In addition, Nrf2 modulates 
the apoptosis and autophagy related signaling [23]. Nrf2 signaling 
is activated by the PI3K/Akt pathway and the ERK pathway to 
promote the expression of antioxidant genes during oxidative 
stress [57-61]. Specifically, Nrf2 is activated by phosphorylation 
of ERK [61-64]. Gunjima et al. demonstrated that SH-SY5Y cells 
were protected against oxidative stress through Nrf2-glutathione 
pathway [65]. However, the research on the protective effect of 
GSH through Nrf2/ERK pathway in brain capillary endothelial 
cells has not studied until now. In present study, we investigated the 
protective effect of GSH against oxidative stress in brain capillary 

Fig. 3. The effect of GSH H2O2-induced decrease in tight junction proteins. H2O2 (500 µM) and/or GSH (10 mM) were treated in bEND.3 cells for 24 
hr. The level of Claudin 5, a tight junction protein, was evaluated by immunocytochemistry. GSH attenuated H2O2-induced decrease in the number of 
Claudin 5-positive cells (green). Scale bar: 600 µm, Claudin 5: green, 4’, 6-diamidino-2-phenylindole (DAPI): blue.
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endothelial cells. In addition, we showed that GSH may promote 
phosphorylation of ERK in brain capillary endothelial cells under 
oxidative stress (Fig. 4). Based on our results, we suggested that 
the protective mechanism of GSH may be related to the Nrf2/
ERK pathway in brain capillary endothelial cells against oxidative 
stress. Several studies suggested that Nrf2 activates to protect 
the cells in early oxidative stress. However, in present study, we 
analyzed the expression of ERK and Nrf2 at late oxidative stress 
state (at 24 hrs after H2O2-induced oxidative injury). Even though 
the expression of ERK and Nrf2 were decreased in only H2O2 
treatment group, GSH co-treatment group were protected brain 
capillary endothelial cells through activation of ERK and Nrf2 
against oxidative stress. In addition, considering recent studies 
that excessive ROS inhibits the phosphorylation of ERK [66, 67], 
decreased ROS levels by GSH treatment in present study may 

promote the phosphorylation of ERK and Nrf2 activation. In 
conclusion, we show that GSH protects brain capillary endothelial 
cells from H2O2-induced damages. GSH does this possibly by 
stabilizing tight junction proteins and activating Nrf2 signaling. 
Hence, this study suggests that GSH is a promising target to 
treat various central nervous system disorders and injuries 
characterized by oxidative stress.
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