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ABSTRACT

We developed an automated approach for generating quantita-
tive image analysis metrics (imaging biomarkers) that are then 
analysed with a set of 13 machine learning algorithms to generate 
an overall risk score that is called a Q- score. These methods were 
applied to a set of 120 “difficult” dermoscopy images of dysplastic 
nevi and melanomas that were subsequently excised/classified. 
This approach yielded 98% sensitivity and 36% specificity for 
melanoma detection, approaching sensitivity/specificity of expert 
lesion evaluation. Importantly, we found strong spectral depend-
ence of many imaging biomarkers in blue or red colour channels, 
suggesting the need to optimize spectral evaluation of pigmented 
lesions.

1  | BACKGROUND

Clinical	melanoma	evaluation	depends	largely	on	recognizing	abnor-
mal	 pigmentation	 patterns	 that	 distinguish	 benign	 or	 atypical	 nevi	
from	 cancerous	 growths.	 Detection	 through	 screening	 saves	 lives	
but remains challenging visually, as the degree of disorder that exists 
between	 these	different	 pigmented	 growths	 is	 highly	variable	 and,	
at	times,	can	be	quite	subtle	and	difficult	to	determine.	This	level	of	
diagnostic	difficulty	is	reflected	across	the	general	practice	of	derma-
tology	in	which	melanomas	are	confirmed	by	histopathology	in	only	
3- 25%[1] or a mean of 10%[2] of excised suspicious lesions. However, 
visual	 examination	 of	 pigmented	 lesions	 by	 expert	 dermatologists	
using dermoscopy and following criteria such as the Menzies (or 
CASH[3])	 method	 has	 yielded	 diagnostic	 accuracy	 as	 high	 as	 98%	
sensitivity	and	68%	specificity	 in	some	studies.	At	present,	there	 is	
an	ongoing	effort	across	 the	medical	and	scientific	communities	 to	
improve	melanoma	diagnosis	by	developing	standardized	evaluation	
criteria of pigmented lesions that can be performed by more medi-
cal care givers (beyond expert dermoscopists) and, if possible, might 
even be performed by automated analysis systems that use image 
processing	 and	 artificial	 intelligence	 algorithms.[4,5] However, cur-
rent	methods	yield	specificity	and	sensitivity	outcomes	that	are	far	
inferior	to	expert	dermoscopy	evaluations.	Furthermore,	proprietary	

computational	 algorithms	use	 “black	box”	 image	 feature	extraction	
and	diagnostic	algorithms	 that	do	not	help	healthcare	providers	 to	
identify	possible	 new	 lesion	 features	 that	may	be	useful	 in	 clinical	
evaluation.	Thus,	there	is	a	need	for	transparent	methods	that	extract	
discrete	 diagnostic	 image	 features	 and	 combine	 them	 in	 screening	
algorithms.

2  | QUESTIONS ASKED

We sought to determine whether automated image analysis of pig-
mented	 lesions	 could	 generate	 useful	 (and	 potentially	 novel)	 mela-
noma	imaging	biomarkers	(MIBs)	to	assess	risk.	Our	digital,	analytical	
framework	 for	 dermoscopy	 interpretation	was	 used	 to	 answer	 two	
key	 questions:	 how	 sensitive	 and	 specific	 is	 the	 diagnostic,	 and	 do	
MIBs	 exhibit	 any	 spectral	 dependence	whose	 exploitation	may	 im-
prove diagnosis?

3  | EXPERIMENTAL DESIGN

In	our	study	(Figure	S1),	120	dermoscopy	images	(60	melanomas,	60	
atypical nevi) were analysed by a series of computer programs (all 
detailed in supplement) that determined the border of the lesion, its 
centre	and	from	that	point	a	radius	was	projected	along	which	differ-
ent image features were calculated over a 360° sweep (similar to a 
clock	sweep).	Figure	1A,B,	with	further	detail	 in	Figure	S2,	exempli-
fies	this	approach	by	plotting	lesion	brightness	vs	a	sweep	in	angle	θ, 
using	blue	 channel	 colour	 information	and	graphically	yielding	MIB	
B12 (B=from the blue colour channel, metric #12). Other programs 
evaluated	symmetry	and	organization	of	pigmentation	patterns,	net-
works and substructures across red, green and blue (RGB) colour 
channels. Programs also determined the number of colours present in 
lesions	 (Figure	1C)	and	 the	pigmented	network	pattern	 (Figure	1D).	
This set of programs was run on each pigmented lesion to generate 
50	quantitative	metrics.	The	33/50	metrics	that	had	a	significant	dif-
ference (P<.05) in values between atypical nevi vs melanomas be-
came	 the	 MIB	 set.	 MIBs,	 evaluated	 in	 particular	 colour	 channels,	
became	 the	 basis	 of	 machine	 learning	 classification	 algorithms	 to	
construct	an	overall	quantitative	score	 (Q-	score)	between	zero	and	
one, in which a higher number indicate a higher probability of a lesion 
being	a	melanoma	(Figure	S3).
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4  | RESULTS

The	single	most	significant	MIB	(P<10−6) was number of colours in a 
lesion (MC1,	 Figure	2).	 Individual	MIBs	 that	 evaluate	 features,	 such	
as	the	lesion	brightness,	border,	diameter	and	symmetry,	were	often	
highly	significant	only	in	the	red	or	blue	colour	channels,	while	green-	
channel	MIBs	were	not	as	important.	A	visual	example	of	the	selection	
of	a	representative	MIB	in	a	particular	colour	channel	to	maximize	its	
diagnostic	power	is	shown	in	Figure	S4.	The	most	significant	MIBs	for	
the	red	and	blue	channels,	respectively,	were	MIB	R1:	variation	in	the	

sharpness	of	 lesion	demarcation	 (Figure	S5,	Equation	S24)	and	MIB	
B1:	angular	lesional	brightness	variation	(Figure	1A,B,	Equation	S10).	
Figure	S5	shows	all	MIBs	on	all	data,	and	Figure	S6	shows	raw	MIB	
values	for	the	most	significant	six	MIBs	on	representative	normal	and	
abnormal lesions.

The MIBs became inputs for a series of 13 machine learning/classi-
fication	algorithms	(Figure	S3,	Table	S2),	which	individually	computed	
probabilities	 of	 melanoma	 diagnosis.	 An	 example	 of	 classification	
using	the	C5.0	(decision	tree)	approach	is	illustrated	in	Figure	S8.	The	
Q- score was calculated as the median value of melanoma probabil-
ity	across	all	13	machine	learning	approaches.	As	shown	in	Figure	S9,	
most lesions with a high Q- score were diagnosed as melanomas and 
most lesions with a low Q- score were diagnosed as nevi. This classi-
fication	 approach	 achieved	 98%	 sensitivity	 for	melanoma	detection	
and	there	was	36%	specificity	for	predicting	a	melanoma	diagnosis	as	
illustrated	 in	 the	 receiver-	operator	 curve	 of	 Figure	 S3.	 Examples	 of	
accurate	and	inaccurate	Q-	scores	are	presented	in	Figure	S10.

F IGURE  1 Example	melanoma	imaging	biomarkers.	(A)	and	(B)	
show a melanoma and a nevus, respectively, where lesion centre 
(white circle) and peripheral border (black line) between lesion and 
normal skin are illustrated. The mean lesion brightness along the 
sweeping arm as a function of angle θ is plotted (black line) to the 
right with the standard deviation shown in blue. The melanoma 
imaging biomarker (MIB) B12 is graphically shown to be the 
brightness range over an angular sweep of the mean lesion pixel 
brightness. The range is divided by the mean to achieve the final B12 
MIB. The images shown are of a melanoma that yields a large B12 
value and a nevus that yields a small B12 value. A melanoma with 
multiple colours (C) is shown in colour map illustrating MIB MC1. A 
melanoma with an atypical reticular pigmented network (D) is shown 
with	an	overlay	of	the	pigmented	network	branches.	Each	black	
line segment terminates on each end in either a branch point or an 
endpoint. Statistical analysis of these branches yielded MIBs B8, B11, 
B15, R3, R7 and R8 

(A)

(B)

(C)

(D)

FIGURE 2 The length of the horizontal bar, for each image feature 
extracted, is negative the base 10 logarithm of the P- value, where the 
P- value is the standard statistical significance metric, calculated using 
univariate, two- tailed, unpaired t- tests (for continuous variables) and 
Fisher’s	exact	test	(for	categorical	variables).	For	single	colour	channel	
metrics, three adjoined bars, colour- coated red, green and blue show 
the importance when evaluated in the respective colour channels of 
the image. The melanoma imaging biomarkers (MIBs) with statistical 
significance for melanoma discrimination (P<.05, vertical black line) 
are labelled on the vertical axis describing the colour channel they 
were used in: B1- B14 from the blue channel, G1 from the green 
channel and R1- R13 from the red channel. MC1- MC4 denote MIBs 
that used multiple colour channel information. The text to the 
right of the bars indicates MIBs that contain information based on 
the dermoscopic ABCD criteria. The most significant MIB was the 
number of colours identified in the lesion while the diameter of the 
lesion had intermediate significance and the asymmetry of the lesion 
silhouette	(Asymmetry	1,	illustrated	in	Figure	S10)	had	borderline	
significance.	The	lesion	border	features	(see	Figure	S4)	pertain	to	the	
edge demarcation. 
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5  | CONCLUSIONS

This method independently determined that the number of colours 
present	in	a	lesion	is	important	for	melanoma	evaluation	and	is	thus	
aligned	with	conventional	dermoscopic	evaluation	criteria.[6] We also 
determined that MIBs have spectral dependence in RGB channels and 
that	clear	visual	differences	exist	 in	defined	colour	channels	 (Figure	
S7).	 Another	 important	 feature	 of	 this	 approach	 is	 computational	
transparency,	 as	 the	 derivation	 of	 each	 quantitative	 biomarker	 and	
full	description	of	our	statistical	analysis	are	disclosed	in	supplemental	
information	to	this	letter.	Overall,	these	results	raise	a	question	about	
whether spectrally dependent MIBs might be further enhanced by ex-
tended spectral imaging and analysis.

At	high	sensitivity,	the	Q-	score	achieved	significantly	higher	specific-
ity	than	today’s	estimated	standard	of	10%	in	practice,	albeit	in	our	study	
with	small	sample	size	and	artificially	high	prevalence.	As	this	method	
does	not	depend	on	expert	evaluators,	it	has	the	potential	to	improve	
upon	diagnosis	and	classification	of	pigmented	lesions	widely.	Overall,	
our	sensitivity/specificity	is	similar	to	an	electrical	impedance	spectros-
copy device recently described.[7]	For	expert	evaluators,	our	method	has	
identified	some	new	lesion	characteristics,	for	example	border	demar-
cation	features,	that	might	improve	visual	evaluations.	Widespread	ap-
plication,	if	validated	in	larger	clinical	trials,	could	decrease	unnecessary	
biopsies	and	increase	life-	saving	early	detection	events.
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