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Abstract

Primary auditory neurons (PANs) connect cochlear sensory hair cells in the mammalian

inner ear to cochlear nucleus neurons in the brainstem. PANs develop from neuroblasts

delaminated from the proneurosensory domain of the otocyst and keep maturing until the

onset of hearing after birth. There are two types of PANs: type I, which innervate the inner

hair cells (IHCs), and type II, which innervate the outer hair cells (OHCs). Glial cells sur-

rounding these neurons originate from neural crest cells and migrate to the spiral ganglion.

Several transcription factors are known to regulate the development and differentiation of

PANs. Here we systematically examined the spatiotemporal expression of five transcription

factors: Sox2, Sox10, Gata3, Mafb, and Prox1 from early delamination at embryonic day (E)

10.5 to adult. We found that Sox2 and Sox10 were initially expressed in the proneurosen-

sory cells in the otocyst (E10.5). By E12.75 both Sox2 and Sox10 were downregulated in

the developing PANs; however, Sox2 expression transiently increased in the neurons

around birth. Furthermore, both Sox2 and Sox10 continued to be expressed in spiral gan-

glion glial cells. We also show that Gata3 and Prox1 were first expressed in all developing

neurons, followed by a decrease in expression of Gata3 and Mafb in type I PANs and Prox1

in type II PANs as they matured. Moreover, we describe two subtypes of type II neurons

based on Peripherin expression. These results suggest that Sox2, Gata3 and Prox1 play a

role during neurogenesis as well as maturation of the PANs.

Introduction

Primary auditory neurons (PANs), also known as spiral ganglion (SG) neurons, receive chemi-

cal signals from cochlear hair cells and transmit the information to the central cochlear

nucleus (CN) in the brainstem (see review by Dabdoub and Fritzsch [1]). Neuronal precursors

delaminate from the otocyst at the early stage of inner ear development and form PANs [2]. A

PLOS ONE | DOI:10.1371/journal.pone.0170568 January 24, 2017 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Nishimura K, Noda T, Dabdoub A (2017)

Dynamic Expression of Sox2, Gata3, and Prox1

during Primary Auditory Neuron Development in

the Mammalian Cochlea. PLoS ONE 12(1):

e0170568. doi:10.1371/journal.pone.0170568

Editor: Olivia Bermingham-McDonogh, University

of Washington, UNITED STATES

Received: November 10, 2016

Accepted: January 6, 2017

Published: January 24, 2017

Copyright: © 2017 Nishimura et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript. This research was

undertaken thanks in part to funding provided to

the University of Toronto Medicine by Design

initiative, by the Canada First Research Excellence

Fund (AD), Koerner Foundation (AD), a Harry

Barberian grant (TN), Uehara Memorial Foundation

(TN), Japan Society for the Promotion of Science

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170568&domain=pdf&date_stamp=2017-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170568&domain=pdf&date_stamp=2017-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170568&domain=pdf&date_stamp=2017-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170568&domain=pdf&date_stamp=2017-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170568&domain=pdf&date_stamp=2017-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170568&domain=pdf&date_stamp=2017-01-24
http://creativecommons.org/licenses/by/4.0/


number of transcription factors that are involved in neurogenesis as well as specification of

PANs have been identified: Neurog1 [3, 4], NeuroD1 [5], Gata3 [6, 7] and Sox2 [8–10]. There

are two types of PANs. Type I cells comprise 95% of all PANs within the cochlear nerve and

have bipolar neurites that connect a single inner hair cell (IHC) with the central CN. Type II

PANs make up the remaining 5% of all PANs and have pseudo-unipolar neurites that connect

multiple outer hair cells (OHCs) with the CN [11, 12]. The biological differences between type

I and type II neurons have been reported [13–21] (also see review on type II PANs by Zhang

and Coate [22]). More recently, it was argued that type II PANs should be nociceptors mediat-

ing auditory pain and do not drive the olivocochlear reflex [23, 24]; however, it remains

unknown how they develop from a common neuroblast.

Concomitant with delamination of neuroblasts, glial cells also migrate from the neural crest

[25, 26] and serve as supporting cells for PANs. Myelinating Schwann cells, a glial subtype, sur-

round the peripheral process of type I PANs and non-myelinating Schwann cells surround the

peripheral processes of type II PANs. As with glial cells associated with other peripheral nerves,

the glia surrounding PANs are important for growth, maintenance and function of the PANs.

Supporting glia likely play a role in neuronal pathogenesis [27] as well as provide chemotactic

signals for proper pathfinding and innervation of the organ of Corti by afferent PANs [28].

Here we focus on the expression of two groups of transcription factors; the SRY high mobil-

ity group box transcription factors Sox2 and Sox10 and another set of transcription factors

expressed in embryonic PANs that includes a zinc finger transcription factor Gata3, a leucine-

zipper transcription factor Mafb, and a homeobox transcription factor Prox1. Sox2 and Sox10

are first expressed in the developing proneurosensory region of the otocyst and continue to be

expressed in glia throughout adulthood [8, 29]; however, changes in expression of these factors

during development and maturation of PANs remains unclear. Developing PANs also express

Gata3, Mafb and Prox1 until neonatal stages [6, 30–35]; however, the spatial and temporal pat-

terns of gene expression in maturing PANs for these transcription factors have not yet been

resolved. To elucidate the changes in expression that may occur during development we per-

formed comprehensive spatiotemporal analyses of these five transcription factors from embry-

onic to adult stages. This study provides new insights into aspects of gene expression in spiral

ganglion development; the involvement of Sox2 in PAN neurogenesis and maturation, Gata3

in type II PAN maturation and Prox1 in type I PAN maturation.

Materials and Methods

Animals

Care and euthanasia of CD-1 mice (Charles River laboratory) and Sox2EGFP/+ knock-in mice

(Jackson Laboratories, Strain Name: B6;129S-Sox2tm2Hoch/J; stock number, 017592) [36] used

in this study was approved by the Sunnybrook Research Institute Animal Care Committee, and

conformed to IACUC regulations. Mice were maintained in habitat enriched (Bioserv mouse

Igloo) isolation cages with automated watering under 12 hour light/12 hour dark cycles at 21˚C.

Fewer than five adult animals were housed in each cage; cages were changed weekly. Water and

food were available ad libitum. Mice were fed the standard irradiated diet and euthanized by

CO2. We used at least two cochleae from three different litters at each developmental stage.

Tissue preparation

We bred Sox2EGFP/+ knock-in mice (Sox2-EGFP), in which the Sox2 open reading frame is

replaced by EGFP [36], with CD-1 female mice as Sox2EGFP/EGFP are embryonic lethal [37]. We

harvested mouse tissue at embryonic day (E) 10.5, 12.75, 17.5, from Sox2-EGFP mice, and

E10.5, E12.75, E13.5, E15.5, E17.5, postnatal day (P) 0, P1, P5, P6, P14, P30, P35 and P40 from
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CD-1 mice. After dissecting the temporal bone and removing surrounding tissue in cold phos-

phate buffer saline (PBS), cochleae were fixed for 30 min at RT in 2% paraformaldehyde (for

Peripherin), 2 hours (for Sox2) or overnight (for other antibodies) in 4% paraformaldehyde at

room temperature. P5 or older cochleae were decalcified with 5% EDTA in PBS for up to 5

days at room temperature. Then, the cochleae were immersed in 30% sucrose in PBS overnight

and embedded into OCT compound (TissueTek), and cryosectioned with 10 μm thickness.

Specimens were mounted on MAS-GP coated slide glass (Matsunami).

Immunohistochemistry

Immunohistochemistry was performed as described previously [38]. For cochlear immunohis-

tochemistry the primary antibodies used are in Table 1. Notably, we used TuJ1 antibodies to

label neuron specific class III β tubulin [39]. We used Alexa Fluor 488 or 546 labeled donkey

anti-goat IgG, Alexa Flour 546 and 647 labeled anti-rabbit IgG, and Alexa Fluor 488 and 647

labeled donkey anti-mouse IgG as secondary antibodies. Nuclei were stained with 4’,6-diami-

dino-2-phenylindole (DAPI).

Results

Sox2 expression in the spiral ganglion during mouse cochlear

development

Cells in the spiral ganglion (SG) include PANs, non-neural cells composed of glial cells that

surround PANs and mesenchymal cells such as fibroblasts [40]. We investigated which cell

type(s) in the spiral ganglion express Sox2 at early developmental stages by performing immu-

nohistochemistry on cochlear sections from Sox2EGFP/+ mice (Sox2-EGFP). Since Sox10 labels

neural crest derived cells including Schwann cells in the cochleovestibular ganglion (CVG)

[28, 40, 41], we used Sox10 as a marker for glial cells in the spiral ganglion. We used TuJ1 as a

marker for delaminating neuroblasts as well as delaminated neurons [29, 42]. At E10.5, when

neuroblasts are in the process of delaminating from the anteroventral otic vesicle [4], TuJ1

positive delaminating neuroblasts as well as cells in the neural tube and in the otocyst

expressed Sox2-EGFP and Sox2 protein (Fig 1A arrowheads, Fig 1A’ and 1A”). Sox10 positive

Table 1. List of primary antibodies. All antibodies were diluted in 10% donkey serum and 0.5% Triton X-100 in Tris-buffered saline (TBS) at the concentra-

tions indicated in the table.

Antibody Antigen Host Supplier Catalog # Dilution

Sox2 A peptide mapping near the C-terminus of Sox2 of human origin Goat

polyclonal

Santa Cruz Y-17 1:250

Sox10 A peptide mapping near the N-terminus of Sox10 of human origin Goat

polyclonal

Santa Cruz N-20 1:250

GATA3 E. coli-derived recombinant human GATA3 Goat

polyclonal

R&D

systems

AF2605 1:250

Prox1 E. coli-derived recombinant human Prox1 Goat

polyclonal

R&D

Systems

AF2727 1:500

Mafb Transcription factor Mafb recombinant protein epitope signature tag (PrEST) Rabbit

polyclonal

Sigma-

Aldrich

HPA005653 1:200

TuJ1 microtubules derived from rat brain Mouse

monoclonal

Covance MMS-435P 1:1000

TuJ1 a synthetic peptide corresponding to amino acid residues 441–450 of human β-tubulin

III (Ala 446 to Ser446 substitution) with N-terminal added cysteine, conjugated to KLH

Rabbit

polyclonal

Sigma-

Aldrich

T2200 1:500

NF200 The C-terminal tail segment of enzymatically dephosphorylated pig Neurofilament H-

subunit

Mouse

monoclonal

Sigma-

Aldrich

N0142 1:250

Peripherin Electrophoretically pure trp-E-Peripherin fusion protein, containing all but the 4 N

terminal amino acids of rat Peripherin

Rabbit

polyclonal

Millipore AB1530 1:5000

doi:10.1371/journal.pone.0170568.t001
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Fig 1. Sox2 expression in the spiral ganglion of Sox2-EGFP mice during cochlear development. A: A

coronal cross section through the otic vesicle (OV) from E10.5 Sox2-EGFP mouse immunostained against

Sox2 (red) and TuJ1 (white). Arrowheads indicate delaminating neuroblasts. TuJ1 is expressed in

delaminating neuroblasts and cells in the neural tube (NT). Sox2-EGFP (green) overlaps Sox2 protein.
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cells were present in the otocyst (Fig 1B arrows) in accordance with previous reports [29, 41].

Sox2-EGFP+ neuroblasts were negative for Sox10 (Fig 1B arrowheads, Fig 1B’ and 1B”), indi-

cating neuroblasts downregulated Sox10 after they delaminated from the otocyst. By E12.75,

neuroblasts have already delaminated from the otocyst and formed the spiral ganglion, and

neural crest cells form corridors delineating the path of migratory neuroblasts [25, 43]. Our

data also showed Sox10+ neural crest cells were enwrapping the SG (Fig 1D, indicated by white

arrows). Enwrapping neural crest cells as well as cells in the SG expressed Sox2-EGFP (Fig 1C

and 1D). Enwrapping neural crest cells but not TuJ1 positive neuronal cells in the SG

expressed Sox2 protein (Fig 1C). At this stage we observed that while neurons did not express

Sox2 protein, Sox2-EGFP was present at E12.75 (Fig 1C, blue arrows) likely due to the longer

half-life of EGFP [36]. Moreover, we also observed cells in the otocyst that are positive for

Sox2-EGFP but negative for Sox2 protein (Fig 1C, pink arrows), agreeing with a previous

report showing that Sox2-expressing cells in the early otocyst give rise to large numbers of

Sox2 negative cochlear non-sensory epithelial cells [10]. Altogether our data indicate that

migrating glial cells expressed Sox2 but post-mitotic neurons in the CVG downregulated Sox2

(blue arrows in Fig 1C represent Sox2-EGFP+/Sox2- neurons, and yellow arrows represent

Sox2-EGFP+/Sox2+ glial cells. Pink arrows in Fig 1C represent Sox2-EGFP+/Sox2- cochlear

non-sensory epithelial cells). At E17.5, neural crest glial cells were integrated throughout the

spiral ganglion [25]. Neither Sox2 nor Sox10 antibodies labeled TuJ1+ neurons at this stage

(Fig 1E–1H). Sox2-EGFP was colocalized with Sox10+ glial cells (Fig 1F) and Sox2 immunola-

belling (Fig 1E), indicating that Sox10+ glial cells also expressed Sox2. Considering Sox2

expression levels in Sox2-EGFP mice is about half that of wild type mice [44, 45] and neurons

at E12.75 and E17.5 did not express Sox2 protein, we examined Sox2 expression in PANs of

wild type mice. Sox2 localization of PANs in WT mice at E10.5 and E12.75 was consistent with

that in Sox2-EGFP mice (Fig 2A and 2B). Not neurons but glial cells in WT expressed Sox2 at

E13.5 (Fig 2C) and E15.5 (Fig 2D); however, at E17.5, P0 and P5, TuJ1+ neurons of WT mice

expressed Sox2 protein (Fig 2E–2G’). Having looked at E17.5 (Fig 2E), P0 (Fig 2F) and P5 (Fig

2G and 2G’), we found Sox2 expression level in PANs have a second peak around P0, indicat-

ing Sox2 was transiently expressed in PANs around birth. Furthermore, PANs of WT mice at

P14 and P35 downregulated Sox2 (Fig 2H–2I’) and Sox2 expression was maintained only in

TuJ1-negative non-neural cells surrounding PANs—glial cells.

Gata3 localization during development of the spiral ganglion

We studied the expression of another transcription factor Gata3 in the developing and mature

inner ear. The spatiotemporal expression of Gata3 has been reported in embryonic and early

postnatal PANs [6, 30, 33, 46, 47], but not in older PANs, except for an expression study using

A’: High magnification image of A with Sox2-EGFP channel only. A”: The same image as in A’ with Sox2 and

TuJ1. B: A coronal cross section through the otic vesicle (OV) from E10.5 Sox2-EGFP mouse immunostained

against Sox10 (red) and TuJ1 (white). Cells in OV express Sox10 (arrows) but Sox10 is downregulated in

neuroblasts (arrowheads). B’: High magnification image of B with Sox2-EGFP channel only. B”: The same

image as in B’ with Sox10 and TuJ1. C: A coronal section through OV from E12.75 Sox2-EGFP mouse

immunostained against Sox2 (red) and TuJ1 (white) showing developing spiral ganglion (SG) and prosensory

epithelium (PSE). D: A coronal section through OV from E12.75 Sox2-GFP mouse immunostained against

Sox10 (red) and TuJ1 (white). Sox10+ glial cells enwrap SG. E: A cochlear cross section from E17.5

Sox2-EGFP mouse immunostained against Sox2 (red) and TuJ1 (white). F: A cochlear section from E17.5

Sox2-EGFP mouse immunostained against Sox10 (red) and TuJ1 (white). G: High magnification image of E,

except for Sox2-EGFP. H: High magnification image of F, except for Sox2-EGFP. Blue arrows in C indicate

Sox2-EGFP+/Sox2- cells in SG. Yellow arrows in C indicate Sox2-EGFP+/Sox2+ cells in SG. Pink arrows in C

indicate Sox2-EGFP+/Sox2- cells in the otocyst. White arrows in D indicate Sox2-EGFP+/Sox10+ cells. Scale

bars: 20 μm.

doi:10.1371/journal.pone.0170568.g001
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microarrays [32]. For a comprehensive review on Gata3 in PAN development, see review

chapter by Goodrich [1]. Moreover, early deletion of Gata3 results in complete neurosensory

ablation of the organ of Corti and PANs [31] whereas delayed ablation of Gata3 results in vari-

able pathfinding errors of PANs [33]. Hence, we investigated whether Gata3 might have a role

not only in development but also in maturation. To determine its role in maintenance and

maturation more thoroughly, as a first step we performed immunohistochemical staining for

Gata3 and co-stained with TuJ1 at various developmental stages (Fig 3). Agreeing with previ-

ous reports of Gata3 localization at embryonic stages, Gata3 protein was detected in the nuclei

of developing PANs and the cochlear epithelia (Fig 3A–3C). At postnatal stages (Fig 3D–3F),

Fig 2. Immunostaining of wild type mice reveals dynamic Sox2 expression in developing primary auditory neurons.

Immunohistochemistry for Sox2 (red) and TuJ1 (white). A: A cross section through the ventral otocyst from E10.5 CD-1 embryos. White

arrowheads indicate delaminating neuroblasts expressing Sox2. B: A coronal section through the cochlea from E12.75 CD-1 embryos.

Yellow arrowheads indicate Sox2 positive cells. These cells were negative for TuJ1. C: A cochlear cross section from E13.5 CD-1 mice. Sox2

(red) was strongly detected in TuJ1-negative glial cells, but not detected in TuJ1-positive cells. D: A cochlear cross section from E15.5 CD-1

mice. Sox2 (red) was strongly detected in TuJ1-negative glial cells, but not detected in TuJ1-positive cells. E: A cochlear cross section from

E17.5 CD-1 embryos. Sox2 (red) was strongly detected in TuJ1-negative glial cells, and weakly detected in TuJ1-positive cells. F: A cochlear

cross section from P0 CD-1 mice. Sox2 (red) was strongly detected in TuJ1-negative cells, and moderately detected in TuJ1-positive cells. G:

A cochlear cross section from P5 CD-1 mice. Sox2 (red) was strongly detected in TuJ1-negative cells, and moderately detected in

TuJ1-positive cells. G’: G with DAPI channel. Non-neural, non-glial cells neither expressed Sox2 nor TuJ1. H: A cochlear cross section from

P14 CD-1 mice. Sox2 (red) in TuJ1 positive cells was no longer detected. H’: H with DAPI channel. I: A cochlear cross section from P35 CD-1

mice. Sox2 (red) in TuJ1 positive cells was not detected. I’: I with DAPI channel. Scale bar in B: 50 μm; others: 20 μm.

doi:10.1371/journal.pone.0170568.g002
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Fig 3. Spatiotemporal expression of Gata3 in auditory neurons. Cochlear cross sections (WT) from

E13.5 to P30 immunostained against Gata3 and TuJ1. Gata3 (green) and TuJ1 (white) (A−F) and single

channel of Gata3 (white) (A’−F’). A: At E13.5, cells in SG (spiral ganglion) and PSE (prosensory epithelium)

expressed Gata3. B: At E15.5, Gata3 was positive in the nuclei of all the PANs. At E17.5 (C) and P1 (D),

Gata3 was positive in the nuclei of all the PANs, with expression gradient. Yellow arrowheads in C−D’ indicate

Sox2, Gata3, and Prox1 Expression in the Spiral Ganglion
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there were two different subsets of PANs regarding expression level of nuclear-localized Gata3.

This change of Gata3 immunofluorescence among different PANs started as early as E17.5

(Fig 3C), and was maintained at least until P40 (Figs 3D–3F, 4 and 5D). During this period, a

subset of neurons maintained nuclear Gata3 expression (indicated by arrowheads in Fig 3C’–

3E’), whereas the remaining neurons downregulated Gata3. As neuronal maturation pro-

gressed, this difference became larger, resulting in very weak signal detection in most PANs at

P30 (Figs 3F and 5C), P35 (Fig 4 and S2 Fig) and at P40 (Fig 5D). Interestingly, in cells that

strongly expressed Gata3, a pan-neuronal marker, TuJ1 signal was detected until P6 (Fig 3E).

In contrast, from P14 onwards, cells that strongly expressed Gata3 had weak or no TuJ1

expression (Figs 3F, 4 and 5C–5D, S1 and S2 Figs). These data suggest that there are at least

two different cell populations in PANs discriminated by Gata3 expression.

Gata3 marks type II neurons at adult stages

Peripherin, the type III intermediate neurofilament, marks mature type II PANs [15, 16].

Given that TuJ1 is negative in Peripherin positive type II PANs at later stages in various species

[13, 18, 19, 48] and our data showing that Gata3 and TuJ1 expression was mutually exclusive

in older PANs, we postulated that Gata3 marks nuclei of type II PANs. To investigate this, we

performed immunostaining for Gata3, TuJ1 and Peripherin at P14, when type II PANs have

been already pruned [13]. Peripherin positive cells did not express TuJ1 and strongly expressed

Gata3 (S1 Fig), suggesting Gata3 marks type II PANs. In addition, we confirmed Gata3 and

Peripherin double-positive cells are neurons by immunostaining for another neurofilament

protein, NF200 (S1 Fig), as previously reported [16]. In addition, Peripherin positive cells were

absent at the most apical turn [13], agreeing with our data that very few Peripherin positive

cells were detected at the apical turn at P14 (S1F, S1I, S1O, S1R, S1F’, S1I’, S1O’ and S1R’ Fig).

At P35, Gata3 positive cells had weak or no TuJ1 expression and strong expression of NF200

(Fig 4A–4C, S2 Fig), suggesting they were type II PANs. Unexpectedly some Gata3 expressing

cells with weak TuJ1 and strong NF200 expression were Peripherin negative (indicated by

open arrows in Fig 4B’ and S2 Fig) suggesting that there are two classes of type II neurons.

We also tested the localization of a Gata3 downstream transcription factor, Mafb. Mafb was

first described as a gene related to musculoaponeurotic fibrosarcoma, and now is known to be

the responsible gene for the Kreisler mutant (kr/kr) and Duane syndrome, characterized by

inner ear defects and segmentation abnormalities in rhombomeres during early embryogene-

sis [49, 50]. Yu et al. indicated that Mafb works downstream of Gata3 and contributed to

synaptogenesis between IHCs and type I PANs [51]. Here we examined expression of Gata3,

which is upstream of Mafb, and localization of Mafb in the postnatal PANs. As previously

described [51], Mafb protein was localized in the nuclei of PANs at P1 and P6 (Fig 5A and 5B).

At P30 and P40, while Mafb expression has been reported to be translocated to the cytoplasm

of most PANs by P15, our data suggested that its nuclear localization is maintained in a small

number of cells, especially in Gata3 positive cells (Fig 5C and 5D, yellow arrowhead in the

inset). Cells with nuclear expression of Gata3 and Mafb did not express TuJ1, suggesting they

were type II PANs.

strong localization of Gata3 to the nuclei. E: At P6, PANs continued to express Gata3. F: At P30, there are

clearly two different types of cells: a couple of nuclear-localized Gata3 expressing cells and the other

Gata3-negative cells. Insets of D−F shows Gata3 (green) and TuJ1 (white) expression at the organ of Corti

and the stria vascularis. SG: spiral ganglion, PSE: prosensory epithelium, SV: stria vascularis, OC: organ of

Corti. Scale bars in A’, 100 μm; B’−F’, 20 μm.

doi:10.1371/journal.pone.0170568.g003
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Fig 4. Localization of Peripherin and Gata3 at P35 in the spiral ganglion. A cochlear cross section of

postnatal SG (WT) at P35 immunostained against Gata3 (green), Peripherin (red) and TuJ1 (white) (A−B’”), or

Gata3 (green) and NF200 (white) (C). Some Gata3 expressing cells were Peripherin positive, which weakly

expressed TuJ1 (indicated by blue arrows in B’). Some Gata3 expressing cells were negative for Peripherin,

which weakly expressed TuJ1 (indicated by open arrows in B’). (A−B’”). A: Low magnification view of a

Sox2, Gata3, and Prox1 Expression in the Spiral Ganglion
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Prox1 marks type I primary auditory neurons at juvenile and adult stages

We also investigated the expression of another transcription factor, Prox1, which is expressed

in embryonic and neonatal [34, 35] PANs. Prox1 has been suggested to affect type II PANs’

wiring [34]. We sought to determine its exact spatiotemporal expression in PANs. At P1, when

Gata3 and TuJ1 mark all PANs, Prox1 was detected in all TuJ1 positive cells (Fig 6A and 6B).

At juvenile and adult stages however, only type I PANs, which were positive for TuJ1 and neg-

ative for Peripherin, continued to express Prox1 (Fig 6C–6E, S3 Fig).

Discussion

Sox2, which belongs to the high-mobility group (HMG) box transcription factors, is unique as

it is the only transcription factor that is expressed in embryonic and adult stem cells as well as

progenitor cells [36]. Furthermore, adult stem cells expressing Sox2 originate from Sox2

expressing progenitor cells indicating that Sox2 initially plays a role in the development of pro-

genitor cells and continues to be expressed in derivative adult tissues where it indicates stem

cells [36]. With regard to inner ear development, Sox2 is the earliest definitive marker of the

prosensory domain [52] and remains expressed in the supporting cells and cells in the spiral

ganglion at postnatal stages [8, 53–56]. We examined spatiotemporal expression of Sox2 and

Sox10 in the developing cochlea focusing on cells in the spiral ganglion. Our results demon-

strated Sox2 expression levels had two peaks at the delamination of neuroblasts from otocyst

and around birth, in general agreement with the previously reported expression patterns of

Sox2 in developing avian [56] and mouse [8] inner ear, and with lineage tracing studies of

Sox2 [10]. In summary, Sox2 was first expressed in delaminating neuroblasts and its downre-

gulation is necessary for progression of neurogenesis by Neurogenin1 and NeuroD1 [57]. Sox2

expression was later upregulated in PANs around birth and finally declined to undetectable

levels by adult stages. Antagonistic interactions between Sox2 and bHLH transcription factors

have been well documented [53, 57, 58], and might explain the upregulation of Sox2 in PANs

around birth. For example, the transient downregulation of Neurog1 around birth [32] (http://

goodrich.med.harvard.edu/microarray-data.html) could allow for the upregulation in Sox2

expression we observed.

Our results also showed that Sox10 is downregulated in delaminating neuroblasts while

another study demonstrated it is still expressed in delaminating neuroblasts [29]. The discrep-

ancy likely comes from the way Sox10 was labeled: we used Sox10 immunohistochemistry to

label currently expressed protein while Wakaoka et al. used Sox10-IRES-Venus reporter mice,

where the reporter likely has a longer half-life than the Sox10 protein. We can explain the dis-

crepancy between Sox2-EGFP and immunohistological labelling of Sox2 protein in Sox2EGFP/+

knock-in mice in the same manner thus Sox2-EGFP does not always accurately report Sox2

protein expression. Based on our results, Sox10 is downregulated earlier than Sox2 in neuro-

blasts during delamination.

We also demonstrated spatiotemporal Gata3 expression. It was first expressed in all PANs

throughout embryonic development but then downregulated in TuJ1 positive type I PANs as

cochlear cross section from WT P35 mouse. Gata3 (green) was localized in the nuclei of a few SG cells. Gata3

was also positive in the cells of the organ of Corti including hair cells and supporting cells. B: High magnification

view of A, focused on basal SG. B’: The same image as in A, except for TuJ1. B”: the same image as in A,

except for Gata3. B’”: The same image as in A, except for Peripherin. C: Another cochlear cross section from

P35 mouse. Gata3 (green) strongly positive cells also strongly expressed NF200 (white). Scale bar in A,

100 μm. Scale bars in B and C, 20 μm.

doi:10.1371/journal.pone.0170568.g004
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development progressed after birth, being compatible with previous microarray data demon-

strating Gata3 expression in PANs peaked at E16 [32]. Interestingly, nuclear Gata3 expression

was highly maintained only in a small number of cells also positive for Peripherin at P14 and

older stages suggesting that Gata3 labeled postnatal type II neurons. We thus hypothesize that

Fig 5. Localization of Mafb and Gata3 at postnatal stages. Cochlear cross sections of postnatal SG at P1 (A), P6 (B), P30 (C) and

P40 (D) immunostained against TuJ1 (white), Gata3 (green) and Mafb (red). Each row shows different stages. A−A”‘: At P1, Mafb (red)

was co-localized in the nuclei with Gata3 (green) in TuJ1 (white)-positive PANs. B−B”‘: At P6, like P1, Mafb was localized in most of

PANs, and strongly detected in Gata3 strongly positive cells (indicated by yellow arrowheads). C−C”‘: At P30, Mafb was co-localized

with Gata3 expression like P6. TuJ1 was negative or weakly positive in Gata3 and Mafb double positive cells indicated by yellow

arrowheads in C. D−D”‘: At P40, Mafb expression was the same as P30. High magnification view is shown in the inset, indicating there

existed two types of Mafb-positive cells: Gata3 and Mafb double positive cells, which have rather small cell nucleus and did not express

TuJ1 (yellow arrowhead); and Gata3 negative, Mafb cytoplasmic positive, and TuJ1 positive cells, which have larger cell body (blue

arrowhead). Nuclei were stained with DAPI (blue). Scale bars, 20 μm.

doi:10.1371/journal.pone.0170568.g005
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sufficient Gata3 expression is important for diversification and maturation of type II PANs.

Since haploinsufficiency of Gata3 causes HDR syndrome [59, 60], characterized by moderate

to severe hearing impairment with loss of otoacoustic emission (OAE) [61, 62], the expression

level of Gata3 is likely important in the development of the OHC. It is of great interest whether

patients with HDR syndrome have abnormalities in type II PANs, but we do not have a clinical

test to evaluate this except for temporal bone histopathology. We also demonstrated Prox1

expression, which was detected in all PANs at P1, but only in TuJ1 positive, Peripherin nega-

tive type I PANs at older stages.

Our data showed that Mafb nuclear expression was strongly maintained in mature type II

PANs, indicating that a Gata3-Mafb transcriptional network, which plays an important role in

synaptogenesis between IHCs and type I PANs [51], was also expressed in mature type II

PANs at higher levels. To test whether a Gata3-Mafb transcriptional network might have a role

in synaptogenesis of type II PANs, which have more synaptic targets than type I PAN do, we

need to check whether Mafb mutant mice have any abnormalities in synapses between OHCs

and type II PANs.

We observed very few Peripherin positive cells at the apex, agreeing with a previous report

[13]. Since type II neurons, which had darkly stained nuclei and a smaller cell body, were dis-

tributed throughout the entire cochlear length [63], it is likely that these were type II neurons

Fig 6. Expression of Prox1 in postnatal PANs. Cochlear cross sections of postnatal SG at P1 (A, B), P6

(C), P14 (D, D’) and P30 (E). A: At P1, Prox1 (green) was positive in TuJ1 (white) positive PANs in SG and

the supporting cells in the organ of Corti. B: High magnification image of SG in A, except for DAPI (blue). C:

Immunostaining for Prox1 (green) and Peripherin (red) at P6. D: Immunostaining for Prox1 (green) and

Peripherin (red) at P14. D’: The same image of D, co-stained for TuJ1. E: Immunostaining for Prox1 (green)

and Peripherin (red) at P30. Arrowheads in C, D, D’ and E indicate Peripherin-positive but Prox1-negative

cells. Scale bars in A: 50 μm, in B, C, C’, D, E: 20 μm.

doi:10.1371/journal.pone.0170568.g006
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even though they did not express Peripherin. Cells at the apical turn with strong Gata3 expres-

sion should be type II neurons since they also strongly expressed NF200 and weakly expressed

TuJ1, which is another characteristic of type II neurons [18, 64, 65]. More recently, it was dem-

onstrated that some tyrosine hydroxylase positive neurons with type II morphology did not

express Peripherin [21] and type II PANs existed in Peripherin KO mice [23], both of which

support our finding that some type II PANs were Peripherin negative.

We summarize our expression data in PANs throughout development and maturation in

Fig 7. Our results indicated that Sox2 and Gata3 were initially expressed in the developing spi-

ral ganglion and then Sox2 expression was restricted to glial cells and Gata3 expression was

maintained in type II neurons while Prox1 was maintained in type I neurons. While all type II

PANs upregulated Gata3, some type II PANs were positive for Peripherin and others were neg-

ative, which we define as type IIA PANs and type IIB PANs, respectively.

Fig 7. Expression of Sox2, Sox10, Gata3, Prox1 and Peripherin during primary auditory neuron development and maturation. This schematic

illustrates the expression of Gata3 (green), Sox2 (blue), Sox10 (brown), Prox1 (purple) and Peripherin (pink) as cells transition from the proneurosensory

stage in the developing embryo, to the maturation of PANs in the spiral ganglion. Downward and upward inflections indicate the corresponding decrease

and increase in expression, respectively. At E10.5, Sox10 was downregulated as neuroblasts delaminated from the otocyst. At E12.5, Sox2 expression

was similarly downregulated and Prox1 began to be expressed in these cells. At E17, Peripherin started to become expressed. At P1, Sox2 was

upregulated and maturing PANs began to differ in gene expression as they differentiated into their respective subtypes. All PANs expressed NF200, but

only type I PANs strongly expressed TuJ1. Type I PANs downregulated Gata3 early and subsequently downregulated Sox2; however, Prox1 continued to

be expressed. Type IIA PANs continued to express Gata3 strongly in adulthood and maintained expression of Peripherin while downregulating both Prox1

and Sox2. Type IIB PANs had a similar expression pattern to type IIA PANs but diverged when they started to downregulate Peripherin.

doi:10.1371/journal.pone.0170568.g007
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Supporting Information

S1 Fig. Localization of Peripherin, TuJ1, NF200 and Gata3 at P14 in different cochlear

regions. A cochlear cross section of postnatal SG (WT) at P14 immunostained against Gata3

(green), Peripherin (red) and TuJ1 (white). Each column represents different tonotopic posi-

tions: the basal turn (A, D, G, J, M, P), the middle turn (B, E, H, K, N, Q) and the apical turn

(C, F, I, L, O, R). (A-C) Gata3 single channel. (D-F) Peripherin single channel. (G-I) Gata3

and Peripherin double channels. (J-L) Gata3 and TuJ1 double channels. (M-O) Peripherin

and TuJ1 double channels. (P-R) Gata3, Peripherin and TuJ1 triple channels. Gata3 expressing

cells were positive for Peripherin, but negative for TuJ1 at the basal and middle turn. There

was one Peripherin positive cell in the apex, which was negative for TuJ1 (indicated by arrows

in C, F, I, L, O, R). Scale bar: 50 μm. A cochlear cross section of postnatal SG (WT) at P14

immunostained against Gata3 (green), Peripherin (red) and NF200 (white). Each column rep-

resents different tonotopic positions: the basal turn (A’, D’, G’, J’, M’, P’), the middle turn (B’,

E’, H’, K’, N’, Q’) and the apical turn (C’, F’, I’, L’, O’, R’). (A’-C’) Gata3 single channel. (D’-

F’) Peripherin single channel. (G’-I’) Gata3 and Peripherin double channels. (J’-L’) Gata3 and

NF200 double channels. (M’-O’) Peripherin and NF200 double channels. (P’-R’) Gata3, Per-

ipherin and NF200 triple channels. Gata3 expressing cells were positive for Peripherin and

strongly positive for NF200 at the basal and middle turn. There were no Peripherin positive

cells in the apex. Scale bar: 50 μm.

(TIF)

S2 Fig. Localization of Peripherin, TuJ1, NF200 and Gata3 at P35 in different cochlear

regions. A cochlear cross section of postnatal SG (WT) at P35 immunostained against Gata3

(green), Peripherin (red) and TuJ1 (white). Each column represents different tonotopic posi-

tions: the basal turn (A, D, G, J, M, P), the middle turn (B, E, H, K, N, Q) and the apical turn

(C, F, I, L, O, R). (A-C) Gata3 single channel. (D-F) Peripherin single channel. (G-I) Gata3

and Peripherin double channels. (J-L) Gata3 and TuJ1 double channels. (M-O) Peripherin

and TuJ1 double channels. (P-R) Gata3, Peripherin and TuJ1 triple channels. Some Gata3

expressing cells were Peripherin positive, which were TuJ1 negative (indicated by blue arrows).

Some Gata3 expressing cells were negative for Peripherin, which were TuJ1 negative (indicated

by open arrows). There were no Peripherin positive cells in the apex. Scale bar: 50 μm. A

cochlear cross section of postnatal SG (WT) at P35 immunostained against Gata3 (green), Per-

ipherin (red) and NF200 (white). Each column represents different tonotopic positions: the

basal turn (A’, D’, G’, J’, M’, P’), the middle turn (B’, E’, H’, K’, N’, Q’) and the apical turn

(C’, F’, I’, L’, O’, R’). (A’-C’) Gata3 single channel. (D’-F’) Peripherin single channel. (G’-I’)

Gata3 and Peripherin double channels. (J’-L’) Gata3 and NF200 double channels. (M’-O’) Per-

ipherin and NF200 double channels. (P’-R’) Gata3, Peripherin and NF200 triple channels.

Some Gata3 expressing cells were Peripherin positive, which were NF200 strongly positive

(indicated by blue arrows). Some Gata3 expressing cells were negative for Peripherin, which

were NF200 strongly positive (indicated by open arrows). There were no Peripherin positive

cells in the apex. Scale bar: 50 μm.

(TIF)

S3 Fig. Localization of Peripherin, TuJ1, NF200 and Prox1 at P14 in different cochlear

region. A cochlear cross section of postnatal SG (WT) at P14 immunostained against Prox1

(green), peripherin (red) and TuJ1 (white). Each column represents different tonotopic posi-

tions: the basal turn (A, D, G, J, M, P), the middle turn (B, E, H, K, N, Q) and the apical turn

(C, F, I, L, O, R). (A-C) Prox1 single channel. (D-F) Peripherin single channel. (G-I) Prox1

and Peripherin double channels. (J-L) Prox1 and TuJ1 double channels. (M-O) Peripherin
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and TuJ1 double channels. (P-R) Prox1, Peripherin and TuJ1 triple channels. Prox1 expressing

cells were positive for TuJ1, but negative for Peripherin throughout the cochlear turn. Periph-

erin positive cells were negative for Prox1 and weakly positive for TuJ1 (indicated by blue

arrows). Scale bar: 50 μm. A cochlear cross section of postnatal SG (WT) at P14 immunos-

tained against Prox1 (green), Peripherin (red) and NF200 (white). Each column represents dif-

ferent tonotopic positions: the basal turn (A’, D’, G’, J’, M’, P’), the middle turn (B’, E’, H’, K’,

N’, Q’) and the apical turn (C’, F’, I’, L’, O’, R’). (A’-C’) Prox1 single channel. (D’-F’) Periph-

erin single channel. (G’-I’) Prox1 and Peripherin double channels. (J’-L’) Prox1 and NF200

double channels. (M’-O’) Peripherin and NF200 double channels. (P’-R’) Prox1, Peripherin

and NF200 triple channels. Prox1 expressing cells were positive for NF200 throughout the

cochlear turn. Peripherin positive cells were strongly positive for NF200 at the basal and mid-

dle turn (indicated by blue arrows). There was one Prox1 negative cell that expressed NF200 in

the apex (indicated by yellow arrowheads). Scale bar: 50 μm.

(TIF)
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