1852

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 25, NO. 6, JUNE 2021 EMB CIEEES
—o—— momaoc

IEEE {7
Signal @

Processing

Societ

Automated Detection of COVID-19 Cases on
Radiographs using Shape-Dependent
Fibonacci-p Patterns

Karen Panetta, Fellow, IEEE, Foram Sanghavi

Abstract—The coronavirus (COVID-19) pandemic has
been adversely affecting people’s health globally. To dimin-
ish the effect of this widespread pandemic, it is essential
to detect COVID-19 cases as quickly as possible. Chest
radiographs are less expensive and are a widely available
imaging modality for detecting chest pathology compared
with CT images. They play a vital role in early prediction
and developing treatment plans for suspected or confirmed
COVID-19 chest infection patients. In this paper, a novel
shape-dependent Fibonacci-p patterns-based feature de-
scriptor using a machine learning approach is proposed.
Computer simulations show that the presented system (1)
increases the effectiveness of differentiating COVID-19, vi-
ral pneumonia, and normal conditions, (2) is effective on
small datasets, and (3) has faster inference time com-
pared to deep learning methods with comparable perfor-
mance. Computer simulations are performed on two pub-
licly available datasets; (a) the Kaggle dataset, and (b) the
COVIDGR dataset. To assess the performance of the pre-
sented system, various evaluation parameters, such as ac-
curacy, recall, specificity, precision, and f1-score are used.
Nearly 100% differentiation between normal and COVID-19
radiographs is observed for the three-class classification
scheme using the lung area-specific Kaggle radiographs.
While Recall of 72.65 + 6.83 and specificity of 77.72 + 8.06
is observed for the COVIDGR dataset.

Index Terms—COVID-19 detection, Fibonacci -p patterns,
X-ray images, artificial intelligence, biomedical imaging,
machine learning.

[. INTRODUCTION

N MARCH 11, 2020, the World Health Organization
(WHO) declared coronavirus (COVID-19) as an pan-
demic due to its far-reaching seriousness throughout the world
[1], [2]. As of July 27, 2020, over 16,000,000 cases and more
than 600,000 deaths were recorded worldwide, with more than
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250,000 cases and 5,400 deaths filed in the last 24 hours [3]. In
the United States, the Center for Disease Control and Prevention
(CDC) has recorded around 4,000,000 cases and more than
100,000 deaths due to coronavirus as of July 27,2020 [4]. A real-
time reverse transcriptase-polymerase chain reaction (RT-PCR)
test is currently employed to detect COVID-19 cases. However,
the test faces a critical problem of detecting false negatives and
false positives, achieving sensitivity as low as nearly 60-70%
[5]-[7]. Additionally, there is still a shortage in the availability of
test kits worldwide. Moreover, the test process is labor-intensive
and time-consuming and takes a long time to produce reports
[81, [9]. Therefore, it generates a need for using other diagnostic
approaches such as clinical investigation, epidemiological his-
tory, pathogenic analysis, computed tomography (CT), or x-ray
imaging for detecting COVID-19 more quickly and effectively.

Severe COVID-19 infections exhibit similar clinical char-
acteristics to bronchopneumonia, such as fever, cough, and
dyspnea [10]-[13]. Therefore, using just the clinical investiga-
tion may not be sufficient for COVID-19 detection. Radiology
imaging, such as CT or chest x-ray, is another primary tool that
can be used for diagnosing COVID-19. Bilateral, multi-focal,
ground-glass opacities with limited or posterior dispersal are
some of the features that the majority of the COVID-19 radiology
images exhibit [12], [14]-[18]. In recent studies, CT imaging
has been widely used to study and detect COVID-19 cases [16],
[19]. However, besides exposing the patient to a higher dosage
of radiation, CT imaging is also more expensive [19].

On the contrary, x-ray imaging is cheaper and more widely
available in most hospitals, making it the first-line radiologists’
tool to detect COVID-19 cases [11], [19]. However, differ-
entiating COVID-19 from other lung infections such as viral
pneumonia can be very difficult for the radiologist. This lack of
specificity could result in a delay of treatment and pose a danger
to the patient as well as the health care providers [20]-[23].
Thus, an automated computerized system for more accurate
and effective detection of COVID-19 from viral pneumonia and
normal condition chest radiographs would be more invaluable.

Several deep learning (DL) architectures have been recently
proposed to increase the accuracy in COVID-19 detection from
viral pneumonia and normal radiographs. However, these meth-
ods are sophisticated and require higher computation time and
resources, specialized hardware such as GPUs to train the mod-
els. DL models usually require a large training data to obtain
a stable model, and given the nature of the pandemic, it is
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Fig. 1.

Proposed Al-based Fibonacci -p patterns-based classification system. From the directory of images, an input image is read, which is

normalized in the image pre-processing step. Fibonacci image is generated using the shape-dependent Fibonacci -p pattern extractor, from which
histogram is extracted and send to the classifier for training and testing purposes. Depending on the classification scheme chosen, namely, binary
or three-class, classification is performed. Performance evaluation is performed on the generated confusion matrix.

difficult to get an extensive database. Comparatively, machine
learning models are simple, easy to train and deploy, and are
fast. Moreover, machine learning models do not require large
datasets to obtain stabilized models. Furthermore, the presence
of ground-glass opacities is one of the important features seen
in COVID-19 radiographs; thus, extracting textual information
would help get an accurate diagnosis. Therefore, in this paper,
an Artificial Intelligence (AI) based approach using shape-
dependent Fibonacci -p patterns and machine learning models
is proposed to effectively capture the radiographs’ textural in-
formation and accurately diagnose COVID-19 (Fig. 1).
The following are the contribution of this paper:

a) A novel shape-dependent Fibonacci -p patterns-based
feature descriptor to extract the underlying distinctive
textural patterns, which is computationally inexpensive,
tolerant to illumination changes and noise.

b) A new tool for automated detection and classification with
higher accuracy that separates the COVID-19 cases from
non-COVID-19 cases by using a small dataset of chest
radiographs.

¢) Result evaluation on the full radiographs and lung area-
specific radiographs of the Kaggle dataset and the lung
area-specific radiographs of the COVIDGR dataset, using
evaluation metrics such as classification accuracy, preci-
sion, recall, specificity, F1 score, and confusion matrix.

The rest of the paper is organized as follows: Section II
describes the current work related to COVID-19 detection with
their advantages and disadvantages; Section III describes the
proposed feature extractor method; Section IV describes the
database used, classification models employed, and the eval-
uation parameters used, along with the results obtained after
computer simulation; Section V concludes the paper with future
work.

[I. RELATED WORK

Presently, several DL architectures using convolutional neural
network namely, COVID-Net [24], DarkNet [25], CovidX-net
[26], CheXnet [27], COVID-SDnet [52] and pre-trained CNNs

[2], [9], [28]-[30] have been implemented to detect COVID-19
from viral pneumonia and normal chest radiographs. The perfor-
mance of these architectures on their corresponding datasets is
mentioned in Table I. Even though the aforementioned methods
have achieved good detection accuracies, there is still room
for improvement for increasing the effectiveness in identifying
COVID-19 from normal and viral pneumonia. These mentioned
methods being deep-learning models usually require several
hours of training time and computational hardware such as
GPU’s. They are usually data-hungry and complex. A machine
learning approach is proposed here to overcome these short-
comings, which are lightweight models making them easier
to deploy, requiring less training time, and would not require
specialized hardware. Textural information plays a critical role
in analyzing chest radiographs [31]. Thus, in this paper, a novel
shape-dependent Fibonacci -p patterns-based texture descrip-
tor using machine learning classification models is proposed
to distinguish COVID-19, viral pneumonia, and normal chest
radiographs. Additionally, a comparative analysis of the pro-
posed method with the existing DL models for classification
schemes COVID-19 vs normal and normal vs. viral pneumonia
vs COVID-19 for the full radiograph Kaggle dataset is also
performed. Furthermore, the proposed method’s performance
on lung area-specific radiographs for the Kaggle and COVIDGR
dataset is also evaluated in this paper.

[ll. SHAPE-DEPENDENT FIBONACCI-P PATTERNS

Local Binary Patterns (LBP) is a texture descriptor that
utilizes the center pixel’s information and its respective neigh-
boring pixels to encode the structural and statistical texture
information present in an image [32]. Herein, an image is first
divided into overlapping windows of neighborhood mxn and for
each of these windows, the center pixel and its surrounding n
neighboring pixels are compared. Suppose the latter is greater
than or equal to the center pixel. In that case, it is binarized as
‘one’ or else as ‘zero.” A binary pattern obtained by combining
these binary numbers is then converted into a decimal value by
assigning the appropriate decimal weights and summing them
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TABLE |

LITERATURE REVIEW FOR THE CHEST X-RAY COVID-19 DETECTION

images

Author Dataset Method Classification scheme Evaluation Results
Linda Wang et al. [24] COVIDX dataset: 16756 chest COVID-Net Normal vs Non-COVID Accuracy=93.3%
Hafeez Abdul et al. [30] X-Tay 1mages frF)m open Pre-trained ResNet50 vs COVID -19 Accuracy=90%
repositories model
Ozturk et al. [25] 142 COVID-19, 500 normal, DarkNet Model COVID-19 vs non- Accuracy = 98.08%
and 500 viral pneumonia finding
images COVID-19 vs non- Accuracy= 87.02%
finding vs viral
pneumonia
Hemdan et al. [27] 25 Normal and COVID-19 CovidX-Net Normal vs COVID-19 Accuracy=90%

Fl-score =0.89 and 0.91 for
normal and COVID-19
respectively using DenseNet201

Narin et al. [28]

50 COVID-19 images from
GitHub dataset and 50 normal
images from Kaggle dataset

Pre-trained ResNet50

Normal vs Viral
Pneumonia vs COVID-
19

Accuracy= 97% using Inception
V3 model and 87% for Inception-
ResNet V2 model

Toannis et al. [29]

Datastel: 224 COVID-19, 700
bacterial pneumonia, and 504

Different fine-tuned DL
models

Normal vs. COVID-19
vs. Viral Pneumonia

Accuracy=96.7%,
Sensitivity=98.66%,

normal x-ray images,
Dataste2: 224 COVID-19, 712
bacterial and viral pneumonia,
and 504 normal x-ray images

Specificity=96.46%

Asifetal. [9] 864 COVID-19, 1341 normal,
and 1345 viral pneumonia x-

ray images

Pre-trained Inception V3
model

Normal vs. COVID-19
vs. Viral Pneumonia

Accuracy=96%

Chowdhury et al. [2] Kaggle Dataset: 219 COVID-
19, 1341 Normal, and 1345

Viral Pneumonia

Pre-trained CNN models

Normal vs COVID-19
Normal vs COVID-19
vs. Viral Pneumonia

Accuracy= 98.3%
Accuracy=98.3%

Bassi et al. [27]

CheXNet

Normal vs COVID-19
vs. Viral Pneumonia

Accuracy=97.8%

Tabik et. al [52] COVIDGR dataset: 852 images
with 426 images non-COVID-

19 and COVID-19

COVID-SDnet

Non-COVID vs
COVID

Accuracy=76.18+2.70

together, thus encoding the textural information present in the
window [33], [34] and subsequently obtaining an LBP image.
The following are the advantages of classical LBP; (a) it is sim-
ple, fast, and easy, and (b) is insensitive to illumination changes.
However, it suffers the disadvantages of intolerance to noise
and computational expensiveness due to longer feature vector
dimensionality. To overcome these shortcomings, a Fibonacci
-p patterns-based descriptor is proposed.

Fibonacci-p patterns are textural feature descriptors that
work very similar to LBP, i.e., they also encode the textural pat-
tern information surrounding every pixel present in an image by
assigning appropriate Fibonacci weights to them [35]. However,
the difference between LBP and Fibonacci -p patterns is that in
the latter, a set threshold value is used for binarizing the mxn
neighborhood. If the difference between the center pixel and
its respective neighboring pixels is greater than or equal to the
set threshold value, the neighboring pixel is binarized as ‘one,’
or else is binarized as ‘zero’. To generate the decimal value,
Fibonacci weights are assigned to the obtained binary pattern
and summed together. Thus, generating a Fibonacci image.
The following is the mathematical formula used for computing
Fibonacci -p patterns [36]-[38]:

k—1
Fibyj =Y si% fo(i) (1)
i=0
i N
5 = 1, if (b; —b.) > T, 2
0, otherwise

TABLE II
FIBONACCI WEIGHTS COMPUTED FOR DIFFERENT P VALUES [36]
i o [ 1 [ 23456 7] 8
)i
0 1 2 | 4 | 8 |16 | 32 | 64 | 128 [ 256
1 1 1 2 | 3]s 8 | 13 ] 21 | 34
2 1 1 1L [ 21 3] 4] 6] 913
3 1 1 1 1 2 [ 3] 4[5 7
4 1 1 1 1 1 2 | 31 4[5
o 1 1 1 1 1 1 1 1 1 [
0, 1 <0
fo(i) = 41, 1=0 (3)

fli= D)+ fyli—p—1), i>0

Where, k£ = number of neighbors and r = radius, p= pattern
value, f, = Fibonacci weights and I" = set threshold. Table II
shows the Fibonacci weights computed using (3) depending on
the p-value.

Thresholding plays an integral role while computing Fi-
bonacci -p patterns as it helps in eliminating noise while ex-
tracting the textural patterns from the images. The threshold
value determines the extent of information be incorporated in the
patterns, i.e., the higher the threshold value, the less the informa-
tion becomes incorporated and vice versa [39]. The Fibonacci-p
patterns serve the following advantages: (a) when p = 0, the
weights obtained are similar to LBP, thus, behaving as an LBP
operator, which is another textural descriptor, (b) it is insensitive
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Fig. 2.
The highlighted areas have the value ‘one, and the rest are ‘zeros’.

to the illumination changes, (c) it is insensitive to noise because
of the utilization of threshold value in the binarization process,
(d) it is computationally inexpensiveness due to reduction in
feature vector dimensionality for p > 0 (Table II), and (e) it
has the flexibility to add more information due to lower feature
vector for p > 0 [35].

However, for a window size larger than 3 x 3, not all pixels in
the given window gets included while computing the Fibonacci-
p patterns. For example, for a 5 x 5 window using k neighbors,
only k pixels get encoded in the pattern information, missing
out information present in the remaining pixels, which could
be important. Moreover, the classical Fibonacci fails to encode
patterns having various shapes except for the circular pattern.
To solve this problem, Shape-dependent Fibonacci -p patterns-
based feature descriptor is proposed.

Shape-dependent Fibonacci -p patterns use the different
shapes given in the structural pattern (Fig. 2(b)) to encrypt the
textural information present in an image. To compute shape-
dependent Fibonacci -p patterns, the image is first divided into
windows of mxn neighborhoods. From each window, informa-
tion is extracted as per the highlighted area present in the struc-
tural pattern’s nine shapes. The arithmetic mean is computed for
each shape information and arranged similarly to the structural
pattern. Fibonacci -p patterns are then computed using equations
(1), (2), and (3). This ensures that most of the information
present in the mxn neighborhood is taken into account. Fig. 2(a)
illustrates the working of classical Fibonacci -p patterns and the
Shape-dependent Fibonacci -p pattern 5 x 5 neighborhood, and
Fig. 2(b) shows the three different structural patterns that are
experimented with within this paper. Only the 8 neighbors that

Structure 2

A7
tn

Structure 3

Schematic representation of working of Fibonacci -p patterns and shape-dependent Fibonacci -p patterns using T = 1, and 8 neighbors.

lie on the circle’s circumference of radius r = 2 get encoded
in the classical Fibonacci case. However, it is unknown if the
point getting encoded is a random noise point or a textural
pattern point. To mitigate this, the Shape-dependent Fibonacci
-p patterns encode the localized area information instead. This
is because the average values of the texture data extracted using
the structural pattern’s shape information is used for encoding.

Since the shape of the disease pattern to be encoded can be
arbitrary, using the points lying circularly may not be enough
to highlight all the edges, curves, and edge ends. Therefore,
the shape-dependent-p patterns will be more beneficial as the
information is extracted using different shapes. Furthermore, in
contrast to classical Fibonacci, the center pixel information also
gets encoded here.

The main advantage of shape-dependent Fibonacci -p patterns
is the encoding of the textural patterns aligned in different direc-
tions and shapes in the image all in one operation. In addition,
the arithmetic means computation performed behaves like mean
filtering, inherently eliminating the noise present in the image.
Another advantage of Shape-dependent Fibonacci -p patterns is
that they can detect different textures and discontinuities such
as spots, flat areas, edges and edge ends, and curves. Thus,
the Shape-dependent Fibonacci patterns concept’s key benefit is
capturing more textural information than the classical Fibonacci
case, making it a more data-adaptive and context-aware image
descriptor. Fig. 3 shows the performance between the classical
Fibonacci operator and the shape-dependent Fibonacci operator
on COVID-19 radiographs.

It can be observed that for a set window size of 5 x 5, thresh-
oldof2,and p = 1, the Shape-dependent Fibonacci operator has
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Fig. 3. Comparison between classical Fibonacci and shape-dependent Fibonacci p patterns, using a set window size of 5 x5, T=2,andp =1,
(a) Original image, (b) Classical Fibonacci image, (c) Shape-dependent Fibonacci p image using structural pattern 2, (d-e) Histograms obtained
from the images in (b) and (c) respectively.
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Fig. 4 lllustration of histograms of normal, viral pneumonia and COVID-19 radiographs from full radiograph kaggle dataset for pattern value p = 0,
window size 5 x 5and T = 1.
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Fig. 5. lllustration of histograms of normal, viral pneumonia and COVID-19 radiographs from lung area-specific kaggle dataset, for pattern value
p =0, window size 5 x 5and T = 0.

less noise encoded compared to the classical case, which reflects 1 and sent to the classifier for training and testing purposes. Fig. 4
on the histogram feature extracted from the Fibonacci images. illustrates the histograms computed from the full normal, viral
The histogram feature obtained from the shape-dependent pneumonia and COVID-19 radiographs present in the Kaggle
Fibonacciimages of all three classes is then scaled between O and ~ dataset. Fig. 5 illustrates the histograms computed from the
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COVID-19

Viral Pneumonia

Non-COVID-19 COVID-19

Fig. 6. lllustration of chest radiographs present in the Kaggle dataset
(top row) and COVIDGR dataset (bottom row).

normal, viral pneumonia and COVID-19 radiographs from the
lung area-specific radiograph Kaggle dataset. The histograms
shown is computed over 20 images and averaged for each class.

[V. COMPUTER SIMULATIONS AND EXPERIMENTAL RESULTS
A. Dataset Description

The first dataset (Kaggle dataset) comprises of 219 COVID-
19, 1345 viral pneumonia, and 1341 normal chest radiographs,
obtained from the publicly available Kaggle website [2]. The
authors collected the COVID-19 chest radiographs in [2] from
different sources [40], [41], and the different articles published
related to coronavirus. Similarly, viral pneumonia and normal
chest radiographs used in the dataset were collected from the
publicly available dataset on the Kaggle website [42]. Each
radiograph in the database is of the size 1024*1024. The second
dataset (COVIDGR dataset) comprises 852 chest radiographs,
with both positive (Covid-19) and negative (Non-Covid-19)
class containing 426 chest radiographs [52]. All the images in
this dataset were acquired from the same X-ray machine, and
the chest radiographs were labeled as COVID-19 only when
both the RT-PCR test and the radiologist confirmed the results
within a day [52]. Image normalization is performed here to
ensure that all the images lie in the same contrast range so
that the classification system’s effectiveness is not affected.
Fig. 6 illustrates the radiographs present in Kaggle Dataset and
COVIDGR dataset.

B. Feature Extraction and Training

The images are read sequentially from the image directories
present in the dataset on which normalization is performed. The
Shape-dependent Fibonacci features are extracted from these
normalized images, and the extracted feature matrix with its
corresponding labels is randomly shuffled and split into train-
ing, testing, and validation sets. Six different machine learning
classifiers, namely SVM [43], KNN [44], Random Forest [45],
AdaBoost [46], Gradient Tree Boosting [47], and Decision Tree
[48], are used for training purposes. For the above-mentioned
classifiers, automated hyper-parameter tuning with appropriate

cross-validations is performed, and the classifier model giving
the best result is automatically selected. For the Kaggle dataset,
the feature matrix with its corresponding labels is randomly
shuffled and split into 70% training and30% testing sets, and
10% of the training data as a validation set. Hyper-parameter
tuning is performed using 10 cross-fold validation. For the
COVIDGR dataset, the feature matrix with its corresponding
labels is randomly shuffled and split into 90% training, and 10%
testing sets 10% of the training data as validation. The Hyper-
parameter tuning is performed using 5 cross-fold validation.

C. Performance Evaluation

The best-selected classifier model’s performance is evaluated
using different parameters, namely, accuracy, sensitivity (recall),
specificity, precision, and f1-score. The following are the formu-
lae for computing the parameters mentioned above [49], [50]:

Accuracy = Tp+ Z/j:?]z) i gz + Fn * 100 @
Recall = % * 100 )
Specificity = Wan %100 ©)
Precision = % * 100 @)
F1 — score — 2 x precision x recall ®)

precision + recall

where, T'p, and T'n are the number of classes correctly classified
as positive and negative classes respectively, and F'p, and F'n are
the number of images falsely classified as positive and negative
classes, respectively.

D. Results

For the Kaggle dataset, four different classification schemes
are implemented in this paper, namely, COVID-19 vs viral
pneumonia, COVID-19 vs normal, normal vs viral pneumonia,
and normal vs viral pneumonia vs COVID-19 chest radiographs.
Since the dataset used here is imbalanced, using accuracy as the
only tool to measure the effectiveness of the feature extractor
would not be enough. Furthermore, how truly the model can
distinguish COVID-19, viral pneumonia, and normal chest ra-
diographs from each other is also a critical factor to be measured.
Thus, using parameters like recall, specificity, precision, and
fl-score is of more significance. To select the optimal pattern (p)
and threshold value(T) for the above-mentioned classification
schemes, their values are varied from 0-3, and values giving
the best precision-recall performance are chosen. Similarly, the
optimal structural pattern is selected for evaluating the precision-
recall performance of all three proposed structural patterns.

Fig. 7. illustrates the precision-recall curves plotted to assess
the performance of different p values and structural patterns
for the three-class classification scheme, i.e., normal vs viral
pneumonia vs COVID-19. Fig. 7(a), (b), and (c), show the
precision-recall curves for different p values for the normal,
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Fig. 7.

Precision-recall curves using set window size of 5 x 5 and T = 1 for the three-class classification scheme on the full radiograph kaggle

dataset. (a), (b), and (c) show the precision-recall performance of different pattern (p) values on normal, viral pneumonia and COVID-19 images
respectively using structural pattern 2, and (d), (e), and (f) show the precision-recall performance of different structural patterns for normal, viral

pneumonia and COVID-19 images respectively using p = 0.

TABLE IlI(A)

COMPARATIVE ANALYSIS OF THE PROPOSED METHOD WITH DL BASED METHODS USED ON THE FULL RADIOGRAPH KAGGLE DATASET

Classification scheme Author Method Accuracy Recall Specificity Precision Fl-score
Chowdhury et al. AlexNet 97.5% 95% 100% 100% 97%

[2] ResNet18 96.7% 93.3% 100% 100% 96.5%

COVID-19 vs DenseNet210 97.5% 95% 100% 100% 97.4%

Normal SqueezeNet 98.3% 96.7% 100% 100% 98.3%
Our work* Classical Fibonacci p 99.78% 98.21% 100% 100% 99.09%

patterns
Shape-dependent 99.78% 100% 99.76% 98.25% 99.12%
Fibonacci -p patterns

Chowdhury et al. AlexNet 95.4% 93% 95.8% 100% 95.5%

Normal vs viral [2] ResNet18 95% 95% 96% 100% 97.4%

pneumonia vs DenseNet210 96.7% 96% 96% 98.3% 97.1%

COVID-19 SqueezeNet 98.3% 96.7% 99% 98% 98.3%

Bassi et al. [27] CheXNet 97.8% 97.8% - 100% 97.8%

Our work* Classical Fibonacci -p 98.74% 97.73% 99.27% 98.17% 97.95%

patterns
Shape-dependent 98.88% 98.72% 99.35% 98.29% 98.50%
Fibonacci -p patterns

viral pneumonia, and COVID-19 cases, respectively. It can be
observed that p = 0 gives the best performance for all three
cases. To generate these curves, the window size and threshold
value was set to 5 x 5 and 1, and the structural pattern 2 is used.
Likewise, Fig. 7(d), (e), and (f), show the precision-recall curves
of different structural patterns on normal, viral pneumonia, and
COVID-19 cases, respectively.

Similar performance is observed for all three structural pat-
terns for normal and viral pneumonia images, but structural
pattern 2 yields better performance for COVID-19 images. To
generate these curves, the window size and threshold value
were set to 5 x 5 and 1, and p = 0 was used. The optimal
parameters for the other classification schemes were obtained
similarly. Computer simulations show that for the classification

schemes, COVID-19 vs viral pneumonia and normal vs viral
pneumonia, p = 0, T = 2, and structure pattern 2 gives the best
results, whereas, for the classification scheme, COVID-19 vs
normal, both p =2, T =1and p=1, T = 2, and structural
pattern 2 yields the best outcome. Table III(A) illustrates the
performance of the proposed feature extractor and the DL based
methods utilized for the Kaggle dataset for the classification
schemes COVID-19 vs normal and normal vs viral pneumonia
vs COVID-19.

It can be observed that the proposed method achieves better
performance by nearly 5-7% for detecting COVID-19 images
(recall) for the COVID-19 vs regular classification scheme.
A high sensitivity, thereby correctly identifying most of the
COVID-19 images is preferable in the current pandemic climate.
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TABLE I1I(B)
PERFORMANCE ANALYSIS OF THE PROPOSED METHOD ON THE LUNG AREA-SPECIFIC RADIOGRAPH KAGGLE DATASET FOR NORMAL VS COVID-19
CLASSIFICATION

Classification Author Method Accuracy Recall Specificity Precision Fl-score
scheme
Normal vs Our work* Classical Fibonacci p 99.78% 98.08% 100% 100% 99.03%
COVID-19 patterns
Shape-dependent 99.78% 100% 99.75% 98.27% 99.13%
Fibonacci -p patterns
Normal vs viral Our work* Classical Fibonacci -p 97.79% 96.90% 98.52% 97.78% 97.32%
pneumonia vs patterns
COVID-19 Shape-dependent 98.03% 96.76% 98.86% 97.20% 96.69%
Fibonacci -p patterns
TABLE IV

PERFORMANCE ANALYSIS OF COVID VS VIRAL PNEUMONIA AND VIRAL PNEUMONIA VS NORMAL CLASSIFICATION SCHEMES ON THE FULL RADIOGRAPH AND
LUNG AREA-SPECIFIC RADIOGRAPH KAGGLE DATASET

Full radiograph Kaggle dataset Lung area-specific radiograph Kaggle Dataset
COVID-19 vs Viral Normal vs Viral COVID-19 vs Viral Normal vs Viral
Pneumonia Pneumonia Pneumonia Pneumonia

Accuracy 99.14% 98.88% 99.13% 98.01%
Recall 98.44% 98.50% 98.28% 98.52%
Specificity 99.26% 99.26% 99.26% 97.50%
Precision 95.45% 98.53% 95.00% 97.56%
F1-score 96.92% 98.90% 96.61% 98.04%

Similarly, for the three-class classification scheme, the proposed
method shows improved performance of 1-5% and 1-4% in
recall and specificity, respectively, as compared to methods
used by Chowdhury et al. [2] and Bassi ef al. [27]. Likewise,
compared to the classical Fibonacci -p pattern, the proposed
Shape-dependent Fibonacci -p pattern yields better recall results
for both the classification schemes. This is because the conven-
tional Fibonacci -p patterns fail to incorporate the alignment
and shape of the textural patterns that are required for more
accurately distinguishing the three classes from each other.

Table IV shows the performance of the proposed method
for the classification schemes COVID-19 vs viral pneumonia,
and normal vs viral pneumonia, from which high recall and
specificity values can be noted. Thus, 98.44% of the time
COVID-19 images will be correctly classified concerning viral
pneumonia images, and 98.50% of the time, viral pneumonia
images will get correctly identified from the normal images.
Similarly, 99.26% of the time, viral pneumonia images will get
correctly distinguished from COVID-19 images. Confusion ma-
trices play a critical role in understanding how the classification
models work on the test data. Different evaluation parameters
are computed using the information obtained from it. Fig. 10
shows the normalized confusion matrices for the aforementioned
classification schemes for the full radiograph Kaggle dataset,
which can validate the above tables’ results.

E. Results Obtained for the Lung Area-Specific
Radiograph Kaggle Dataset

Cohen et al. in [53] noticed that the testing protocols
may be learning the dataset-specific information rather than
disease-specific information on generalizing chest radiographs
prediction across multiple datasets. Currently, the majority of
COVID-19 detection and recognition papers have combined

the COVID-19 images from the dataset in [54] with the
existing non-COVID-19 datasets. In [51], the authors proposed
a protocol to test whether the COVID-19 prediction model
learn dataset specific or disease-specific information when
used across multiple datasets. Herein, the lung information
is removed by blackening the center of the chest radiographs
obtained from different datasets and AlexNet is trained to see if
it can identify the source of the dataset. It was observed that if
both the training and testing set contained images from the same
dataset, AlexNet was able to distinguish them very accurately.
The solution recommended for this problem was to find dataset
datasets with similar features or find a pre-processing method
to delete dataset-specific information. Thus, in this paper, to
delete the dataset-specific information, the chest radiographs
from the Kaggle dataset and COVIDGR dataset are hand
cropped to retain the lung information i.e., the disease-specific
information. Hence, generating the lung area-specific
radiograph Kaggle and COVIDGR dataset. The proposed
feature descriptor is tested on them, and its performance is
evaluated. Fig. 9 illustrates the sample images present in lung
area-specific Kaggle and COVIDGR dataset. This dataset
is available on Kaggle website (www.kaggle.com/dataset/
ab84db1d9bab332bb7d6e2bd89a287c0b712144423f9f773e192
4c62255099d4)?.

Fig. 8 illustrates the precision-recall curves obtained for
the three-class classification scheme for the lung area-specific
radiograph Kaggle dataset. Fig. 8(a), (b), and (c) show
the precision-recall curves for different p-values using a
fixed structural pattern and Fig. 8(d), (e), and (f), show the
precision-recall curves for different structural patterns using a
fixed p-value; for the normal, viral pneumonia, and COVID-19
classes, respectively. To generate these curves, a fixed threshold
value of 0 and a window size 5 x 5 is used. It can be observed



1860 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 25, NO. 6, JUNE 2021
10 Lo = 10
1
09 09 09
S0s §0s § 0s
& &
071 — Precision-recall for p0 & 071 — precision-recall for p0 07 — precision-recall for p0
Precision-recall for p1 ~ Precision-recall for p1 — Precision-recall for p1
06 1 — Pprecision-recall for p2 0.6 1 — precision-recall for p2 06 ' — Precision-recall for p2
= Precision-recall for p3 = Precision-recall for p3 = Precision-recall for p3
05 T T T T 1 05 - - ' 05 T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1
Recall Recall Recall
(a) (b) (c)
R ‘__‘__ﬂ o — — 10
09 09 09
§ § §
G 08 G 08 & 08
8 9 o
& 07 & o7 Sor7
—— Precision-recall for structural pattem pl — Precision-recall for structural pattem pl —— Precision-recall for structural pattern pl
0.6 1= precision-recall for structural pattern p2 06 1 — precision-recall for structural pattem p2 0.6 1 = Precision-recall for structural pattem p2
~— Precision-recall for structural pattemn p3 ~— Precision-recall for structural pattem p3 = Precision-recall for structural pattem p3
05 T T T T 05 T T T T 05 T T T T
0.0 02 04 06 08 10 00 02 04 06 08 10 0.0 02 04 06 08 1
Recall Recall Recall
(d) (e) ®
Fig. 8. Precision-recall curves using set window size of 5 x5 and T = 0 for the three-class classification scheme on the lung area-specific

radiograph Kaggle dataset. (a), (b), and (c) show the precision-recall performance of different pattern (p) values on normal, viral pneumonia and
COVID-19 images respectively using structural pattern 3, and (d), (e), and (f) show the precision-recall performance of different structural patterns
for normal, viral pneumonia and COVID-19 images respectively using p = 0.

Original radiographs Radiographs after Radiographs
removing lung retaining lung
information information

in the overall recall performance of the three-class classification
scheme while having similar specificity performance as
compared to the full radiograph Kaggle dataset, which can be

Fig. 9.

lllustration of full radiographs (left), radiographs after cropping
lung information (middle), and radiographs having just the lung informa-
tion (right) for the Kaggle dataset (top) and COVIDGR dataset (bottom).

that for a three-class classification scheme, structural pattern 1
gives a better recall performance for the COVID-19 radiographs
but has a low recall for viral pneumonia and normal class.
However, structural pattern 3 yields better performance for all
three classes. On comparing the precision-recall curves obtained
for the lung area-specific radiograph and full radiograph Kaggle
dataset, a similar performance is observed for normal and viral
pneumonia class, with a slight decrement in COVID-19 class
detection performance. This results in a minor decrement of 2%

seen from Table III (A) and Table III(B).

However, for the two-class classification schemes, namely
COVID-19 vs normal and COVID-19 vs viral pneumonia, com-
parable recall-specificity performance for COVID-19 detection
can be observed for both lung area-specific radiograph and
full radiograph Kaggle datasets, which can be seen from Ta-
ble IIT and IV. Whereas, for the normal vs. viral pneumonia
classification scheme, a decrement of around 2% in speci-
ficity can be observed, while having similar recall performance.
Computer simulations show that for the classification schemes,
COVID-19 vs. viral pneumonia and normal vs. COVID-19,
p = 0, structure pattern 1 and T = 3 gives the best results,
whereas, for the classification scheme, normal vs. viral pneu-
monia, p =0, T =0, and structural pattern 2 yield the best
outcome.

Fig. 11 shows the normalized confusion matrices for the
aforementioned classification schemes for the lung area-specific
radiograph Kaggle dataset, which can validate the above table’s
results. From the confusion matrices, nearly 100% detection
between normal and COVID-19 class can be observed using
disease-specific information from the radiographs in the three-
class classification scheme.

F. Performance Evaluation on COVIDGR Dataset

For the COVIDGR dataset, two-class classification scheme
namely, COVID-19 vs. non-COVID-19 is proposed in this paper.
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The optimal parameter selection process for this dataset follows
the same procedure as described for the Kaggle dataset. The
proposed feature extractor’s performance is evaluated using the
average and standard deviation values for each of the men-
tioned parameters over the 5 different executions performed on
the 5-cross validation. Table V illustrates the proposed feature
descriptor’s performance and the authors’ DL methods in the
article [53]. It can be observed that structural pattern 3 gives

Normalized confusion matrices for the proposed four classification schemes on lung area-specifc radiograph Kaggle dataset.

the best recall performance, but it has low specificity perfor-
mance. However, structural pattern 2 yields a better-balanced
recall-specificity performance. Moreover, it can be observed
that the structural pattern 2 yields better recall and specificity
performance than most DL methods, namely COVIDNet-CXR,
COVID-CAPS, ResNet50 without segmentation, and FuCiT-

Net, while achieving comparable results with respect to the
COVID-SDNet.
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TABLE V
COMPARATIVE ANALYSIS OF THE PROPOSED METHOD WITH DL BASED METHODS USED ON THE COVDIGR DATASET.
Non-COVID-19 COVID-19
Author Methods Accuracy Fl-score Precision Specificity F1-score Precision Recall
Tabik et. COVDINet- 67.82+6.11 73.31+£3.79 3.36+6.15 88.82+0.90 56.94£15.05 81.65+6.02 46.82+17.59
al [52] CXR
COVID-CAPS 65.34+3.26 65.15+5.02 65.62+3.98 65.47+£9.93 64.87+4.92 66.07+4.49 64.93+9.71
ResNet50 74.2543.61 75.40+4.91 71.91+£3.12 79.87+£8.91 72.69+3.45 78.75+6.31 68.63+6.08
without
segmentation
ResNet50 with 74.60+£2.93 75.46+2.97 73.36+4.66 78.41£7.09 73.40+4.01 77.17£4.79 70.80+8.26
segmentation
FuCiTNet 74.35+£3.34 75.8+£3.18 72.00+4.48 80.79+6.98 72.35+4.76 78.48+4.99 67.90+8.58
COVID-SDNet 76.18+2.70 76.94+2 .82 74.74+3.89 79.76+6.19 75.71£3.35 78.67+4.70 72.59+6.77
Our work* Structural 74.41+4.11 75.77£3.15 74.01+6.01 77.93+£3.38 73.73+£2.48 76.05+2.35 71.86+6.14
patternl
Structural 75.11£1.76 75.86+2.11 74.75+3.61 77.72+8.06 74.03£3.15 76.41+7.38 72.65+6.83
pattern2
Structural 74.88+2.26 74.28+4.74 75.68+7.82 73.30+5.06 74.34+4.28 73.47+3.74 75.69+8.17
pattern3
V. CONCLUSION REFERENCES

This paper proposes a machine learning-based approach using
anovel textural feature descriptor, Shape-dependent Fibonacci-p
patterns for effectively distinguishing COVID-19, viral pneu-
monia, and normal condition chest radiographs from each other.
This descriptor’s key advantage is that it can encrypt textural pat-
terns having different shapes, orientations, and discontinuities in
one operation while inherently removing noise from the image.
Computer simulations for the full radiograph Kaggle dataset
show that the proposed method has better recall performance
than the DL methods and the classical Fibonacci descriptor.
Nearly 100% and 98.44% COVID-19 detection accuracy are
achieved for the classification schemes COVID-19 vs normal
and COVID-19 vs viral pneumonia, respectively. For the lung
area-specific radiograph Kaggle dataset, similar performance
was observed for COVID-19 detection for the classification
schemes COVID-19 vs normal and COVID-19 viral pneumo-
nia. Likewise, for the COVIDGR dataset, the proposed feature
descriptor yielded better performance compared to most of the
DL methods while achieving comparable performance with
respect to method COVID-SDnet. Since the proposed approach
is a machine learning model, it does not require specialized
hardware, has less training time, obtains stabilized model with
good detection performance with small training datasets, is
lightweight, and can be deployed quickly. Future efforts will
be focused on: (a) constructing a 3D feature descriptor that can
help analyze 3D medical images, such as 3D CT images, by
extracting the volume information and depth of spread of the
disease, (b) detecting COVID-19 symptoms using multi-view
based 3D shapes where the input data are taken from different
angles, (c) testing surfaces for coronavirus detection, and (d)
studying the long-term effects of COVID-19 from the patients
recovered from the disease.
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