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REVIEW
MRI Measurements of Iron Load in Transfusion-Dependent Patients:

Implementation, Challenges, and Pitfalls

Charles T. Quinn, MD, MS1∗ and Tim G. St Pierre, PhD2

Magnetic resonance imaging (MRI) has played a key role in stud-
ies of iron overload in transfusion-dependent patients, providing in-
sights into the relations among liver and cardiac iron loading, iron
chelator dose, and morbidity. Currently, there is rapid uptake of these
methods into routine clinical practice as part of the management
strategy for iron overload in regularly transfused patients. Given the

manifold methods of data acquisition and analysis, there are several
potential pitfalls that may result in inappropriate decision making.
Herein, we review the challenges of establishing suitable MRI tech-
niques for tissue iron measurement in regularly transfused patients.
Pediatr Blood Cancer 2016;63:773–780. C© 2015 The Authors. Pedi-
atric Blood & Cancer, published by Wiley Periodicals, Inc.
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INTRODUCTION

Under normal conditions, dietary iron is absorbed in small
quantities (1–2 mg/day) from the gut and circulates in the
blood bound to transferrin prior to intracellular use and stor-
age.[1,2] Many patients with hereditary forms of anemia, such
as thalassemia and sickle cell disease (SCD), require lifelong
blood transfusions, greatly increasing their iron intake. Each
unit of packed red blood cells (PRBCs) contains 200–250 mg
of iron, yet the body has no mechanism for excreting large
excesses of iron.[1] Iron loss is fixed at 1–2 mg/day from the
sloughing of gastrointestinal mucosa and blood loss. There-
fore, patients receiving chronic transfusions are at risk for iron
overload.

Upon saturation of transferrin by excess iron, toxic non-
transferrin bound iron (NTBI)—particularly, the redox active
fraction called labile plasma iron (LPI)—enters organs, where it
converts hydrogen peroxide to free radical ions that damage cell
membranes, proteins, and DNA.[1–4] The heart, liver, and en-
docrine organs are particularly susceptible to the toxic effects of
iron overload (Fig. 1).[1,5] The rate of iron loading and unload-
ing differs by organ (generally, liver > pancreas > heart).[6,7]
Indeed, the liver loads iron most quickly in poorly chelated pa-
tients. However, primary iron loading can occur concurrently in
all target organs; that is, hepatic iron overload is not a prereq-
uisite for iron loading in other organs. When transferrin is fully
saturated and LPI is increased, there is no particular liver iron
concentration (LIC) below which iron loading will not occur in
other organs.[6]

Serum ferritin (SF) levels andLICdetermined by biopsy have
been the traditional methods used to assess total body iron load
and risk for organ damage.[8,9] However, SF may not give an
accurate representation of a patient’s risk and cannot substitute
for more direct determinations of iron load in susceptible or-
gans. Liver biopsy is invasive and susceptible to sampling errors.
Magnetic techniques to measure iron, such as biomagnetic liver
susceptometry and magnetic resonance imaging (MRI), offer
advantages over traditional methods. In addition to providing
noninvasive determinations of both liver and heart iron load,
magnetic techniques aid clinical decision making by identifying
patients at risk of iron overload and monitoring effectiveness of
chelation therapy.

We provide an overview of imaging techniques used to de-
termine tissue iron concentration, pitfalls of various techniques,
and advice for optimizing their clinical utility. This review fo-
cuses on the application of these techniques to clinical manage-
ment of patients with common hereditary anemias, specifically
thalassemia and SCD.
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Fig. 1. Schematic of iron overload and damage to organs. During iron overload, NTBI is readily taken up by organs, where it causes
damage and subsequent dysfunction.[3] The heart, liver, and endocrine organs are particularly susceptible to damage from iron overload.
NTBI, nontransferrin bound iron. Copyright C© 2009, Informa Healthcare. Adapted with permission of Informa Healthcare.

COMMON HEREDITARY ANEMIAS AND PATTERNS
OF IRON OVERLOAD

Thalassemia Major

Patients with thalassemia major (TM) require transfusions
beginning early in life to alleviate symptomatic anemia and
suppress extramedullary hematopoiesis. Benefits of chelation
begin to outweigh risks of iron overload after approximately 10
transfusions.[9] Since the liver is the major site of iron storage,
patients requiring chronic transfusions are at risk for liver iron
overload.[10] Excess iron is stored initially by Kupffer cells, fol-
lowed by hepatic parenchymal cells with severe iron overload,
resulting in injury that progresses from fibrosis to cirrhosis if
untreated.[9,10].

Approximately 36% of patients with TM aged 15–18
years have detectable cardiac iron,[11] but many are asymp-
tomatic.[12] Abnormalities in left ventricular function and left-
sided heart failure are the most common cardiac complications
in patients who develop cardiac iron overload.[10] Right-sided
heart failure occurs less frequently and may present in older pa-
tients with severe cardiac iron overload.[10] Heart failure and
dysrhythmias from cardiac iron overload are the leading causes
of death in patients with β-TM.[13] Cardiac iron loading may
be delayed relative to liver iron loading and may not be evident
until the second decade of life.[12]

Thalassemia Intermedia

Due to less severe anemia, patients with thalassemia inter-
media (TI) require fewer transfusions than patients with TM.[3]
However, ineffective erythropoiesis leads to increased intestinal
absorption of iron and increased release of recycled iron from
the reticuloendothelial system, which contributes to iron over-
load.[14] In contrast to TM, TI results in preferential portal and

hepatocyte iron storage, causing patients with TI to have consid-
erable liver iron overload.[14] Cardiac iron loading and symp-
toms appear later in these patients, and right-sided heart failure
is more common.[3]

Sickle Cell Disease

Patients with SCD, on average, begin transfusions later in life
and are transfused less frequently than those with other con-
genital anemias.[12,15] Young children receiving regular trans-
fusions to prevent stroke are the exception, and develop iron
overload in a similar manner to patients with TM.[12] Patients
with SCDmay also develop fibrosis and eventual cirrhosis due to
liver iron loading.[15] Although cardiac dysfunction is common
in this population, it is mostly a result of SCD pathophysiol-
ogy, and cardiac iron deposition is seen only in the most heavily
transfused patients.[12] One large study demonstrated that car-
diac iron overload occurred in 2–3% of chronically transfused
SCD, particularly those patients who are very poorly adherent
to chelation therapy.[7]

Other Hereditary Anemias

Transfusion-dependent patients with Diamond–Blackfan
anemia (DBA), congenital dyserythropoietic anemia, pyruvate
kinase deficiency, and other rare conditions may also develop
iron overload. Less is known about iron loading in these condi-
tions, and guidelines for management are usually extrapolated
from TM and SCD. However, it is apparent that patients with
DBA, comparedwith patients with other transfusion-dependent
anemias, have higher levels of NTBI and appear to accumulate
iron more quickly in the pancreas and heart.[16,17]

Pediatr Blood Cancer DOI 10.1002/pbc
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MONITORING IRON OVERLOAD

Serum Ferritin

SF measurements are used worldwide due to their ease of
implementation, availability, and low cost. Serial measurements
are required because SF is an indirect measure of iron load that
can be influenced by several factors, such as inflammation, vi-
tamin C deficiency, oxidative stress, hepatic dysfunction, ma-
lignancy, and increased cell death.[5,18,19] Serial SF measure-
ments>1,000μg/l indicate iron overload in patients with TM,[3]
but SF levels may not correlate closely with liver or cardiac iron
load, especially when advanced iron loading has begun.[20,21]
In some patients, cardiac iron accumulates despite controlled SF
levels.[20,21]

Disease characteristics can also affect SF levels.[22] SF un-
derestimates iron load in TI, where hepcidin suppression leads
to depletion of macrophage iron and decreased ferritin produc-
tion.[3] SF may also underestimate iron stores in chronically
transfused patients with DBA. In SCD, SF, which is an acute
phase reactant, may be increased for several weeks following
pain crises and acute chest syndrome.

LIC Determination by Liver Biopsy

Parenchymal cells of the liver and reticuloendothelial
macrophages are the default transferrin-mediated storage sites
for dietary and recycled iron.[1] Excess iron accumulates in these
liver cells, resulting in injury.[9,10] LIC >7 mg/g dry weight
(dw) is an indication for iron chelation therapy in transfusional
iron overload.[9,23] More recently, LIC >5 mg/g dw has been
proposed as an indication for iron chelation therapy with de-
ferasirox in nontransfusion-dependent thalassemia.[24]

LIC determination by liver biopsy has several limitations.
Biopsy is invasive and carries a risk for complications,[25] and
liver specimens are subject to sampling variability due to spa-
tial and samplemass heterogeneity.[26–29]However, liver biopsy
does allow for histologic assessment of fibrosis, cirrhosis, and
necroinflammation. Given the risks associated with this inva-
sive procedure, liver biopsy is not an ideal technique for frequent
monitoring of iron loading and chelation therapy effectiveness.

Magnetic Techniques for Iron Determination

Magnetic techniques offer advantages over traditional meth-
ods of determining iron load as they are noninvasive, and there-
fore more acceptable to patients. Furthermore, these methods
measure iron load within the target organ rather than relying on
a surrogate indicator.
Biomagnetic liver susceptometry. Biomagnetic liver suscep-

tometers were the first instruments to enable noninvasive
assessment of LIC.[30] Original instruments incorporated a su-
perconducting quantum interference device (SQUID). A key as-
sumption underlying the SQUID technique is that the param-
agnetic response of iron in ferritin and hemosiderin is directly
proportional to the number of iron atoms present. However, the
paramagnetic proportionality constant varies among different
forms of hemosiderin found in different patient groups.[31] Nev-
ertheless, LIC determinations from SQUID have a high degree
of correlation with LIC determined from biopsies.[32] The ma-
jor limitation of this technique for routine use is that few of these

instruments exist, and they are primarily reserved for clinical re-
search due to cost and technical demands of maintaining a su-
perconducting device.
Magnetic resonance imaging. MRI techniques for determin-

ing iron concentration are based on measuring the effect of lo-
cal distortion of magnetic fields caused by excess iron in tissues
on hydrogen proton behavior.[33,34] Tissue iron concentration
is measured indirectly by its influence on the resonance of pro-
tons in water and fat.[33,34] The most commonly used MRI
approaches for assessing tissue iron concentration are based on
measurements of proton transverse magnetization decay rates,
R2 or R2*.[35] Shorter signal intensity half-lives (i.e., greater
rates of signal decay) indicate greater iron concentration.[33,34]

Two general classes of MRI approaches are used for measur-
ing tissue iron concentration: relaxometry and signal intensity
ratio (SIR) methods.[34,36] Relaxometry methods measure the
rate of signal intensity loss.[33,34] Images of target tissue are
obtained at various time points after proton excitation, and an
algorithm is applied to the image data to determine the signal
decay rate.[33,34] The signal decay rate is known as R2 or R2*,
depending on the method of data acquisition (radiofrequency
pulse refocusing method for R2; magnetic field gradient pulse
for R2*). As such, the two are different physical quantities. The
characteristic signal decay time T2 or T2* can be derived from
the relaxation rate (T2 = 1,000/R2; T2* = 1,000/R2*). For LIC,
several calibrations have been derived from comparisons be-
tween MRI measurements and chemical assays of liver biopsies
in different patient cohorts.[20,37–41] Until recently, no calibra-
tion was available for heart measurements, so T2* or R2* val-
ues were reported without conversion to an iron concentration.
Recently, an ex vivo study was published regarding the relation
between cardiac iron concentration and T2* and R2*.[42] How-
ever, the clinical community has already adapted to interpreting
cardiac T2* values rather than requiring a calibration to convert
to iron concentration.

SIR is a relative measure comparing signal intensity of target
tissue to that of tissue that does not accumulate iron (typically
paraspinalmuscle).[34,43] As such, it is easier to implement than
relaxometry methods; however, calibration is still required and
subjective decisions are required during data analysis.

It is important to note that the values of MRI parameters cal-
culated from the images depend not only on tissue iron concen-
tration, but also on the details of data acquisition and analysis
methods (Fig. 2).[44,45]

Challenges and Pitfalls in the Widespread Adoption of
MRI Techniques

Appropriate calibration and validation is required for univer-
sal application of MRI techniques to measure tissue iron con-
centrations.[38,40,46] We are now seeing a transition from the
use of these MRI techniques by specialized research centers to
more general use by radiology centers in routine clinical prac-
tice. This transition presents challenges—particularly, reliable
transfer of methodology from experts to routine users. Major
pitfalls include the use of incorrect or drifting calibrations and
flawed data analysis methods. Currently, there is a general but
unfounded view that different MRI methods are easily inter-
changeable, transferable, and validated. When assessing accu-
racy and validity of allMRI tissue ironmeasurement techniques,
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Fig. 2. Four key components for an MRI-based liver iron concentration measurement method. It is essential that data acquisition, data
analysis, and validation procedures match exactly to those used in the calibration study. Even small deviations from protocols will cause
calibration shifts and hence inaccurate measurements. MRI, magnetic resonance imaging; SIR, signal intensity ratio.

the criteria outlined in Table I should be considered.[47,48] It is
necessary for hematologists to be familiar with these considera-
tions to know whether the MRI tissue iron measurements that
are performed at their institutions are accurate and valid, and,
if not, to enable hematologists to enter into meaningful discus-
sions with their radiologist colleagues.

Using appropriate reference standards to generate calibra-
tion curves is essential. If a single scanner is used to generate
a calibration curve, the bias for that scanner will in principle be
zero because that scanner has been used to define the relation be-
tween the MRI parameter and tissue iron concentration. How-
ever, if the calibration curve is used to interpret results from an-
other scanner or the same scanner but after a significant period
of time has elapsed, there may be a measureable bias, and hence
loss of accuracy. Due to the ever-present risk of calibration drift,
the US Food and Drug Administration requires that measure-
ment devices be calibrated according to defined and controlled
general manufacturing practices (Table I).[48] In the context of
tissue ironmeasurement byMRI, themeasurement device refers
to both data acquisition and analysis methods.

A change in operating technician or data analyst also has the
potential to alter output parameters, as do software and hard-
ware upgrades. The most serious errors are caused when using
commonly available scanner vendor software packages for cal-
culating T2 or T2* maps. Most of these mapping algorithms use
linear fitting to log-transformed signal intensity data because it
is computationally fast; however, these algorithms are not de-
signed to analyze iron-loaded tissue where signal-to-noise ratios
are usually low. Even when using nonlinear fitting to raw data,
significant deviations in measured relaxation parameters result
if the exact data analysis method used in the calibration study is
not followed.[44]

Another potential pitfall is properly judging the relative ac-
curacy of MRI compared with other standard measurement
techniques. The currently accepted reference standard is the

TABLE I. Quality Control Issues and GMP Calibration Require-
ments of Measuring Equipment for MRI Tissue Iron Measurement
Techniques

Critical quality control questions to assess the accuracy and
validity of MRI iron measurement techniques

� How many reference standard measurements were made to
generate the calibration curve?

� Were reference standard measurements spread evenly across the
entire clinical range of relevance?

� How many scanners were tested? (the more the better)
� How many different makes and models of scanner were tested?

(the more the better)
� If more than one scanner was tested, was bias between different

scanners measured?
� Was repeatability measured? (repeat measurements of the same

patient within a short period)
� Was reproducibility measured? Different patient group,

different scanners, different makes and models of scanner?
� Does the method give provision for routine calibration and

validation against a standard?
� Are the accuracy and precision limits specified?

GMP calibration requirements for measuring equipment[43]

� Routine calibration or validation according to written
procedures

� Documentation of the calibration/validation of each device
� Specification of accuracy and precision limits
� Training of calibration personnel
� Use of standards traceable to the NIST, other recognizable

standards, or when necessary, in-house standards

GMP, good manufacturing practice; MRI, magnetic resonance
imaging; NIST, National Institute of Standards and Technology.
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TABLE II. Thresholds for Parameters Used to Assess Iron Overload
in Patients With Thalassemia [3]

Iron overloaded state

Parameter Normal Mild Moderate Severe

Serum ferritin (ng/ml) <300 >1,000–<2,500 >2,500
Transferrin saturation (%) 20–50 >50
LPI (μM) 0–0.4 >0.4
LIC (mg Fe/g dw) <1.8 3–7 >7 >15
Cardiac MRI T2* (msec) >20 14–20 8–14 <8
Cardiac R2* (Hz) <50 50–70 70–125 >125

dw, dry weight; LIC, liver iron concentration; LPI, labile plasma
iron;MRI, magnetic resonance imaging. Taher et al.[3] Copyright C©
2009, Informa Healthcare. Reproduced with permission of Informa
Healthcare.

measurement of LIC by chemical assay of biopsy specimens.
However, LIC measurements from needle biopsy specimens
have large associated sampling errors;[26–29] several measure-
ments are required to enable reliable comparison with the MRI
method being evaluated. Thus, accuracy of the technique is es-
sentially a measure of the average bias (or systematic error) of
the MRI method of measurement relative to the averaged mea-
surements by biopsy. A recent study judged relative MRI accu-
racy by performing R2, R2* analysis and biopsy simulations (in
which variability and error were factored in), and determined
that R2* was most precise in measuring LIC at 12- and 24-week
intervals, but there was no advantage to R2* at �48-week inter-
vals.[49]

CLINICAL APPLICATION OF MRI ASSESSMENTS

Hematologists have long made largely subjective decisions
about chelation therapy based on the general degree of iron
loading from intermittent measures of LIC and change in SF
levels over time. The clinical utility of regular MRI measure-
ments is not simply to determine the degree of iron loading, but
to use this information to make informed, data-driven decisions
about initiation and adjustment of chelation therapy. Indeed, in-
creasing use of MRI to guide chelation therapy in patients with
thalassemia has contributed to reduced iron burden.[50,51]

Monitoring Body Iron Levels and Organ-Specific Iron
Overload

MRI measurement of LIC. Patients who have received >10
units of PRBCs (or 100 ml/kg PRBCs) may have accumulated
sufficient liver iron to warrant an initial MRI scan to help de-
termine the need for chelation therapy.[52] For patients with el-
evated or increasing SF levels and those beginning or changing
iron chelation regimens, MRI LIC should be determined to es-
tablish a baseline.[53] Patients with LIC up to 1.8 mg/g dw are in
the normal range (Table II).[3] Higher LICs, especially>15mg/g
dw, are associated with severe adverse effects, including liver fi-
brosis and dysfunction.[3,54] Recently, it has been shown that
LIC �7 and �6 mg Fe/g dw are the best thresholds for discrimi-
nating the presence of vascular and endocrine/bonemorbidities,
respectively, in β-TI.[14]
MRI measurement of cardiac iron. Cardiac iron accumula-

tion is rare in patients who have received <70 units PRBCs.[55]

However, cardiac iron load by MRI can be measured during
the same examination as LIC using a different data acquisition
method, and may identify those patients at high risk of cardiac
dysfunction before they experience a reduction in left ventric-
ular ejection fraction or dysrhythmias.[3] Patients with cardiac
T2* values >20 msec have normal cardiac iron levels (Table II).
Decreasing cardiac T2* values correspond with increasing levels
of cardiac iron and increasing risk of cardiac dysfunction.[56]
Patients with absent or ineffective erythropoiesis, such as DBA
and TM, and those with suboptimal chelation therapy may have
clinically significant cardiac (and other organ) iron accumula-
tion at a very young age. Therefore, it is reasonable to measure
cardiac T2* as early as feasible and not necessarily delay cardiac
imaging until the second decade of life.[16]
Discordance between liver and cardiac iron. Several studies

have shown that the liver and heart have different iron accumu-
lation and removal rates; LIC does not correlate strongly with
cardiac iron stores in cross-sectional studies.[20,57–59] In partic-
ular, delayed loading and slower unloading have been observed
in the heart compared with the liver.[6] Moreover, the heart can
load iron primarily, even in the absence of significant hepatic
iron overload and despite maintenance of stable total body iron
stores (TBIS) balance by chelation.[6] Consequently, it is neces-
sary to measure both liver and cardiac iron levels in appropriate
patient populations.
MRI measurement of iron in other organs and tissues. Clin-

ical utility of MRI measurements in other organs and tissues,
such as the pancreas and pituitary gland, is under study. Pan-
creatic R2* measurements have not been standardized and can
be confounded by fat. However, in patients with TM, SCD,
or DBA, the pancreas accumulates iron more quickly than the
heart.[6,7] As such, assessments of pancreatic iron deposition
via R2* can potentially serve as an early predictor of cardiac
iron overload.

Monitoring Effectiveness of Chelation Therapy

Currently, there are three iron chelators approved for use in
the United States, Canada, and Europe. Deferoxamine is ap-
proved for frontline use and is administered by slow subcuta-
neous (or intravenous) infusion because of its short half-life.[60]
Deferasirox is also approved for frontline use and is adminis-
tered once daily as an oral suspension or as a new oral tablet
formulation available in some countries.[61] Deferiprone is ap-
proved for second-line chelation therapy and is an oral agent
administered three times daily.[62] The use of magnetic tech-
niques tomonitor liver and cardiac iron has been reported for all
three chelators in several large clinical trials.[63–68] In general,
all available chelators reduce liver and cardiac iron load, with
combination therapy producing greater short-term gains. How-
ever, many of these studies included small numbers of patients,
so care should be takenwhen extrapolating results to a larger pa-
tient population. The longer term data available for deferasirox
appear to show that cardiac iron removal is slower relative to
liver iron removal.[63–65]

Response to chelation therapy depends on the rate of trans-
fusional iron loading.[68] Thus, several measurements and cal-
culations, at least done annually, are necessary to allow the
clinician to monitor the effectiveness of chelation therapy quan-
titatively and make data-driven adjustments to the chelation

Pediatr Blood Cancer DOI 10.1002/pbc
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TABLE III. Necessary Yearly Measurements and Calculations to
Inform Chelation Therapy

Data and measurements

Record the volume of all transfused PRBCs (or net volume of
PRBCs if phlebotomy or erythrocytapheresis is used)

Measure LIC yearly using MRI in all patients
Measure cardiac T2* yearly in specific populations (disorders with

absent or ineffective erythropoiesis, such as TM or DBA, and
patients with poor control of TBIS regardless of underlying
disease)

Main calculations

Total body iron stores (TBIS)
Yearly change in TBIS
Transfusional iron intake rate
Iron excretion rate
Fraction of transfused iron that is excreted

DBA, Diamond–Blackfan anemia; LIC, liver iron concentration;
MRI, magnetic resonance imaging; PRBCs, packed red blood cells;
TM, thalassemia major.

regimen to achieve an appropriate net iron balance (Table III).
All of this information needs to be considered in the context of
trends in SF, liver function tests, growth and development (for
pediatric patients), and endocrine studies.[69] Prior to the avail-
ability of MRI techniques, determining the degree of transfu-
sional iron overload was invasive and performed infrequently.
The following case study is an example of how the clinical
management of a patient with transfusional iron overload has
been facilitated by the use of MRI assessments.[68]

Case Study: A patient with a consistent transfusional iron in-
take rate (mean 0.36 mg Fe/kg/day) (Table IV) over 6 years had
stably elevated SF during the first 3 years (2,500–3,500 ng/ml).
The first two LIC determinations showed an increase in TBIS
despite excellent adherence to chelation at typical doses (Ta-
ble IV). The imbalance between iron intake (transfusions) and
iron excretion rate (chelation) was quantified by calculation of
iron excretion/iron intake. Only 90% of the transfused iron was
being removed by chelation. A modest increase in the chela-
tor dose increased chelation effectiveness in the subsequent �3
years (140–170% of transfused iron was removed). The last SF
was 869 ng/ml and the last LIC by MRI was 2.9 mg/g dw. In
summary, with the availability of MRI measurements of LIC in
2007, the patient’s iron loading and chelation effectiveness could
be monitored more frequently (yearly, compared with every 2–
3 years by liver biopsy), producing timely changes in chelation
therapy and rapid resolution of severe iron overload.

Promoting Adherence to Chelation Therapy

Treatment adherence can be difficult for all patients, but es-
pecially for asymptomatic patients who have no tangible way to
feel the benefits of chelation. For these patients, reviewing the in-
creasing LIC over time can quantitatively demonstrate the need
for better adherence. Likewise, serial LIC measurements that
show decreasing LIC can also demonstrate the benefits of chela-
tion to asymptomatic patients and reinforce adherence. Routine
education about disease states and chelation therapy has been
shown to correlate with improvements in compliance and de-
creases in LIC.[70] Therefore, patient education and engagement
needs to be incorporated into every visit.

TABLE IV. Case Study: Quantitation and Successful Resolution of Severe Iron Overload

Transfusional iron intake—Measurements and calculations

Dates of serial LIC
measurements

Interval
between

LICs (days)
Transfused
PRBCs (ml)

Hematocrit
of PRBCs

Transfused
pure RBCs

(ml)
Transfusional
Fe intake (mg)

Weight
(kg)

Transfusional
Fe intake rate
(mg/kg/day)

June 4,
2002

May 25,
2004

721 11,789 0.55 6,484 7,003 26.5 0.37

May 25,
2004

January 25,
2007

975 17,668 0.55 9,717 10,495 30 0.36

January 25,
2007

February
13, 2008

384 7,315 0.55 4,023 4,345 33.2 0.34

Change in hepatic and total body iron stores—Measurements and calculations

Date
Interval
(days)

Liver Fe
(μg/g
dry) Method

Weight
(kg)

TBIS
(g)

�TBIS
(g)

�TBIS rate
(mg/kg/day)

Fe excretion
rate

(mg/kg/day)
Fe intake
(mg)

Fe intake
rate

(mg/kg/day)

Fe
excretion/Fe
intake (%)

June 4, 2002 – 35,204 Biopsy 21.2 7.91 – – – – – –
May 25, 2004 721 30,433 Biopsy 26.5 8.54 0.63 0.03 0.33 7,003 0.37 89
January 25, 2007 975 12,704 MRI-R2 30.0 4.04 –4.50 –0.15 0.51 10,495 0.36 142
February 13, 2008 384 2,900 MRI-R2 33.2 1.02 –3.02 –0.24 0.58 4,345 0.34 171

Calculations (based upon sequential pairs of LIC determinations): Transfused pure RBCs= Sum of transfused PRBCs in interval between
LICs (ml) × hematocrit. Transfusional Fe intake = pure RBCs × 1.08. Transfusional Fe intake rate = Transfusional Fe intake/weight
(kg)/interval between LIC measurements (days). TBIS = [10.6 × LIC (μg/g) × weight (kg)]/106. �TBIS = TBIS (current) – TBIS (last).
�TBIS rate = (�TBIS × 1,000) / weight (kg)/interval between LIC measurements (days). Fe excretion rate = [Fe intake (mg) – (�TBIS ×
1,000)]/weight (kg)/interval between LIC measurements (days). Fe intake = Total PRBC volume during interval (ml) × average hematocrit
of units× 1.08. Fe intake rate=Fe intake/weight (kg)/interval betweenLICmeasurements (days). Fe excretion/Fe intake (%)= (Fe excretion
rate/Fe intake rate) × 100. Fe, iron; LIC, liver iron concentration; PRBC, packed red blood cells; RBC, red blood cells; TBIS, total body
iron stores; �, change.
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Costs of monitoring

The costs of monitoringLIC varywidely. Some determinants
of MRI costs include scanner time, number of sequences ob-
tained, sedation or anesthesia, professional fees (e.g., radiology,
anesthesiology), and the charge for Ferriscan R© ($300). Determi-
nants of biopsy costs include sedation or anesthesia, where the
biopsy is performed (e.g., operating room, interventional radi-
ology suite), where recovery occurs (e.g., intensive or acute care
unit), equipment charges, professional fees (e.g., gastroenterolo-
gist, surgeon, interventional radiologist, pathologist, anesthesi-
ologist), tissue processing and pathology fees, and measurement
of tissue iron. Indeed, quantitation of hepatic iron byMRI may
cost more or less than a liver biopsy at a particular center. At
the author’s (CTQ) institution, the estimated charge for a liver
biopsy is $6,580, compared to $4,380 for hepatic MRI with T2*
and R2 sequences. Practically, MRI can be performed more fre-
quently than biopsy, so life-long chargesmay be greater forMRI
when performed annually or more frequently than liver biopsies.
Nevertheless, costs of MRI should be considered in the context
of (i) costs of obviated liver biopsies and (ii) the late costs of
poorly controlled iron overload.

CONCLUSIONS

MRI offers several advantages over traditional approaches
to iron measurement. It is noninvasive and more acceptable to
patients for frequent assessments and provides direct assess-
ments of target organs, with results equivalent to or better than
LIC from biopsy.[37,71] Additionally, MRImay also provide in-
formation on the fibrotic stage of the liver, potentially identify-
ing patients who still require biopsy for histologic analysis; how-
ever, further research is required to enable such measurements
to be clinically useful.[71,72] Myocardial iron measurement by
MRI has a strong correlation with iron concentration from ex
vivo hearts, making MRI an obvious choice because biopsy of
this organ is impractical.[42]

Heterogeneity in timing and degree of organ-specific iron
loading underscores the need to monitor both liver and heart
iron load directly to identify all at-risk patients. Heart iron mea-
surements are indicated in patients with absent or ineffective ery-
thropoiesis, such as DBA, TI and β-TM, and those with subop-
timal chelation. Only a small proportion of patients with SCD
develop cardiac hemosiderosis, so the utility of cardiac T2*mea-
surement remains to be established for this population.[59,73]

Although significant obstacles to universal application of
MRI techniques remain, hematologists no longer need to make
subjective decisions about chelation therapy based on the gen-
eral degree of iron loading inferred from infrequent measures of
LIC from liver biopsy and changes in SF levels over time. Peri-
odic MRI assessments provide quantitative data for the calcu-
lation of chelation effectiveness, which allow hematologists to
make informed, data-driven, timely decisions about initiation
and adjustment of chelation therapy. However, hematologists
need to engage in meaningful discussions with their radiologist
colleagues to ensure thatMRI assessments of tissue iron at their
institutions are accurate and valid.
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