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Ulcerative colitis (UC) is a chronic inflammatory bowel disease impacting patients’ quality of
life and imposing heavy societal and economic burdens. Apoptosis of intestinal epithelial
cells (IECs) has been considered an early event during the onset of UC and plays a crucial
role in disease development. Thus, effectively inhibiting apoptosis of IECs is of critical
significance for the clinical management of UC, presenting a potential direction for the
research and development of pharmacotherapeutic agents. In recent years, research on
the ameliorative effects of natural products on UC through inhibiting IECs apoptosis has
attracted increasing attention and made remarkable achievements in ameliorating UC. In
this review, we summarized the currently available research about the anti-apoptotic
effects of natural products on UC and its mechanisms involving the death-receptor
mediated pathway, mitochondrial-dependent pathway, ERS-mediated pathway,
MAPK-mediated pathway, NF-κB mediated pathway, P13k/Akt pathway, JAK/STAT3
pathway, and NLRP3/ASC/Caspase-1 pathway. Hopefully, this review may yield useful
information about the anti-apoptotic effects of natural products on UC and their potential
molecular mechanisms and provide helpful insights for further investigations.
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1 INTRODUCTION

Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by relapsing and
remitting mucosal inflammation restricted to the colon and rectum. It is a global health challenge,
and its typical clinical presentation consists of diarrhea, hematochezia, and abdominal pain with
histological features of diffuse inflammation limited to mucosa and submucosa, crypt abscesses,
crypt architectural distortion, mucin depletion, and goblet cell depletion (Conrad et al., 2014; Yu and
Rodriguez, 2017). The prevalence of UC varies in different regions. A systematic review of
population-based studies demonstrated that the prevalence ranges from 1.2–57.3 per 100,000 in
Asia to14.5–505.0 per 100,000 and 139.8–286.3 per 100,000 in Europe and North America,
respectively (Ng et al., 2017). UC can occur at any age and is most commonly diagnosed in the
second to fourth decade of life (Du and Ha, 2020). Although the specific etiopathogenesis of UC
remains obscure, it has been well-recognized that a complex interaction of intestinal microbiota,
genetic susceptibility, and environmental factors may disturb the immune system and result in the
immune-mediated chronic intestinal inflammatory response (Adams and Bornemann, 2013;
Ananthakrishnan, 2015). The long-term inflammation leads to irreversible bowel damage and a
higher risk of poor outcomes, such as colectomy and colorectal cancer (Rioux, 2008; Bopanna et al.,
2017), impacting patients’ quality of life, imposing heavy social and economic burdens, even
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increasing mortality. Conventional treatments for UC, including
aminosalicylates, corticosteroids, and immunosuppressants, only
induce and maintain remission and often elicit adverse effects
(Wan et al., 2014; Burri et al., 2020). Several bioagents have been
developed to target such molecular mechanisms as tumor
necrosis factor (TNF), integrin, and Janus kinase (JAK)
(Pugliese et al., 2017; Wehkamp and Stange, 2018). However,
these therapeutic agents have primarily focused on the
inflammatory cascades to alleviate the disease process rather
than histological healing, and most of these substances are
expensive for the medium- and low-income populations.
Therefore, researching effective and affordable medications
with fewer side effects for UA is urgently needed.

Previous studies have demonstrated that the apoptosis of
intestinal epithelial cells (IECs) in the colon contributes to
chronic inflammatory bowel diseases. IECs play a significant
role in host defense, mucosal homeostasis maintenance, and
immune response (Eissa et al., 2019; Zhang J. et al., 2020).
The intestinal mucosa structure is maintained by a sensitive
balance between the apoptosis and proliferation of epithelial
cells, which may be disturbed in the inflammatory intestine
due to the increased proinflammatory cytokines, including
tumor necrosis factor (TNF), interleukin (IL), and interferon
family members (Schulzke et al., 2006; Qiu et al., 2011). Apoptosis
of IECs has been considered an early event during the onset of UC
and plays a crucial role in disease development (Iwamoto et al.,
1996). Both extrinsic and intrinsic apoptotic pathways are involved
in the UC pathology and regulated by multiple signaling pathways.
IECs act as a barrier between lumina and the external environment.
Excessive epithelial apoptosis disrupts the epithelial defense
system and may cause the breakdown of epithelial barrier
function, which may facilitate the mucosal invasion of
intraluminal microorganisms and luminal antigen uptake
(Hagiwara et al., 2002; Schulzke et al., 2009; Seidelin and
Nielsen, 2009; Araki et al., 2010) and potentiate the prolonged
inflammatory response. Therefore, effectively inhibiting apoptosis
of IECs and retaining the integrated epithelial barrier are of critical
significance for the clinical management of UC, presenting a
potential direction for the research and development of
pharmacotherapeutic agents (Verstege et al., 2006).

Recently, natural products, including extracts and isolated
metabolites from medicinal botanical drugs and plants, have
drawn increasing attention for their potential therapeutic effects
on UCwith high availability and fewer side effects (Wan et al., 2014;
Santana et al., 2017). These natural agents have been demonstrated
to possess anti-inflammatory, antioxidative, anti-apoptotic,
antiplatelet, and immune-regulatory properties through
mediating multiple signaling pathways related to the
pathogenesis of UC (Ke et al., 2012; Triantafyllidi et al., 2015;
Cao et al., 2019). Furthermore, several extracts and isolated
metabolites from natural products have been reported to exert
amelioratory effects on UC through inhibiting IECs apoptosis with
multiple pathways, including death receptor-mediated pathway,
mitochondria-dependent pathway, endoplasmic reticulum stress-
mediated pathway, MAPK-mediated pathway, NF-κB mediated
pathway, and P13K/Akt mediated pathway. Therefore, to yield
helpful insights for further research and development of novel

and efficacious pharmaceutic intervention in this field, a
comprehensive review of the anti-apoptotic activities of natural
products on UC and their potential molecular mechanisms is
necessary. In this review, the following electronic databases were
searched from the inception to July 2021 to identify the eligible
studies: PubMed, Embase, Web of Science, China National
Knowledge Infrastructure, China Biomedical Literature Database,
Wanfang Database, VIP database, and Chinese Scientific Journals
Database. The following terms were used in a combination for the
search: Colitis, Ulcerative, ulcerative colitis, inflammatory bowel
disease, colitis, apoptosis, apoptotic, cell death, natural product,
natural medicine, traditional medicine, and traditional Chinese
medicine. A meticulous review was performed, and the quality
of all the included studies was assessed in accordance with the Best
practice in research—Overcoming common challenges in
phytopharmacological research (Heinrich et al., 2020). The
detailed information of natural products and their potential
effects with mechanisms on modulating apoptosis in UC is
illustrated in Tables 1, 2, and the chemical structures of isolated
metabolites are summarized in Table 3.

2 EFFECTS AND MECHANISMS OF
NATURAL PRODUCTS ON APOPTOSIS
IN UC

2.1 Death Receptor-Mediated Pathway
The apoptosis pathway activated by death receptors is also known
as the “extrinsic pathway”. The ligand-bound death receptors
refer to the proteins of tumor necrosis factor superfamily, such as
tumor necrosis factor receptor, Fas, and tumor necrosis factor-
related apoptosis initiating ligand-receptor (Vanamee and
Faustman, 2018). These receptors can be activated by binding
to their ligands, such as TNF-α, FasL, and TRAIL. The activated
death receptors recruit Fas-associated death domain (FADD), the
adaptor protein, which binds to the receptor and interacts with
pro-caspase-8 to form a complex Death-inducing Signaling
Complex (DISC), leading to the auto-cleavage and activation of
caspase-8. Activated caspase-8 initiates the executioner caspase-3
to trigger the apoptotic cascades (Thorburn, 2004; Valmiki and
Ramos, 2009). On the other hand, there is a cross-linking between
the extrinsic pathway and intrinsic pathway (mitochondria-
dependent apoptotic pathway), in which caspase-8 plays a
critical role. Bid, a member of the bcl-2 family that regulates
mitochondrial apoptosis, is cleaved by caspase-8 to activate the
subsequent apoptotic events (Kantari and Walczak, 2011).
Previous studies have already found that death receptor-
mediated apoptosis is involved in the mucosal defect in UC
(Yan et al., 2001; Yukawa et al., 2002; Fan et al., 2020).

In 2011, Liu et al. reported that Sishen Pill (2.5–10 g/kg), a
prescription from traditional Chinese medicine (TCM), could
inhibit epithelial apoptosis in rats through down-regulating
Fas/FasL and up-regulating bcl-2 in colon tissues (Liu et al.,
2011). In the same year, a study by Liu et al. found that Iridoid
Glycosides (80–240 mg/kg), a fraction of Folium syringae
[Myrtaceae: Syringa vulgaris L.] leaves, ameliorated
epithelial apoptosis in experimental colitis of rats by
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TABLE 1 | Anti-apoptotic activities of natural products on UC-induced intestinal epithelial apoptosis.

Potential
mechanisms

Detailed mechanisms Extracts/Isolated
metabolites

(dose/concentration)

Cells/Animal Related
targets

Refs

Death receptor
apoptotic pathway

Down-regulating Fas and FasL;
Down-regulating caspase-3, -9,
and bax; Up-regulating bcl-2

Baicalin (30–120 mg/kg) RAW264.7 cells stimulated by
lipopolysaccharide; 2,4,6-
trinitrobenzene sulfonic acid-
induced rats

Fas, FasL,
caspase-3, -9,
bax, bcl-2

Yao et al. (2016)

Down-regulating Fas; Increasing
FasL, bcl-2

Sishen Wan (2.5, 5, 10 g/kg) Sprague-Dawley rats
stimulated by TNBS

Fas, FasL, bcl-2 Liu et al. (2011)

Down-regulating Fas, FasL, bax,
caspase-3; up-regulating bcl-2

Iridoid Glycosides (80, 160 and
240 mg/kg)

Sprague-Dawley rats
stimulated by DSS

Fas, FasL,
caspase-3,
bcl-2

Liu and Wang, (2011)

Decreasing Fas, FasL, caspase-
3, bax; Increasing bcl-2

Wumei Pill (13.3–53.2 g/kg) Sprague-Dawley rats
stimulated by TNBS

Fas, FasL,
caspase-3, bax,
bcl-2

(Shuguang et al., 2016;
Yi et al., 2016)

Mitochondria-
dependent
apoptotic pathway

Down-regulating bax; Up-
regulating bcl-2

Aucklandia and Coptis Pills
(1.6 g/kg)

Wistar rats stimulated by TNBS Bax, bcl-2 Yan and Jingen., (2016)

Down-regulating bax, caspase-3 Hesperetin (100 mg/kg) Wistar rats stimulated by TNBS Bax, caspase-3 Polat and Karaboga,
(2019)

Down-regulating cyt-c, caspase-
9, -3, bcl-2/bax

Laggera Alata Flavone (100,
200, 400 mg/kg)

Sprague Dawley rats stimulated
by TNBS

cyt-c, caspase-
9, -3, bcl-2, bax

Xiaobin and Xiaodong.,
(2014)

Down-regulating bax; Up-
regulating bcl-2

Astragalus Polysaccharide
(200 mg/kg)

Wistar rats stimulated by TNBS Bax, bcl-2 Weijie et al. (2019)

Down-regulating bax, caspase-
3; Up-regulating bcl-2

Indigo (200, 400, 800 mg/kg) C57BL/6 mice stimulated
by DSS

Bax, caspase-3,
bcl2

Wenqiang et al. (2019)

Decreasing bax mRNA
expression; Increasing bcl-2
mRNA expression

Aloe Vera Gel (200 mg/kg) Sprague Dawley rats stimulated
by 3% acetic acid

Bax, bcl-2 Hassanshahi et al.
(2020)

Decreasing bax, caspase-3 Coptidis Rhizoma and
Magnoliae Officinalis Cortex (1,
2, 4 g/kg)

Sprague Dawley rats stimulated
by TNBS

Bax, caspase-3 Xian-juan et al. (2020)

Up-regulating bcl-2; Down
regulating bax and caspase-3

Qingchang Wenzhong granule
(0.42–2.20 g/kg)

Male Sprague Dawley rats
stimulated by DSS

Bcl-2, bax,
caspase-3

Shi et al. (2019)

Down-regulating bax, caspase-
3; Up-regulating bcl-2

Artesunate (30 mg/kg) Female ICR mice stimulated
by DSS

Bcl-2, bax,
caspase-3

Yin et al. (2020)

Decreasing bax, caspase-3;
Increasing bcl-2, bcl-xL

Plumericin (0.5–2μg; 3 mg/kg) IEC-6 cells induced by LPS and
IFN; Male CD1 mice stimulated
by DNBS

Bcl-2, bax,
caspase-3

Rapa et al. (2021)

Decreasing caspase-3, bax;
Increasing bcl,2

Graviola (100 mg/kg) Male Wistar rats induced by
acetic acid

caspase-3, bax,
bcl,2

Helal and Abd
Elhameed, (2021)

Endoplasmic
reticulum stress-
mediated pathway

Down-regulating GRP78,
caspase-3, -12

Berberine (100, 150,
200 mg/kg; 10 ml/kg)

Male BALB/c mice stimulated
by DSS

GRP78,
caspase-3, -12

(Yan et al., 2018; Yan
et al., 2020)

Decreasing GRP78, caspase-
3, -12

Glycyrrhizin (0.5, 1, 2 mmol/L) IECs induced by H2O2; Male
BALB/c mice stimulated
by DSS

GRP78,
caspase-3, -12

Yan and Bin., (2020)

Decreasing GRP78, PERK,
CHOP, caspase-3, -12

Ginsenoside Rb1
(20,40 mg/kg)

C57BL/6 mice stimulated by
DSS; IEC-6 rat intestinal
epithelial cells induced by TNBS

GRP78, PERK,
CHOP,
caspase-3, -12

Dong et al. (2021)

Inhibiting PERK-ATF4-CHOP
pathway

Limonin (25, 50, 100 mg/kg) Female C57BL/6 mice
stimulated by DSS; RAW 264.7
cells induced by LPS

p-PERK,
p-eIF2α, ATF4,
CHOP

Song et al. (2021)

Decreasing p-PERK, p-eIF2α,
ATF4, CHOP, bax

Gancao Xiexin Decoction (10,
20,40 μL)

Caco-2 cells Male BALB/c mice
stimulated by DSS

PERK, eIF2α,
ATF4,
CHOP, bax

Yan et al. (2021)

Decreasing GRP78, CHOP,
PERK, eIF2α, ATF4, XBP1s,
capsase-12

Artesuante (30 mg/kg) Female ICR mice stimulated
by DSS

GRP78, CHOP,
PERK, eIF2α,
ATF4, XBP1s,
capsase-12

Yin et al. (2021)

MAPK-mediated
pathway

Suppressing p38, ERK1/2, and
MAP2K1

SNE (50, 200 mg/kg) Male ICR mice stimulated
by DSS

p38, ERK1/2,
MAP2K1

Taya et al. (2016)

Modulating p38-, JNK-MAPK
pathways

Curcumin (100 mg/kg) Male Wistar albino rats
stimulated by acetic acid

p38, JNK Topcu-Tarladacalisir
et al. (2013)

(Continued on following page)
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TABLE 1 | (Continued) Anti-apoptotic activities of natural products on UC-induced intestinal epithelial apoptosis.

Potential
mechanisms

Detailed mechanisms Extracts/Isolated
metabolites

(dose/concentration)

Cells/Animal Related
targets

Refs

Decreasing p38, p53, c-jun,
c-fos, bax, caspase-3;
Increasing bcl-2

Si ShenWan (5 g/kg) C57/BL mice stimulated by
TNBS

p38, c-jun,
c-fos, bax,
caspase-3,
bcl-2

Zhao et al. (2013)

Suppressing p38; down-
regulating caspase-3; up-
regulating PPARγ

Geraniol (250 mg/kg) Male Wistar rats stimulated by
TNBS

p38, caspase-3,
PPARγ

Soubh et al. (2015)

Inhibiting MAPK/NF-κB
pathway; Up-regulating bcl-2;
Down regulating bax and
caspase-3, -9

Paeoniflorin (15, 30, 45 mg/kg;
2.5 g/kg)

Male Balb/c mice stimulated by
TNBS; Male Wistar rats
stimulated by DSS

ERK, p38, blc-2,
bax, caspase-
3, -9

(Gu et al., 2017;
(Lanzhen et al., 2020)

Inhibiting MAPK/NF-κB
pathway; Increasing ERK1/2,
p-ERK, p38, p-p38, JNK,
p-JNK, p-IκB, p-p65 Decreasing
cleaved caspase-3; Increasing
bcl-2

Indirubin (10 mg/kg); Isatin
(10 mg/kg)

Male BALB/c mice stimulated
by DSS

ERK, p38, JNK,
caspase-3,
bcl-2

Gao et al. (2018)

Increasing ERK1/2, p-ERK, p38,
p-p38, JNK, p-JNK, p-IκB,
p-p65

Chlorogenic Acid (30, 60,
120 mg/kg)

C57BL/6 mice stimulated
by DSS

ERK, p38,
JNK, p65

Gao et al. (2019)

Inhibiting p-JNK, p-p38;
Increasing bcl-2; Decreasing bax

Berberis lycium fruit extract
(125–500 mg/kg)

Balb/C mice stimulated by DSS JNK, p38, bcl-
2, bax

Sharma et al. (2020)

Inhibiting S100A9/MAPK/NF-κB
pathway; Increasing bcl-2;
Decreasing bax, caspase-3, p53

Anemoside B4 (5, 10 mg/kg) SD rats stimulated by TNBS S100A9, TLR4,
JNK, p65, blc-2,
bax, caspase-
3, p53

(Yong et al., 2020;
Zhang et al., 2021)

NF-κB mediated
pathway

Inhibiting IκBα degradation,
caspase-3 activation

Deoxyschisandrin (1–5 μg/ml) HCT116 cells induced by H2O2 IκBα, caspase-3 Gu et al. (2010)

Inhibiting IκBα degradation;
Down-regulating caspase-3, -9

Corilagin (7.5, 15, 30 mg/kg) Male C57BL/6 mice stimulated
by DSS

IκBα, caspase-
3, -9

Xiao et al. (2013)

Inhibiting IκBα, and IKKβ Down-
regulating Fas/FasL, bax,
caspase-3; Up-regulating bcl-2

Iridoid Glycosides Fraction (80,
160 and 240mg/kg)

Sprague-Dawley rats
stimulated by DSS

IκBα, IKKβ, Fas,
FasL, Bax,
caspase-3,
bcl-2

(Liu and Wang, 2011;
Zhang et al., 2020a)

Down-regulating NF-kBp65,
bax, caspase-3; Up-regulating
bcl-2

Portulaca Extract (100 mg/kg) Female mice stimulated by DSS NF-kBp65, bax,
bcl-2,
caspase-3

Kong et al. (2018)

Decreasing p-p65, caspase-3 QingBai decoction
(0.0195 ml/g)

C57/bLmice stimulated by DSS NF-kBp65,
caspase-3

Lin et al. (2019)

Inhibiting p-IκBα, p-p65;
Decreasing caspase-3, -9;
Increasing bcl-2

Gallic acid (20, 40, 60 mg/kg,
mg/ml)

Balb/c mice stimulated by
TNBS HIEC-6 cells induced by
IL-1β

IκBα, NF-kBp65,
caspase-3, -9,
bcl-2

Zhu et al. (2019a)

Suppressing NF-kB
phosphorylation; Decreasing
PARP

C. arietinum ethanol Extract
(100, 200 mg/kg)

Male ICR mice stimulated
by DSS

NF-kBp65,
PARP

Kim et al. (2020)

Down-regulating NF-kB, bax;
Up-regulating bcl-2

Oleuropein (350 mg/kg) Male laboratory albino rats
stimulated by acetic acid

NF-kB, bax,
bcl-2

Motawea et al. (2020)

Suppressing NF-κBp65, pNF-
κB, ERK1/2, COX-2 Down-
regulating caspase-3

6,7-Dihydroxy-2,4-
Dimethoxyphenanthrene
(60,120, 240 mg/kg)

Male BALB/c mice stimulated
by DSS

NF-κBp65, pNF-
κB, ERK1/2,
COX-2,
caspase-3

Li et al. (2021)

Down-regulating TLR4, NF-κB,
caspase-3; Suppressing
NLPR3, cleaved caspase-1,
ASC mRNA

Canna x generalis L.H. Bailey
rhizome extract (100,
200 mg/kg)

Mice stimulated by DSS TLR4, NF-κB,
NLPR3, ASC
mRNA,
caspase-3, -1

Mahmoud et al. (2021)

Inhibiting NF-κBp65, IκBαDown-
regulating bax, caspase-3, cyto-
c; Up-regulating bcl-2

Coptisine (100 mg/kg) Male BALB/c mice stimulated
by DSS

NF-κBp65, IκBα,
ax, caspase-3,
cyto-c, bcl-2

Wang et al. (2021)

Decreasing NF-κBp65, p-IKKβ/
IKKβ, p-IKBα/IKBα; Decreasing
cyt-c, caspase-3, -9, bcl-2/bax

Baicalin (30, 60, 90 mg/kg) RAW264.7 cells induced by
LPS; Sprague Dawley rats
stimulated by TNBS

NF-κBp65,
IKBα, IKKβ, cyt-
c, caspase-3, -9,
bcl-2, bax

Shen et al. (2019)

(Continued on following page)
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modulating the expressions of Fas, FasL, caspase-3, bax, and
bcl-2 (Liu and Wang, 2011). In 2016, a study by Yan et al.
showed that a TCM prescription,Wumei Pill (13.3–53.2 g/kg),
could inhibit the excessive apoptosis in colonic epithelial cells
of rats via decreasing Fas, FasL, and caspase-3 (Shuguang.
et al., 2016). Another study by Hui et al. also confirmed that
Wumei Pill could decrease the bax expression and increase bcl-
2 expression, exerting anti-apoptotic effects on colonic
epithelial cells (Yi. et al., 2016). In vitro and in vivo studies
on baicalin, a bioactive constituent from the root of
Scutellariae radix [Lamiaceae: Scutellaria baicalensis Georgi],
showed its anti-apoptotic activity, and the potential
mechanisms were correlated to the down-regulation of Fas

and FasL (Yao et al., 2016). The effects and mechanisms of
natural products on death receptors-mediated apoptosis of UC
are summarized in Figure 1.

2.2 Mitochondria-dependent Apoptotic
Pathway
Diverse apoptotic stimuli may evoke the decrease of mitochondrial
membrane potential (MMP) and the release of pro-apoptotic
proteins to activate the mitochondria-dependent apoptotic
pathway (intrinsic pathway) (Thorburn, 2004; Elmore, 2007). The
MMP integrity is regulated by the bcl-2 family composed of the pro-
apoptotic members (e.g. bax, bad, bak, bim, and bid) and anti-

TABLE 1 | (Continued) Anti-apoptotic activities of natural products on UC-induced intestinal epithelial apoptosis.

Potential
mechanisms

Detailed mechanisms Extracts/Isolated
metabolites

(dose/concentration)

Cells/Animal Related
targets

Refs

Inhibiting TLR4, NF-κB;
Decreasing bax, caspase-3;
Increasing bcl-2

Deoxyschizandrin (20, 40,
80 mg/kg)

Sprague Dawley rats stimulated
by DSS

TLR4, NF-κB,
bcl-2, bax,
caspase-3

Yu and Qian, (2021)

Decreasing NF-κBp65,
caspase-3

Hyperoside (25, 50,
100 mg/kg)

Wistar rats stimulated by TNBS NF-κBp65,
caspase-3

Yu et al. (2021)

P13K/Akt pathway Regulating P13K/Akt pathway;
Decreasing caspase-9, FasL

Baicalin (20, 50, 100 mg/kg) Male Sprague Dawley rats
stimulated by TNBS

P13K, Akt,
caspase-9, FasL

Zhu et al. (2017)

Regulating PI3K/Akt activation Oxymatrine (25, 50,
100 mg/kg)

Male BALB/c mice stimulated
by DSS

PI3K, Akt Chen et al. (2017)

Promoting P13K, Akt activity
Down-regulating caspase-3,
bad; Up-regulating bcl-2, p53

Costus root granules
(1,000 mg/kg)

Male Sprague Dawley rats
stimulated by DSS

PI3K, Akt,
caspase-3, bcl-
2, bax, p53

Wang et al. (2018)

Regulating Akt; Decreasing
caspase-3, -9, PARP

Luteolin (50, 100 mg/kg) Male C57BL/6 mice stimulated
by DSS

Akt, caspase-3,
-9, PARP

Vukelic et al. (2020)

Other Decreasing caspase-3, -8 polysaccharide of Portulaca
oleracea (200mg/0.33 ml)

Male Sprague Dawley rats
stimulated by TNBS

Caspase-3, -8 Feng et al. (2010)

Decreasing caspase-3 Honey (5 g/kg) Male albino Wistar rats
stimulated by DSS

Caspase-3 Nooh and Nour-Eldien,
(2016)

Inhibiting JAK2/STAT3 pathway Aloe polysaccharide
(15 mg/kg)

HT-29 cell induced by LPS;
Male SD rats stimulated by
TNBS

JAK2, p-JAK2,
STAT3,
p-STAT3

Lin et al. (2017)

Up-regulating Sonic hedgehog
signaling pathway; Decreasing
caspase-3, bax; Increasing bcl-2

Polydatin (15, 30, 45 mg/kg) Male C57BL/6 mice stimulated
by DSS

Shh, caspase-3,
bcl-2, bax

Lv et al. (2018)

Down-regulating p-JAK2,
pSTAT3, caspase-3, -9; Up-
regulating bcl-2, bcl-xL

Tripterygium glycosides
(27 mg/kg)

Male Sprague Dawley rats
stimulated by TNBS

JAK2, STAT3,
caspase-3, -9,
bcl-2, bcl-xL

Nan et al. (2019)

Down-regulating bax; Up-
regulating bcl-2

Hydroxytyrosol (50 mg/kg) Male laboratory albino rats
stimulated by acetic acid

Bcl-2, bax Elmaksoud et al. (2021)

Inhibiting IL-10/JAK1/STAT3
pathway

Chushi Jianpi decoction
(1 ml/kg)

BALB/c mice stimulated
by DSS

IL-10, JAK,
STAT3

Chen et al. (2021)

Decreasing bax, caspase-3,
TLR4, MyD88; Increasing bcl-2

Crocin (0.05, 0.1 g/kg) Male Sprague Dawley rats
stimulated by DSS

Bax, caspase-3,
TLR4, MyD88,
bcl-2

Yang et al. (2020)

Decreasing bax, caspase-3, -9;
Increasing VLDLR, bcl-2

Tanshinol (15, 30 mg/kg) Male C57BL/6Jmice stimulated
by DSS

VLDLR, bax, bcl-
2, caspase-3, -9

Zhu et al. (2021)

Decreasing NRLP3, ASC,
caspase-1

Walnut oil (2.5 ml/kg) Kunming male mice stimulated
by DSS

NRLP3, ASC,
caspase-1

Miao et al. (2021)

TNBS, trinitrobenzene sulfonic acid; PPARγ, peroxisome proliferator activated receptor; CHOP, C/EBP, homologous protein; GRP78, glucose-regulated protein 78; PERK, protein kinase
R-like ER, kinase; ATF4, activating transcription factor; JNK, c-jun N-terminal kinase; DSS, dextran sulfate sodium; DNBS, dinitrobenzenesulfonate; SNE, spirogyra neglecta extract; TLR4,
toll-like receptor 4; IL-8, interleukin-8; PPAR-γ, peroxisome proliferator-activated receptor-γ; Cyto-c, cytochrome-c; LPS, lipopolysaccharide; TRAF6, tumor necrosis factor receptor-
associated factor 6; NLRP3, NOD-like receptor protein; ASC, apoptosis-associated speck-like protein containing CARD; RJ, rumex japonicus houtt; JAK, janus kinase; STAT3, signal
transducer and activator of transcription 3; IFN, interferon-γ; VLDLR, very low density lipoprotein receptor; Hh, Hedgehog.
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apoptotic ones (e.g. bcl-2 and bcl-xL) (Jeong and Seol, 2008).
Activating such apoptotic signaling pathways as p53-PUMA and
death receptor pathways may enhance the pro-apoptotic proteins
and reduce the anti-apoptotic proteins with a decrease in the MMP,
disrupting the balance in the bcl-2 family. Increased mitochondrial
membrane permeability induces the release of cytochrome-c (Cyt-c),
which interacts with apoptosis protease-activating factor 1 (Apaf-1)

to activate caspase-9 (Youle and Strasser, 2008; Qiu et al., 2011;
Estaquier et al., 2012). Activated caspase-9 initiates pro-caspase-3
and -7, and in turn, the activated caspase-3 evokes pro-caspase-9,
forming positive feedback. The activated executioner caspases cleave
the downstream substrates, such as poly ADP-ribose polymerase
(PARP), lamin, and fodrin, resulting in DNA fragmentation and
apoptotic body formation (Fan et al., 2005). Increasing studies

TABLE 2 | Components of TCM prescriptions.

Prescription Components [dosage(g)/
Concentrations (%)]

Scientific name Refs

Sishen Wan Wu Zhu Yu (6.67%) Rutaceae: Tetradium ruticarpum (A.Juss.) T.G.Hartley Liu et al. (2011), Zhao et al.
(2013)Bu Gu Zhi (26.67%) Fabaceae: Cullen corylifolium (L.) Medik

Wu Wei Zi (13.33%) Schisandraceae: Schisandra chinensis (Turcz.) Baill
Rou Dou Kou (13.33%) Myristicaceae: Myristica fragrans Houtt
Sheng Jiang (26.67%) Zingiberaceae: Zingiber officinale Roscoe
Da Zao (13.33%) Rhamnaceae: Ziziphus Jujuba Mill

Wumei Pill Wu Mei (16 g) Rosaceae: Prunus mume (Siebold) Siebold and Zucc Yi et al. (2016)
Xi Xin (6 g) Aristolochiaceae: Asarum heterotropoides F.Schmidt
Gan Jiang (10 g) Zingiberaceae: Zingiber officinale Roscoe
Gui Zhi (6 g) Lauraceae: Neolitsea cassia (L.) Kosterm
Fu Zi (6 g) Ranunculaceae: Aconitum carmichaeli Debeaux
Shu Jiao (4 g) Rutaceae: Zanthoxylum bungeanum Maxim
Huang Lian (16 g) Ranunculaceae: Coptis chinensis Franch
Ren Shen (6 g) Araliaceae: Panax ginseng C.A.Mey
Dang Gui (4 g) Apiaceae: Angelica sinensis (Oliv.) Diels
Huang Bo (6 g) Rutaceae: Phellodendron amurense Rupr

Qingchang Wenzhong
granule

Huang Lian (6 g) Ranunculaceae: Coptis chinensis Franch Shi et al. (2019)
Pao Jiang (10 g) Zingiberaceae: Zingiber officinale Roscoe
Ku Shen (15 g) Fabaceae: Sophora flavescens Aiton
Qing Dai (6 g) Brassicaceae: Isatis tinctoria subsp. tinctoria
Di Yu (15 g) Rosaceae: Sanguisorba officinalis L
Mu Xiang (6 g) Asteraceae: Dolomiaea costus (Falc.) Kasana and A.K.Pandey
San Qi (6 g) Araliaceae: Panax notoginseng (Burkill) F.H.Chen
Gan Cao (6 g) Fabaceae: Glycyrrhiza glabra L

Gancao Xiexin decoction Gan Cao (12 g) Fabaceae: Glycyrrhiza glabra L Yan et al. (2021)
Gan Jiang (9 g) Zingiberaceae: Zingiber officinale Roscoe
Ban Xia (9 g) Araceae: Pinellia ternata (Thunb.) Makino
Huang Qin (9 g) Lamiaceae: Scutellaria baicalensis Georgi
Huang Lian (3 g) Ranunculaceae: Coptis chinensis Franch
Dang Shen (9 g) Lamiaceae: Salvia miltiorrhiza Bunge
Da Zao (6 g) Rhamnaceae: Ziziphus Jujuba Mill

Qingbai decoction Da Qing Ye (12 g) Brassicaceae: Isatis tinctoria subsp. Tinctoria, leaves Lin et al. (2019)
Ban Lan Gen (20 g) Brassicaceae: Isatis tinctoria subsp. Tinctoria, roots
Huang Bo (9 g) Rutaceae: Phellodendron amurense Rupr
Ku Shen (20 g) Fabaceae: Sophora flavescens Aiton
Yi Ren (30 g) Poaceae: Coix lacryma-jobi L
Wu Zei Gu (25 g) Cuttlebone

Chushi Jianpi decoction Bai Zhu (5 g) Asteraceae: Atractylodes macrocephala Koidz Chen et al. (2021)
Cang Zhu (3 g) Asteraceae: Atractylodes lancea (Thunb.) DC.
Fu Ling (3 g) Smilacaceae: Smilax glabra Roxb
Bai Shao (3 g) Paeoniaceae: Paeonia lactiflora Pall
Dang Gui (2 g) Apiaceae: Angelica sinensis (Oliv.) Diels
Hou Po (2 g) Magnoliaceae: Magnolia officinalis Rehder and E.H.Wilson
Chen Pi (2 g) Rutaceae: Citrus x aurantium L
Zhu Ling (1.5 g) Pteridaceae: Adiantum capillus-veneris L
Ze Xie (1.5 g) Alismataceae: Alisma plantago-aquatica L
Chai Hu (2 g) Apiaceae: Bupleurum chinense DC.
Sheng Ma (2 g) Ranunculaceae: Actaea cimicifuga L
Fang Feng (2 g) Apiaceae: Saposhnikovia divaricata (Turcz. ex Ledeb.) Schischk
Gan Cao (1 g) Fabaceae: Glycyrrhiza glabra L
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demonstrated that many natural products could mediate
mitochondria-dependent apoptosis in UC. The effects and
mechanisms of natural products on the mitochondria-dependent
apoptotic pathway of UC are summarized in Figure 2.

2.2.1 Extracts
In 2014, a study by Zhao et al. revealed that Laggera Alata
[Asteraceae: Laggera alata (D.Don) Sch. Bip. ex Oliv.] Flavone
(LAF) (100–400mg/kg) could dramatically reduce apoptosis of
colonic epithelial cells in trinitro-benzene-sulfonic acid (TNBS)-
induced UC rats with the down-regulation of cyt-c, caspase-9, -3,
and bcl-2/bax ratios (Xiaobin. and Xiaodong., 2014). In 2016, an
investigation by Dong and Lu showed that Aucklandia [Asteraceae:
Dolomiaea costus (Falc.) Kasana and A.K.Pandey] and Coptis
[Ranunculaceae: Coptis chinensis Franch.] Pills (ACP) (1.6 g/kg)
alleviated colonic epithelial apoptosis in TNBS-induced UC rats
through decreasing bax expression and increasing bcl-2 expression
(Yan. and Jingen., 2016). In 2018, Shi et al. found that a TCM clinical

prescription, Qingchang Wenzhong granule (QCWZG), exerted
anti-apoptotic effects (0.42–2.20 g/kg) in attenuating DSS-induced
colitis rats via inhibiting bax and caspase-3 expressions and
enhancing bcl-2 expression (Shi et al., 2019). In 2019, a study by
Ma et al. indicated that Indigo [Brassicaceae: Isatis tinctoria subsp.
tinctoria], one of the popular TCM botanical drugs, could reduce
intestinal mucosa damage in experimental UC rats
(200–800mg/kg), and its mechanisms were associated with the
down-regulation of caspase-3 and bax and the up-regulation of
bcl-2 (Wenqiang et al., 2019). In 2020, an experiment by
Hassanshahi et al. demonstrated that Aloe Vera Gel (AVG) could
reduce cell apoptosis in the colon of acetic-acid-reduced colitis rats
with a decreased bax and increased bcl-2 expressions (Hassanshahi
et al., 2020). Yang et al. reported that the combination treatment with
Coptidis Rhizoma [Ranunculaceae: Coptis chinensis Franch.] and
Magnoliae Officinalis Cortex [Magnoliaceae: Magnolia officinalis
Rehder and E.H.Wilson] (1, 2, and 4 g/kg) could protect colonic
mucosa from apoptosis by decreasing bax and caspase-3 in TNBS-

TABLE 3 | Chemical structures of natural products.

Baicalin
Hesperetin

Artesunate

Plumericin

Berberine
Glycyrrhizin Ginsenoside Rb1 Limonin

Curcumin Geraniol

Paeoniflorin
Indirubin

Chlorogenic Acid

Anemoside B4 Deoxyschisandrin
Corilagin

Gallic acid
Oleuropein Coptisine

Hyperoside

Oxymatrine
Luteolin

Polydatin Hydroxytyrosol

Frontiers in Pharmacology | www.frontiersin.org January 2022 | Volume 13 | Article 8061487

Liu et al. NPs for Apoptosis in UC

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


induced experimental rats (Xian-juan. et al., 2020). In 2021, Helal
et al. elucidated the protective effects of graviola [Annonaceae:
Annona muricata L.]. They observed that graviola treatment
(100mg/kg) attenuated apoptosis by modulating the expressions
of bcl-2, bax, and caspase-3 (Helal and Abd Elhameed, 2021).

2.2.2 Isolated Metabolites
Hesperetin is a flavonoid compound found in many citrus fruits. In
2019, an investigation by Polat and Karaboga suggested that

hesperetin treatment (100mg/kg) could improve the
histopathological changes in the colon mucosa of TNBS-induced
UC rats through down-regulating bax and caspase-3 (Polat and
Karaboga, 2019). In the same year, a study by Pan et al. showed that
Astragalus Polysaccharide (AP) (200mg/kg), one of the main
constituents in Astragalus mongholicus [Fabaceae: Astragalus
mongholicus Bunge], could alleviate colonic epithelial defect by
decreasing bax expression and increasing bcl-2 expression (Weijie
et al., 2019). Artesunate (ARS) is a semisynthetic derivative of
Artemisinin. A study by Yin et al. demonstrated that ARS
(30 mg/kg) suppressed apoptosis in colon tissues of DSS-induced
colitis rats and notably protected epithelial integrity via inhibiting
bax and caspase-3 and enhancing bcl-2 (Yin et al., 2020). In 2021,
Plumericin, a major bioactive constituent of Himatanthus sucuuba
[Apocynaceae: Himatanthus articulatus (Vahl) Woodson], was
reported by Rapa to exert anti-apoptotic effects and protect the
intestinal epithelium and its barrier function in vitro (0.5–2 μg) and
in vivo (3 mg/kg), and its potential mechanisms were correlated to
the decrease of bax and caspase-3 and the increase of bcl-2 and bcl-
xL (Rapa et al., 2021).

2.3 Endoplasmic Reticulum Stress
Mediated Pathway
Disrupted epithelial cell populations and functions can affect
mucosal homeostasis of UC, leading to Endoplasmic reticulum
stress (ERS). The protein-folding capacity of the endoplasmic
reticulum is decreased, causing the unfolded protein response
(UPR). This process can up-regulate the expression of chaperone
proteins-encoding genes, such as glucose-2 regulated protein 78kD
(GRP78) and Bip, triggering the downstream signaling of UPR,

FIGURE 2 | Natural products modulate apoptosis of IECs through mitochondria-dependent pathway.

FIGURE 1 |Natural products modulate apoptosis of IECs through death
receptors mediated pathway.
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namely IRE1-XBP1, PERK-eIF2α, and ATF pathway. Activation of
these pathways contributes to an increase in the C/EBP-homologous
protein (CHOP), the bcl-2-interacting mediator of cell death (Bim),
and the p53 up-regulated modulator of apoptosis (PUMA) to
promote apoptosis (Hetz, 2012; Cao, 2016). ERS also induces
apoptosis through the caspase-12 pathway. Pro-caspase-12 is pre-
located on the cytoplasmic side of the ER, which can be cleaved in
response to ERS. Caspase-12 can activate caspase-3, -9, and -7,
directly inducing apoptosis (Tan et al., 2006; Liu et al., 2013). The
role of ERS inUC pathogenesis has been recognized for decades, and
numerous studies have yielded considerable evidence that natural
products can protect intestinal epithelial cells from UC-induced
apoptosis. The improvement effects and potential mechanisms of
natural products on ERS-mediated apoptosis are summarized in
Figure 3.

2.3.1 Extracts
In 2021, Shen et al. found that Gancao Xiexin Decoction (10–40 μL)
could inhibit the activation of PERK- elF2α-CHOP apoptotic
signaling pathway to reduce the apoptosis of epithelial cells in
UC, decreasing intestinal epithelial permeability and thus
protecting intestinal mucosal barrier homeostasis (Yan et al., 2021).

2.3.2 Isolated Metabolites
Berberine (BBR) is one of the bioactive components in Coptis
Chinensis [Ranunculaceae: Coptis chinensis Franch.]. In 2018,
Shen et al. reported that BBR treatment (100–200 mg/kg) could
decrease apoptosis in intestinal epithelial cells of UC rats,
indicating that the anti-apoptotic effect of BBR was associated
with the down-regulation of caspase-12 and -3 (Yan. et al., 2018).
In 2020, Yan et al. further explored the anti-apoptotic

mechanisms of BBR, and their results suggested that this
component (10 ml/kg) also down-regulated GRP78 to alleviate
UPR (Yan et al., 2020). In vitro and in vivo investigation of Shen
et al. demonstrated glycyrrhizin (0.5–2.0 mmol/L) could regulate
ERS-evoked intestinal epithelial apoptosis and protect cells from
apoptosis by decreasing GRP78, caspase-12, and caspase-3 (Yan
and Bin., 2020). In 2021, a study reported Ginsenoside Rb1 (20
and 40 mg/kg), the major ginsenoside in ginseng [Araliaceae:
Panax ginseng C.A.Mey.] with multiple pharmacological
activities, significantly alleviated ERS in DSS-induced UC rats
and TNBS-stimulated rat intestinal epithelial cells through
decreasing GRP78, PERK, CHOP, caspase-12, and caspase-3
(Dong et al., 2021). Song et al. found that limonin, a
tetracyclic triterpenoid compound obtained from plants of
Rutaceae and Meliaceae, could improve colon pathology both
in vitro and in vivo by inhibiting the PERK-ATF4-CHOP
pathway to relieve ERS and subsequent cell apoptosis (Song
et al., 2021). ARS has been demonstrated to alleviate UC by
multiple pathways. Besides regulating mitochondria-dependent
apoptosis, it also suppressed the activation of PERK-eIF2α-ATF4-
CHOP and IRE1α-XBP1 signaling pathways to prevent ERS-
mediated apoptosis in colon tissues (Yin et al., 2021).

2.4 MAPK-Mediated Apoptotic Pathway
Mitogen-activated protein kinase (MAPK) family members
conventionally include extracellular-regulated kinase (ERK1/2),
c-Jun N-terminal kinase (JNK), p38MAPK, and ERK5 (Sun et al.,
2015). They play pivotal roles in transduction extracellular
stimuli into cellular responses of cell growth, migration,
proliferation, differentiation, and apoptosis. ERK can be
stimulated by growth factors and cytokines in UC pathology,
leading to phosphorylation. The ERK signaling can play anti-
apoptotic and pro-apoptotic roles depending on the stimuli (Li
et al., 2014). JNK and p38 MAPK regulate several bcl-2 family
proteins. One of the best-known transcription factors, p53, is also
modulated by JNK/p38MAPK cascades to promote apoptosis. In

FIGURE 4 | Natural products modulate apoptosis of IECs through
MAPK mediated pathway.

FIGURE 3 | Natural products modulate apoptosis of IECs through ERS-
mediated pathway.
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addition, JNK/p38MAPK has been reported to be associated with
the activation of caspase cascades (Yue and Lopez, 2020).
Currently, MAPKs are considered a potential target in the
treatment of UC. The potential effectiveness and mechanism
of natural products on MAPK-mediated apoptosis are
summarized in Figure 4.

2.4.1 Extracts
Sishen Wan (SSW) is a notable TCM formula and has often been
used in UC treatment. In 2013, Zhao et al. reported that SSW
intervention (5 g/kg) in TNBS-induced colitis rats decreased
colonic epithelial apoptosis by suppressing p38MAPK, p53,
caspase-3, c-jun, c-fos, and bax expressions (Zhao et al., 2013).
In 2016, a study by Taya et al. demonstrated that the extract (50
and 200 mg/kg) of Spirogyra neglecta, a freshwater green alga in
the northern provinces of Thailand, diminished apoptosis of
colonic epithelial cells in colitis mice via suppressing p38,
ERK1/2, and MAP2K1 (Taya et al., 2016). Indirubin and
Isatin are bioactive components in Qin Dai [Brassicaceae:
Isatis tinctoria subsp. tinctoria]. In 2018, an investigation by
Gao et al. demonstrated that the combination of Indirubin
and Isatin inhibited cell apoptosis in DSS-induced UC mice
through mediating the MAPK pathway, decreasing caspase-3,
and increasing bcl-2 (Gao et al., 2018). Qing Chang Hua Shi
granule (QCHS) also showed inhibitory effects on reducing UC-
induced colonic apoptosis in vitro and in vivo by mediatingMEK/
ERK pathway and decreasing the expression of such apoptosis-
related proteins as bax, bcl-2, caspase-3, -9, Fas, and Fas-L (Zhu
et al., 2019a). In 2020, Sharma et al. reported that the extract of
Berberis lycium Royle [Berberidaceae] fruit (125–500 mg/kg)
could modulate intestinal epithelial cell apoptosis in mice
through the inhibition of p-JNK and p-p38, increase of bcl-2,
and decrease of bax, suggesting that it might be a viable candidate
for UC treatment (Sharma et al., 2020).

2.4.2 Isolated Metabolites
Curcumin is a major constituent of medicinal turmeric
[Zingiberaceae: Curcuma longa L.]. A study in 2013 revealed
that curcumin (100 mg/kg) could reduce colon injury in UC rats
through the modulation of p38-and JNK-MAPK pathways
(Topcu-Tarladacalisir et al., 2013). In 2015, Soubh et al.
reported that Geraniol, a natural monoterpene alcohol
(250 mg/kg), hindered apoptosis in TNBS-induced UC rats by
suppressing p38 and caspase-3 expressions. Ger also up-regulated
PPARγ, a transcriptional factor whose down-regulation is highly
associated with the activation of the p38MAPK pathway (Soubh
et al., 2015). Paeoniflorin (PA) is one of the major bioactive
components in Paeony [Paeoniaceae: Paeonia lactiflora Pall.]
root. In 2017, Gu et al. revealed that PA treatment
(15–45 mg/kg) for experimental colitis mice could ameliorate
the apoptosis in colitis tissues through inhibiting MAPK/NF-κB
pathway (Gu et al., 2017). Moreover, a study by Li et al., in 2020
showed that PA down-regulated bax, caspase-3, and caspase-9
and up-regulated bcl-2 to protect UC-induced apoptosis
(Lanzhen. et al., 2020). Chlorogenic acid is found in coffee
and various TCM botanical drugs, such as honeysuckle
[Caprifoliaceae: Lonicera japonica Thunb.], hawthorn
[Rosaceae: Crataegus pinnatifida Bunge], eucommia
[Eucommiaceae: Eucommia ulmoides Oliv.], and
chrysanthemum [Asteraceae: Chrysanthemum x morifolium
(Ramat.) Hemsl.]. Gao et al. reported that Chlorogenic acid
(30–120 mg/kg) could significantly alleviate colonic tissue
apoptosis and inflammation via the mediation of the MAPK/
ERK/JNK signaling pathway (Gao et al., 2019). Anemoside B4, a
bioactive triterpenoid saponin isolated from Chinese pulsatilla
[Ranunculaceae: Pulsatilla chinensis (Bunge) Regel], was
demonstrated to exert anti-apoptotic effects on UC through
inhibiting p53, caspase-3, and bax expressions and the
S100A9/MAPK/NF-κB signaling pathway (Yong. et al., 2020;
Zhang et al., 2021).

2.5 NF-κB Mediated Apoptotic Pathway
The transcription factor nuclear factor-kappaB (NF-κB) is also
involved in the regulation of cell death. Under resting conditions,
NF-κB is sequestered in the cytoplasm through interaction with
IκB, an inhibitory protein. In the presence of NF-κB-activating
stimuli, such as proinflammatory cytokines, IκB can be
phosphorylated by IκB kinase (IKK) and degraded, leading to
the translocation of NF-κB to the nucleus (Heyninck and Beyaert,
2001; Aranha et al., 2007). Activated NF-κB contributes to the
transcription of multiple genes to regulate apoptosis induced by
extrinsic and intrinsic apoptotic pathways (Baldwin, 2012; Liu
et al., 2012). The potential mechanisms of natural products on
NF-κB mediated apoptosis are summarized in Figure 5.

2.5.1 Extracts
A study by Liu and Wang showed that the Iridoid Glycosides
fraction inhibited IkBα phosphorylation and IKK activity in
intestinal epithelial cells, regulating the NF-κB signaling
pathway (Liu and Wang, 2011). Another study by Zhang et al.
presented similar results of IG in regulating the NF-κB signaling

FIGURE 5 |Natural products modulate apoptosis of IECs through NFκB
mediated pathway.
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pathway (Zhang Y. et al., 2020). Corilagin is a major Gallotannin
found in many medicinal plants. In 2013, a study by Xiao et al.
demonstrated that Corilagin (7.5–30 mg/kg) suppressed the
degradation of IκBα and down-regulated caspase-3 and -9,
reducing apoptosis in colon tissues of UC mice (Xiao et al.,
2013). Portulaca [Portulacaceae: Portulaca oleracea L.] is a wildly
used botanical drug in TCM. In 2018, an investigation by Kong
et al. revealed that Portulaca extract could alleviate colitis in mice
and mediate colonic cell apoptosis through inhibiting the NF-κB
pathway with decreased expressions of bax and caspase-3 and
increased expression of bcl-2 (Kong et al., 2018). A study by Lin
et al. displayed that QingBai decoction (QBD), a TCM
prescription, effectively reduced apoptosis in the colon of DSS-
induced UC mice via regulating the NF-κB pathway and
decreasing caspase-3 (Lin et al., 2019). Gallic acid is widely
present in many plants and fruits. In 2019, Zhu et al. found
that it inhibited UC-induced apoptosis in vitro and in vivo by
suppressing the expressions of p-IκBα and p-NF-κB, decreasing
caspase-3 and -9, and increasing bcl-2 (Zhu et al., 2019b).
Chickpea [Fabaceae: Cicer arietinum L.] is a staple food crop
in tropical and subtropical areas. In 2020, Kim et al. reported that
its ethanol extract (100 and 200 mg/kg) exerted a protective effect
on DSS-induced apoptosis in colon tissue by the inhibition of
nuclear factor-kappa B (NF-κB) and signal transducer and
activator of transcription 3 (STAT3) (Kim et al., 2020). Canna
[Cannaceae: Canna x generalis L.H. Bailey] is wildly used in folk
medicine for the treatment of many diseases. In 2021, a study by
Mahmoud et al. showed that its rhizome ethanol extract (100,
200 mg/kg) down-regulated NF-κB and caspase-3 expressions in
colon tissues of colitis mice (Mahmoud et al., 2021).

2.5.2 Isolated Metabolites
In 2010, Gu et al. demonstrated that Deoxyschisandrin (5 μg/ml),
one of the lignan components of Schisandra Chinensis
[Schisandraceae: Schisandra chinensis (Turcz.) Baill.] fruits,

could inhibit apoptosis of intestinal epithelial cells, and the
potential mechanisms were associated with the inhibition of
IκB degradation and the subsequent NF-κB activation (Gu
et al., 2010). A study by Shen et al. discovered that Baicalin
(30–90 mg/kg) presented a significant anti-apoptotic effect on
TNBS-induced UC rats and LPS-induced RAW264.7 cells
through regulating the IKK/IKB/NF-kB signaling and the
expressions of such apoptosis-related proteins as cyt-c,
caspase-3, -9, bcl-2, and bax (Shen et al., 2019). In 2020,
Motawea et al. showed that Oleuropein (350 mg/mg), a major
component of Olea europaea L.[Oleaceae], reduced apoptosis in
colon tissues of experimental UC rats via down-regulating the
expression of NF-kB and bax and up-regulating bcl-2 (Motawea
et al., 2020). In 2021, a study by Li et al. revealed that 6,7-
Dihydroxy-2,4-Dimethoxyphenanthrene (CYP4, 60–240 mg/kg)
from Chinese Yam [Dioscoreaceae: Dioscorea oppositifolia L.]
could protect intestinal mucosa from apoptosis in DSS-induced
colitis mice by suppressing NF-κB and caspase-3 expressions (Li
et al., 2021). In the same year, Wang et al. stated that Coptisine
(100 mg/kg), a major bioactive component from Rhizoma
Coptidis [Ranunculaceae: Coptis chinensis Franch.], markedly
alleviated DSS-induced apoptosis in intestinal epithelial cells of
rats by restraining IκBα phosphorylation and NF-κB
translocation, down-regulating bax and caspase-3, and up-
regulating bcl-2 (Wang et al., 2021). Yu et al. observed that
hyperoside (25–100 mg/kg), a flavonol glycoside isolated from
plants of Hypericum and Crataegus, could inhibit TNBS-induced
intestinal epithelial apoptosis in rats via decreasing NF-κB and
caspase-3 (Yu et al., 2021). Yu and Qian reported that
Deoxyschizandrin treatment (20–80 mg/kg) could reduce
apoptosis of colonic epithelial cells in UC model mice, which
might be attributed to the inhibition of TLR4/NF-κB signaling
pathway and the regulation of bcl-2, bax, and caspase-3 (Yu and
Qian, 2021).

2.6 P13K/Akt Pathway
Phosphatidylinositol 3-kinase (PI3K)/Akt signaling is implicated
in multiple cellular processes, such as survival, proliferation,
differentiation, and apoptosis (Vivanco and Sawyers, 2002).
P13K can be activated by various cytokines and be recruited
to the membrane. Akt, the downstream target protein of P13K,
migrates to the membrane and activates the sequential
phosphorylation of P13K. Activated Akt releases from the
membrane to cytosol to phosphorylate fork-head transcription
factor (FOXO), triggering the downstream signaling pathways
that regulate many apoptotic genes related to the intrinsic and
extrinsic pathway (Franke et al., 2003; Fresno Vara et al., 2004;
Zhang et al., 2011). P13K/Akt can also activate NF-κB through
phosphorylating IκB (Chen et al., 2017). The involvement of the
P13K/Akt signaling pathway in UC pathogenesis has been well-
documented (Huang et al., 2011). Recently, compelling evidence
has revealed that several natural products alleviate apoptosis in
UC through regulating P13K/Akt signaling pathway. The
potential mechanisms of natural products on P13K/Akt
mediated apoptosis are summarized in Figure 6.

In 2017, Chen et al. reported that Oxymatrine
(25–100 mg/kg), an alkaloid derived from the root of the

FIGURE 6 | Natural products modulate apoptosis of IECs through
P13K/Akt pathway.

Frontiers in Pharmacology | www.frontiersin.org January 2022 | Volume 13 | Article 80614811

Liu et al. NPs for Apoptosis in UC

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Sophora flavescens [Fabaceae: Sophora flavescens Aiton], could
alleviate apoptosis through P13K/Akt pathway and exhibit
potential therapeutic effects against DSS-induced colitis (Chen
et al., 2017). In the same year, another study by Zhu et al. found
that baicalin (20–100 mg/kg) reduced the expression of caspase-9
and FasL by regulating the P13K/Akt pathway (Zhu. et al., 2017).
In 2018, an investigation by Wang et al. demonstrated that
granules extracted from Costus root [Asteraceae: Dolomiaea
costus (Falc.) Kasana and A.K.Pandey] (1000 mg/kg) could
inhibit apoptosis of intestinal epithelial cells in UC rats via
promoting the activities of P13K and Akt and subsequently
down-regulating caspase-3 and bad while up-regulating bcl-2
and p53 (Wang et al., 2018). Luteolin is a common flavonoid in
several plants, such as lemon, apple, and onion. In 2020, Vukelic
et al. showed that luteolin (50–100 mg/kg) decreased caspase-3,
-9, and PARP in UCmice, which may be related to Akt regulation
(Vukelic et al., 2020).

2.7 Other Reported Pathways
Besides the major apoptotic pathways mentioned above, other
mechanisms are also attributable to the anti-apoptotic activities of
natural products on UC. For example, Aloe polysaccharide (AP)
extracted from aloe vera [Asphodelaceae: Aloe vera (L.) Burm. f.]
could effectively reduce the apoptosis in colonic tissues via
inhibiting the JAK2/STAT-3 signaling pathway in vivo and
vitro (Lin et al., 2017). Another study conducted in 2019 by
Bu et al. revealed that Tripterygium glycosides (27 mg/kg) could
attenuate intestinal mucosal apoptosis in UC rats through JAK2/
STAT3 signaling pathway (Nan et al., 2019). Moreover, an
investigation by Chen et al. demonstrated that Chushi Jianpi
Decoction, a TCM prescription, could reduce intestinal epithelial
apoptosis in colitis mice through inhibiting IL-10/JAK1/STAT3
pathway (Chen et al., 2021). Polydatin (15–45 mg/kg), a main
component in Polygonum cuspidatum [Polygonaceae:
Reynoutria japonica Houtt.], was reported to exert protective
effects on DSS-induced apoptosis in mice by up-regulating the
Sonic hedgehog signaling pathway, decreasing caspase-3 and bax,
and increasing bcl-2 (Lv et al., 2018). In 2020, Yang et al.
demonstrated that crocin (0.05–0.1 g/kg), a carotenoid
compound derived from Crocus sativus L.(Iridaceae), could
decrease bax and caspase3 and increase bcl-2 in the intestinal
tissue of UC rats, and its potential mechanisms might be
correlated with the down-regulation of the TLR4/MyD88
signaling pathway (Yang et al., 2020). In 2021, a study by
Miao et al. revealed that Walnut oil (2.5 mg/kg) down-
regulated the related gene proteins expression of the NLRP3/
ASC/Caspase-1 pathway to inhibit apoptosis in DSS-induced
colitis mice (Miao et al., 2021).

In addition, some natural agents have exerted therapeutic
effects on UC-elicited apoptosis, but their mechanisms need to
be further verified. In 2010, Pan et al. reported that
polysaccharides of Portulaca oleracea (200mg/0.33 ml) could
reduce intestinal epithelial apoptosis in TNBS-induced UC rats
with decreased caspase-3 and -8 expression in the epithelium
(Feng. et al., 2010). Interestingly, feeding DSS-induced colitis rats
with honey (5 g/kg) could improve colonic histology by
decreasing caspase-3 in colons (Nooh and Nour-Eldien, 2016).

In 2021, Elmaksoud et al. demonstrated that Hydroxytyrosol
(50 mg/kg), one of the main alcoholic compounds of the olive
leaves extract, down-regulated the expression of bax and up-
regulated that of bcl-2 in the colons of acetic acid-induced colitis
rats (Elmaksoud et al., 2021). Tanshinol, a bioactive ingredient in
DanShen [Lamiaceae: Salvia miltiorrhiza Bunge], was reported by
Zhu et al. to alleviate apoptosis in UC model cells through
promoting very low-density lipoprotein receptor expression
(Zhu et al., 2021).

3 CONCLUSIONS AND PERSPECTIVES

Natural products refer to a wide range of bioactive extracts or
isolated metabolites from natural materials. Their bioactivities are
currently of great interest in many research fields (Ekiert and
Szopa, 2020) and may yield promising pharmacological
approaches for the prevention and treatment of UC due to
their multiple regulatory effects with few adverse effects
(Nascimento et al., 2020). In recent years, converging lines of
evidence have demonstrated that apoptosis of IECs is highly
associated with the occurrence and development of UC. This
review reported that multiple natural products have anti-
apoptotic activities in vitro and in vivo to protect intestinal
epithelial cells against apoptosis in UC. Furthermore, their
potential mechanisms are closely associated with the
regulation of multiple apoptosis-related signaling pathways,
including death-receptor mediated pathway, mitochondrial-
dependent pathway, ERS-mediated pathway, MAPK-mediated
pathway, NF-κB mediated pathway, P13k/Akt pathway, and
other reported pathways such as JAK/STAT3 and NLRP3/
ASC/Caspase-1. Thus, it is rational to presume that natural
products may yield promising therapeutic agents to treat UC
patients by modulating apoptosis of IECs.

Although many natural products have been demonstrated to
be the potential candidates for UC treatment by targeting
intestinal epithelial apoptosis, more sophisticated works in
preclinical and clinical investigations need to be performed to
research and develop effective pharmacotherapies. First, studies
on the pharmacokinetics and pharmacodynamics of these natural
agents are insufficient. Recently, with the increasing attention
drawn on natural products, great attention has been paid to
metabolism and pharmacokinetics research (Zeng et al., 2017),
laying a foundation for subsequent research of toxicology and
medication safety. Second, systematic evaluation for the toxicity
and safety of natural products remains scarce. Though these
natural plants and botanical drugs have been wildly used for
thousands of years, well-designed studies for critical evaluation of
safety are imperative for developing novel and effective
pharmacotherapeutic agents. More concerns need to be paid
on the potential toxicity and adverse effects of natural
products (Wu et al., 2016; Byard et al., 2017; Liu et al., 2020).
Third, current research of natural products targeting apoptosis in
UC has primarily focused on their in vivo and in vitro effects and
mechanisms. Well-designed clinical trials with high
methodological quality are urgently needed for further
verification of these natural products. Lastly, the exploration of
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mechanisms of some natural products is still in the preliminary
stage, and the specific targets and signaling pathways require
further elucidation. In addition, some of the above-mentioned
natural products, such as baicalin, Indirubin, and Paeoniflorin,
are reported to modulate apoptosis through multiple pathways,
and their underlying interactions or crosstalk with the core-target
network of UC are worthy of further exploration.

In summary, we expect that this review will provide helpful
information to understand the effects of natural products and
their pharmacological mechanisms in regulating intestinal
epithelial apoptosis of UC. These natural extracts and
isolated metabolites are of potential value in clinical UC
management. We also expect more researchers and clinicians
to pay close attention to this field and conduct more relevant
studies and trials.
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