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7.1 Introduction

After the work of Kermack and McKendrick [18], SIR type models became a standard tool
in epidemiology [10]. These models involve populations of susceptible S, infected I , and re-
covered R individuals, assuming immunity of the latter [2,9,27]. Many variants have been
developed to include additional details. SEIR variants single out the individuals exposed to
the virus E, which may also become infective [20,21]. Immunity of the recovered is dropped
in SEIRS systems [19,23]. SEIJR and SIJR models enforce quarantine and isolation mea-
sures on diagnosed individuals [8,11]. Delay in responses is incorporated in [26]. In general,
the specific structure of the selected models depends on the available information and on as-
sumptions about the epidemic spread [1,15]. There is a vast mathematical literature on the
qualitative behavior of such systems [10].

To achieve a predictive value, one must fit the model parameters to available data. Optimiza-
tion and adjoint-based data assimilation techniques, for instance, seek to chose parameters
in such a way that the difference between data and model predictions is minimized [11,27].
Nevertheless, official population counts for epidemiological studies are affected by different
sources of noise and uncertainty. The diagnosed, recovered, and dead individuals notified in
official reports are often defined in different ways in different regions or change as official cri-
teria are modified. Uncertainty in the data spreads to any analyses based on them. Therefore,
it is convenient to pursue approaches that quantify uncertainty [4,9,13,22] and provide infor-
mation on relevant parameter ranges, rather than specific values. Here, we develop a general
framework to infer coefficients for epidemiological models from population counts with quan-
tified uncertainty. We illustrate the method on a SEIJR model including contention measures
sequentially enforced or lifted, using data since the onset of current covid19 pandemic from
the Madrid region, Spain, for which different periods are well established. In this way, we can
relate variations in the model rates and in the population distribution with policies enforced as
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time grows. This study assumes a closed system: the total population is conserved. Migration
effects introduce new features and render more difficult epidemic stabilization, even when
strong distancing measures are enforced [7]. We modify the SEIJR model to include popula-
tion exchanges, discussing the potential of different parameters to control the system. Simple
constrained optimization formulations allow us to explore possible parameter ranges which
would prevent exponential growth.

The paper is organized as follows. Section 7.2 describes the SEIJR model under study. Sec-
tion 7.3 introduces a Bayesian framework to identify the model parameters with quantified
uncertainty in response to different contention policies. We illustrate the resulting predictions
for coefficients, initial data, and final population distribution, including asymptomatic indi-
viduals in Section 7.4. Migration effects are incorporated in Section 7.5, whereas Section 7.6
considers a possible control formulation. Finally, Section 7.7 contains our conclusions.

7.2 SEIJR models for closed systems

SEIJR models divide the total population into several categories: susceptible (S), exposed (E),
infective (I), diagnosed (J), and recovered (R) individuals. Exposed subjects E are asymp-
tomatic, in principle, and possibly infectious. They can spread the virus at a rate q and de-
velop symptoms at a rate k. Infective symptomatic individuals I are diagnosed at a rate α.
Diagnosed subjects J are quarantined. Sick individuals who recover cumulate in the class
R. Susceptible individuals can display different susceptibility for different reasons, such as
age, sex or genetic characteristics [8], but also due to confinement/protective measures en-
forced. Standard SEIJR models [8] assume that 1) infection spread occurs in a closed system,
2) the death rate is the same for all individuals, neglecting death by other causes, 3) recov-
ered subjects have immunity, 4) diagnosed individuals are quarantined, and 5) time delays in
responses are ignored.

A formulation including two populations S1 and S2 of different susceptibility reads:

dS1

dt
= −βS1(t)

I (t) + qE(t) + �J (t)

N
,

dS2

dt
= −βpS2(t)

I (t) + qE(t) + �J (t)

N
,

dE

dt
= β(S1(t) + pS2(t))

I (t) + qE(t) + �J (t)

N
− kE(t),

dI

dt
= kE(t) − (α + γ1 + δ)I (t), (7.1)

dJ

dt
= αI (t) − (γ2 + δ)J (t),
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dR

dt
= γ1I (t) + γ2J (t),

dD

dt
= δI (t) + δJ (t).

Here N = S1 + S2 + E + I + J + R + D is the total population number, which is a conserved
quantity, and D quantifies the dead. Time is measured in days. The transmission rate β repre-
sents how susceptible individuals become virus spreaders. The risk of infection for S2 is lower
than the risk for S1 by a factor p. The reduced impact of diagnosed individuals on transmis-
sion is represented through the parameter �. Recovery rates are γ1 for the infective and γ2 for
the diagnosed, while their mortality rates are denoted by δ. Two constraints are imposed on
these rates α > γ1 and γ −1

2 = γ −1
1 − α−1 [8].

Introducing an additional parameter tin, the time at which spread starts [11], we can set initial
conditions. The values for all populations at tin are zero, except for E(tin) = 1 and S1(tin) =
N − 1. Alternatively, the initial population can be partitioned as S1 = (1 − ρ)S, S2 = ρS, ρ

being the fraction of the susceptible population S at a lower risk of infection.

The reproduction number for this model is given by [8]

R0 = β(ρ + p(1 − ρ))

(
q

k
+ 1

α + γ1 + δ
+ α�

(α + γ1 + δ)(γ2 + δ)

)
.

It represents the expected number of cases directly caused by a single case in a population
in which all individuals are susceptible to infection (no other individuals are infected or im-
munized). In contrast, the effective reproduction number Re is the number of cases produced
in the current state. This type of models can account for some features observed in SARS or
covid type epidemics, such as the emergence of asymptomatic and symptomatic individuals,
unequal susceptibility, and superspread events.

These systems display a rich variety of behaviors, which depend on the specific choices of
parameters. For predictive purposes, it is essential to select realistic parameter ranges. In the
next section, we formulate a Bayesian framework to identify parameters from available popu-
lation counts, with quantified uncertainty.

7.3 Uncertainty quantification by Bayesian techniques

Bayes’ theorem quantifies the probability of an event using prior knowledge about it [17]. It
states that the posterior probability of observing a finite number of parameters ν given data d
is

p(ν|d) = p(d|ν)p(ν)

p(d)
, (7.2)
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where p(ν) represents our prior knowledge on the parameters ν and p(d|ν) is the conditional
probability (or likelihood) of observing data d given parameters ν. The normalization factor
p(d) describes the probability of the data. It can be obtained integrating p(d|ν)p(ν) with re-
spect to ν.

7.3.1 Bayesian formulation for SEIJR coefficients

In our framework, the parameters are the model parameters,

ν = (tin, β, γ2, δ, α, �, q,p, k), γ −1
1 = γ −1

2 + α−1, (7.3)

while the prior distribution and the likelihood are defined as follows [5].

To construct the prior distribution, we start with a multivaluate normal distribution of mean ν0

and covariance matrix Gpr

p(ν) = 1

(2π)n/2

1√|Gpr|
exp(−1

2
(ν − ν0)

tG−1
pr (ν − ν0)),

where n is the number of parameters. The mean ν0 is a parameter guess, whereas Gpr is a di-
agonal matrix with elements σ 2

i , i = 1, ..., n. Since our parameters must be positive and a
Gaussian distribution admits negative values, we set as prior distribution

ppr(ν) =
{

exp(−1
2(ν − ν0)

tG−1
pr (ν − ν0)), νj ≥ 0, j = 1, ..., n,

0, νj < 0, for some j .
(7.4)

For this expression to be a probability we should calculate the normalizing factor so that its
integral is one. However, our subsequent calculations do not need it. We will work with the
unnormalized distribution.

We define the conditional probability density p(d|ν) as

p(d|ν) = 1

(2π)L/2
√|Gn| exp

(
− 1

2
‖f(ν) − d‖2

G−1
n

)
, (7.5)

where ‖v‖2
G−1

n
= vtG−1

n v and L the amount of data. We assume additive Gaussian noise, i.e.,

the data d and the true parameters are related by

d = f(νtrue) + ε, (7.6)

f(ν) being the observation operator. Here, the noise ε is distributed as a multivariate Gaus-
sian N (0,Gn) with mean zero and covariance matrix Gn. We define the observation operator
during M consecutive days as

f(ν) = (J (1), ..., J (M),RJ (1), ...,RJ (M),DJ (1), ...,DJ (M)), (7.7)
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where the dynamics of the diagnosed recovered RJ and diagnosed dead DJ are governed by

dRJ

dt
= γ2J (t),

dDJ

dt
= δJ (t). (7.8)

This observation operator is consistent with the data available in practice: daily cumulative
counts of diagnosed individuals j̃m, diagnosed recovered individuals rm, and diagnosed dead
dm individuals, for m = 1, ...,M , see [6]. Putting the three blocks of data together we have

d = (j1, ..., jM, r1, ..., rM, d1, ..., dM), (7.9)

where jm = j̃m − rm − dm are the active diagnosed, those who are neither dead nor recovered.
In (7.5), we compare observations to the data d using the distance 1

2‖f(ν) − d‖2
G−1

n
. Notice

that we distinguish diagnosed individuals who are dead, recovered, and still sick, and com-
pare with model predictions for them neglecting the contribution of the undiagnosed, unlike
[9]. For simplicity, we assume that Gn is a real diagonal matrix, Gn = diag(σ 2

1 , . . . , σ 2
L), and

set all the variances for the same magnitude equal to a constant σ 2
J , σ 2

R, σ 2
D. Thus,

√|Gn| =
σM

J σM
R σM

R , where L = 3M is the number of data considered. Simpler cost functionals in the
literature use only total cumulative case counts [11].

Inserting (7.4) and (7.5) in (7.2) and discarding normalization constants, the posterior distri-
bution becomes

ppt(ν) ∼ exp

(
−1

2
‖f(ν) − d‖2

G−1
n

− 1

2
‖ν − ν0‖2

G−1
pr

)
. (7.10)

By studying this distribution, we may infer the coefficients of the model with quantified un-
certainty, depending on the selected prior and covariances. This framework can be modified
to consider different sets of parameters. For instance, we could suppress tin and consider the
initial populations at a certain time also unknowns to be identified, which we will do later.

7.3.2 Prior selection

We will use a guess for the model coefficients obtained by constrained optimization to de-
fine the mean ν0 in (7.4). To do so, we first simplify the SEIJR system. We assume that the
exposed class E is neglected, susceptibility is not distinguished (S1 = S2 = S, p = 1), and
the infected are a small fraction of the whole population, that is, S

N
∼ 1. The SEIJR model
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becomes a SIJR simplification

dS

dt
= −β(I + �J ),

dI

dt
= (β − (α + γ1 + δ))I + �βJ,

dJ

dt
= αI − (γ2 + δ)J,

dR

dt
= γ1I + γ2J,

dD

dt
= δ(I + J ),

(7.11)

with initial conditions S(tin) = N − 1, I (tin) = 1, J (tin) = R(tin) = 0 = D(tin). Here, N =
S + I + J + R + D is the total population number, which is a conserved quantity. This system
admits the explicit solution

I (t) = c1e
λ1t + c2e

λ2t ,

J (t) = α

λ1 − λ2
eλ1t + α

λ2 − λ1
eλ2t ,

(7.12)

where

λ1 = β − D1 − D2

2
− 1

2

√
β2 − 2βD1 + 2βD2 + 4α�β + D2

1 − 2D1D2 + D2
2,

λ2 = β − D1 − D2

2
+ 1

2

√
β2 − 2βD1 + 2βD2 + 4α�β + D2

1 − 2D1D2 + D2
2,

c1 = β − D1 − λ2

λ1 − λ2
, c2 = β − D1 − λ1

λ2 − λ1
,

with D1 = α + γ1 + δ, D2 = γ2 + δ. Using (7.12), we obtain explicit expressions for the
diagnosed recovered RJ and the diagnosed dead DJ , which are solutions of

R′
J = γ2J, D′

J = δJ, RJ (tin) = DJ (tin) = 0. (7.13)

Tentative average values for the rates α, γ1, γ2, δ, and for � are usually available from clinical
information, see Table 7.1 for the current pandemic in Spain. The remaining two parameters
can be approximated optimizing the cost

f (β, tin) = 1

2

M∑
m=1

(J̃ (β,m + tin) − j̃m)2, (7.14)

subject to the constraint

J̃ ′ = αI, J̃ (0) = 0, (7.15)
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Table 7.1: SEIJR model parameters. Guesses from clinical observation when
available [25].

Par. Definition Guess

β Transmission rate per day

k Rate of progression to the infectious state per day

α Rate of progression from infective to diagnosed per day 1/5–1/6 (stats)

γ1 Rate at which infectious individuals recover per day γ −1
1 = γ −1

2 + α−1

γ2 Rate at which diagnosed individuals recover per day 1/10–1/11 (stats)

δ covid-19 induced mortality per day 1/10–1/11 (stats)

� Relative measure of isolation of diagnosed cases 1/14 (practice)

q Relative measure of infectiousness for the exposed

p Reduction in risk of covid-19 infection for class S2

tin Time at which local spread starts

ρ Fraction of the population at a lower risk

with I given by (7.12). This cumulative function J̃ (t + tin) = (J + RJ + DJ )(t) admits
an explicit expression too. The data j̃m, m = 1, ...,M , represent the cumulative numbers
of diagnosed people during M days. This optimization problem can be solved employing a
Levenberg-Marquardt-Fletcher algorithm [14]. Once a first guess for all this subset of parame-
ters is available, we find a first guess for all the coefficients in the SEIJR model optimizing the
cost

f (β, tin, α, γ2, δ, �, q, k,p) = 1

2

M∑
m=1

(J̃ (β,m + tin, α, γ2, δ, �, q, k,p) − j̃m)2, (7.16)

with J̃ (t + tin) = (J + RJ + DJ )(t), J , RJ , and DJ being solutions of (7.1) and (7.13).
However, Levenberg-Marquardt-Fletcher optimization procedures may yield some negative
coefficients. To avoid the technical complications associated to positivity restrictions, we can
also use judicious choices for q, k, p instead.

7.3.3 Markov Chain Monte Carlo sampling

Once a prior has been defined, we sample the posterior distribution (7.10). Markov Chain
Monte Carlo (MCMC) techniques have the potential of sampling unnormalized posterior
distributions, as we discuss next. A Markov chain is a sequential stochastic process X0 −→
X1... −→ Xn..., which evolves from one state to the next within an allowed set of states. To
define a Markov chain we need:

• The set of states X the chain is allowed to reach, that is, the state space.



110 Chapter 7

• A transition operator q(Xn+1|Xn) defining the probability of moving from state Xn to
state Xn+1.

• The initial distribution π0 establishing the initial probability for the possible states.

Chains are assumed to be ‘memoryless’, that is, they depend only on the current state, and not
on the previous path: q(Xn+1|Xn,Xn−1, ...,X0) = q(Xn+1|Xn). To generate a Markov chain,
we first sample an initial state from π0, and then move from one state to another as dictated by
the transition operator q(Xn+1|Xn).

There are many MCMC variants well adapted to sampling posterior distributions π , with
different transition operators constructed from it [3]. Metropolis-Hastings algorithm, for in-
stance, is a standard choice to sample an unnormalized distribution π . One drawback is that
not all the proposed samples are accepted, wasting computational effort, specially in high
dimensions. Hamiltonian Monte Carlo methods [12] reduce the correlation between consec-
utive sampled states by proposing moves to distant states which keep a high probability of
acceptance. We will resort here to an algorithm that mixes several chains, allowing for paral-
lelization and faster computation, which is also able to handle multimodal distributions. The
Goodman-Weare [16] algorithm generates different chains for different walkers X1, . . . ,XW

which are mixed up. It proceeds as follows:

• Initialization: Generate the initial positions of the walkers Xw
0 ∈ R

d , w = 1, ...,W sam-
pling π0. Set the distribution π to be sampled, the parameter a (typically 2), the number
of samples N .

• Iteration: for n = 0, ...,N − 1
• for w = 1, ...,W

- Draw a walker X
q
n at random from the set of walkers {Xj

n}j 	=w.
- Choose a random value zw from the distribution g(z) defined by

g(z) =
{

1/
√

z, if z ∈ [1/a, a],
0, otherwise.

- Calculate proposition Xw
prop = X

q
n + zw(Xw

n − X
q
n).

- Calculate s = zd−1
w

π(Xw
prop)

π(Xw
n )

.
- Calculate s = Min (1, s).
- Draw r with uniform probability U(0,1).
- If r ≤ s set Xw

n+1 = Xw
prop.

- If r > s set Xw
n+1 = Xw

n .
• Final result: The Markov chains {Xw

0 , ...,Xw
N }, for all the walkers w = 1, ...,W .

We set π0 equal to the prior distribution (7.4) and π equal to the posterior distribution (7.10).
By sampling this posterior distribution, we can find the Maximum a posteriori approximation
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Figure 7.1: (a) Data from positive PCR tests until April 22th (only done to severe cases in
hospitals). (b) Data from hospitals admittance and home surveillance from April 22th until

September 29th. During the last period, no data were reported during the weekends (misplaced
red squares at zero mark that fact).

(MAP) for the parameters, that is, the most likely coefficients for the SEIJR model. It is the
sample with highest probability. We can also visualize the uncertainty in the choice of model
coefficients for a given data set by means of histograms constructed with samples. The next
section exemplifies the procedure with real data.

7.4 Effect of nonpharmaceutical actions

We illustrate the performance of the parameter identification procedure we have developed
calculating coefficients for the SEIJR model with data for the current covid-19 pandemic from
the Madrid region (Spain), available from [6] until April 22th, 2020, and, in more detail, from
[7] after that date. Fig. 7.1 represents the data until the end of September 2020:

• Period 1 (lockdown): From Feb 25 until April 22, daily counts of diagnosed (positive PCR
at hospital), dead (at hospital) and recovered (released from hospital) are available. Three
stages can be distinguished according to contention measures implemented: until March
16 (free growth), until March 30 (basic lockdown), and until April 13 (severe lockdown).

• Period 2 (release): From April 22 until day July 2, daily counts were published for di-
agnosed (PCR or hospitalized or under surveillance at home), dead (at hospitals, care
homes, and homes), and recovered (released from hospital, released from home surveil-
lance) individuals. To quantify the diagnosed, we will discard the PCR positives which
usually overlap with the rest and include repeated positives from the same individuals. We
will consider hospital and home surveillance data. Three stages can be distinguished ac-
cording to contention measures implemented: until May 4 (basic lockdown), until May 25
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Figure 7.2: Cumulative number of cases versus fitting (7.15) for the parameter guess tin = 5.9,
β = 0.6720, α = 1/5, γ1 = 1/15, γ2 = 1/10, δ = 1/10, � = 1/14.

(masks enforced in closed spaces), and until July 2 (generalized use of masks and distanc-

ing).

Fig. 7.1(b) contains also data after July 2nd. After that date, airports, railways, and roads were

opened to foreign visitors, the system was no longer closed. Before that date, there was some

kind of mobility to and from other Spanish regions. However, most regions were undergoing a

similar (or even better) evolution, so we will keep the assumption of a closed system in Peri-

ods 1 and 2.

To construct a prior, we first obtain an initial guess for the model parameters considering only

the free growth Stage of Period 1. To do so, we optimize the constrained cost (7.14) fixing

the parameter values in Table 7.1. Using a Levenberg-Marquardt-Fletcher algorithm, we find

β = 0.6720, and tin = 5.9905. The resulting fit for the cumulative case number J̃ associated to

the SIJR approximation is depicted in Fig. 7.2. These are key parameters because they govern

exponential growth in the initial stage.

Complementing these values with p = 0, q = 1/2, k = 1/2, we define the mean ν0 for the

prior (7.4). The diagonal covariance matrix Gpr has entries 0.12 for all the model coefficients

and 102 for tin. We consider standard deviations σJ = 103, σR = 103, σD = 102 for the

noise. With these choices, we can study (7.10) for the SEIJR model coefficients during the

free growth stage. To consider data from different stages, we allow the model coefficients to

change from stage to stage, that is, we consider piecewise coefficients.
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7.4.1 Piecewise SEIJR system: lockdown

We use the two variables S1 and S2 to represent populations with different exposure to illness
due to the enforcement of contention measures (distancing, confinement...), and split time in
three consecutive intervals [Ti−1, Ti], i = 1,2,3, according to the measures enforced. The
resulting system of equations takes the form (7.1) with parameters

ν(1) = (tin, β
(1), γ

(1)
2 , δ(1), α(1), �(1), q(1), p(1), k(1)), t ∈ [T0, T1],

ν(2) = (ρ(2), β(2), γ
(2)
2 , δ(2), α(2), �(2), q(2), p(2), k(2)), t ∈ [T1, T2],

ν(3) = (ρ(3), β(3), γ
(3)
2 , δ(3), α(3), �(3), q(3), p(3), k(3)), t ∈ [T2, T3],

(7.17)

and 1/γ
(i)
1 = 1/γ

(i)
2 + 1/α(i), i = 1,2,3. Initial conditions for each period are:

• All unknowns vanish at T0 = tin except E(T0) = 1 and S1(T0) = N − 1, N being the total
population.

• All unknowns are continuous at T1 except for an abrupt jump in S1 and S2 due to con-
tention measures enforced: S1(T

+
1 ) = (1 − ρ(1))S1(T

−
1 ) and S2(T

+
1 ) = S2(T

−
1 ) +

ρ(1)S1(T
−

1 ), ρ(1) represents the fraction of population confined in basic lockdown.
• All unknowns are continuous at T2 except for an abrupt jump in S1 and S2 due to con-

tention measures enforced: S1(T
+

2 ) = (1 − ρ(2))S1(T
−
2 ) and S2(T

+
2 ) = S2(T

−
2 ) +

ρ(2)S1(T
−

2 ), ρ(2) represents the additional fraction of population confined in severe lock-
down.

The Bayesian formulation for this piecewise model uses a prior distribution (7.4) with ν =
(ν(1), ν(2), ν(3)), number of parameters n = 3 × 9, and a mean ν0 constructed repeating the
mean proposed for the first stage, ν0 = (ν

(1)
0 , ν

(2)
0 , ν

(3)
0 ), with ν

(3)
0 = ν

(2)
0 = ν

(1)
0 except for

changes at ν
(2)
0 (1) = 3/4 and ν

(3)
0 (1) = 1/4 to account for the fractions of populations con-

fined at each stage. Accordingly, the diagonal of the covariance matrix Gpr has entries 0.12

for all the model parameters except 102 for tin. The posterior distribution to be studied is then
given by (7.10) with a similar covariance matrix for the noise. We keep σJ = 103, σR = 103,
σD = 102.

Sampling the posterior distribution by the MCMC algorithm in Section 7.3.3 we obtain the
results represented in Table 7.2, after discarding the first B = S/4 samples as burn-in period.
The coefficient values yielding the maximum probability are denoted by νmax. The mean of
all samples, which conveys a statistical meaning, is denoted by νmean. Notice the increase of
the diagnose rate α and the decrease in the mortality rate δ from stage to stage, as well as the
decrease in the transmission rates β and βp in the last stage. The increase in β during the sec-
ond stage may be the outcome of large gatherings at the end of the previous phase, as well as
lack of protective material during it. Panels (a)–(b) in Fig. 7.3 compare the SEIJR solutions
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Table 7.2: Values of νννmean and νννmax for three stages of the first
period using the SEIJR model, with log(νννmean) = −5734,

log(νννmax) = −124, log(ννν0) = −21,431, respectively. In the first row,
the first columns represent tin, while the rest correspond to ρ.

ν
(1)
mean ν

(2)
mean ν

(3)
mean ν

(1)
max ν

(2)
max ν

(3)
max

tin, ρ 8.4233 0.7346 0.2231 5.3002 0.7203 0.1068

β 0.6570 0.7072 0.6439 0.6613 0.8231 0.6720

γ1 0.0671 0.0600 0.0640 0.0860 0.0556 0.0575

γ2 0.1279 0.0867 0.0889 0.1501 0.0674 0.0739

δ 0.1173 0.0475 0.0197 0.0351 0.0309 0.0123

α 0.1410 0.1949 0.2284 0.2014 0.3175 0.2596

� 0.1031 0.1160 0.1195 0.0608 0.0760 0.1016

q 0.4909 0.5204 0.4760 0.5447 0.4704 0.3950

p 0.0902 0.0615 0.1395 0.0136

k 0.5121 0.4974 0.4888 0.3930 0.5016 0.3583

for νmax and νmean with the recorded data. Panel (c) quantifies uncertainty in the magnitudes
of the different populations at the end of the last stage. Panels (d)–(f) quantify uncertainty in
the estimates for the model coefficients.

7.4.2 Piecewise SEIJR system: release

In the previous section, the initial values for the model at tin were known. Also, the data used
to fit coefficients keep the same quality and nature during that period. When the quality of the
data suddenly improves, there is a gap between predictions before and after that time. If we
restart the inference scheme to account for it, initial values are missing unless we infer them
from the previous period. We obtain a new Bayesian formulation which reflects this fact in-
cluding as parameters not the time tin but the initial states at a fixed time for all the unknowns.

We will apply this strategy to switch from the data depicted in Fig. 7.1(a) to the data depicted
in Fig. 7.1(b), ten times larger. We consider a set of parameters for the SEIJR model (7.1) in
the interval [τ0, τ1] constituted by the initial data at τ0 = T3 plus the model coefficients

ν = (S1,0, I0, J0,E0,R0,D0, ρ,β, γ2, δ, α, �, q,p, k), (7.18)

with 1/γ1 = 1/γ2 + 1/α. The mean ν0 for the prior is formed by the best approximation
for the coefficients found in the final stage of the previous period and the final values of the
variables at T3. We consider the same variances for the coefficients as before, plus standard
deviations 104 for the populations of alive subjects and 103 for the dead. We keep the same
covariances as before for the data.
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Figure 7.3: (a) Counts of diagnosed and dead cases for SEIJR solutions of (7.1) and (7.8) with
νννmean (dashed lines), superimposed on data from Fig. 7.1(a). (b) Same for νννmax. (c) Histograms
representing probabilities for the total number of people affected by the virus at the end of the

period, and for the different SEIJR categories. Superimposed lines represent the number of
affected people for νννmax (red), νννmean (green), and the average of all samples (black). (d)–(f)

Histograms representing a discrete approximation to the probability distribution of parameters
during the three stages: (d) first, (e) second, (f) third. Sampling parameters W = 500,

S = 5 × 106, B = S/4, and acceptance parameter a = 2.



116 Chapter 7

Table 7.3: Values of νννmean and νννmax for Stage 1 of the second period using the SEIJR model,
with log(νννmean) = −12,980, log(νννmax) = −2020, log(νννin) = −406,460, respectively. Populations

are measured in a scale of 106 individuals.

β γ1 γ2 δ α � q p k

νmean 0.7646 0.2224 0.6878 0.0214 0.3287 0.2129 0.4565 0.2876 0.4455

νmax 0.7081 0.1327 0.2931 0.0099 0.2425 0.1960 0.4387 0.2220 0.4060
S1,0 S2,0 I0 J0 E0 R0 D0

νmean 0.0186 6.0576 0.0335 0.0998 0.0290 0.1219 0.0120

νmax 0.0137 5.9330 0.0009 0.0474 0.0282 0.2272 0.0120

Figure 7.4: (a) Counts of diagnosed cases for SEIJR solutions of (7.1) and (7.8) with νννmean, to be
compared to Stage 1 in Fig. 7.1(b). (b) Same for νννmax. (c) Histograms representing probabilities
for the total number of people affected by the virus at the end of the stage, and for the different

SEIJR categories. Superimposed lines represent the number of affected people for νννmax (red),
νννmean (green), and for the average of all samples (black). Sampling parameters W = 100,

S = 2 × 106, B = S/4, and acceptance parameter a = 2.

Sampling the resulting posterior distribution by the MCMC algorithm described in Sec-

tion 7.3.3 we obtain the results represented in Table 7.3 for the first stage of data in Fig. 7.1(b).

Again, the coefficient values yielding the maximum probability are denoted by νmax, and the

mean of all samples is denoted by νmean. Fig. 7.4 compares the SEIJR solutions for them with

the recorded data. The agreement is worse than in Fig. 7.3 because we reduced the number of

samples, it improves increasing the number of samples again.

We repeat the strategy for the next two stages adding a second block of coefficients. The

resulting system of equations takes the form (7.1) with initial data at τ1 and piecewise coef-
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Table 7.4: Values of νννmean and νννmax for the second and third stages of the second period using
the SEIJR model, with log(νννmean) = −626, log(νννmax) = −398, log(νννin) = −32,489, respectively.

Populations are measured in a scale of 106 individuals.

β γ1 γ2 δ α � q p k

ν
(1)
mean 0.6925 0.0914 0.4028 0.0119 0.1183 0.1664 0.4245 0.1966 0.3405

ν
(1)
max 0.6514 0.0806 0.3668 0.0102 0.1032 0.0897 0.4202 0.1476 0.2591

ν
(2)
mean 0.7382 0.1753 0.5595 0.0151 0.2553 0.2196 0.4443 0.3036 0.4465

ν
(2)
max 0.6588 0.1909 0.8198 0.0182 0.2489 0.2956 0.5386 0.3683 0.4888

S1,0 S2,0 I0 J0 E0 R0 D0

νmean 0.0171 5.8518 0.0048 0.0350 0.0206 0.2736 0.0135

νmax 0.0166 5.8371 0.0018 0.0274 0.0308 0.2801 0.0135

ficients in [τ1, τ2] and [τ2, τ3]. The total set of parameters is ν = (ν(0), ν(1), ν(2)) with

ν(0) = (S1,0, I0, J0,E0,R0,D0),

ν(1) = (β(1), γ
(1)
2 , δ(1), α(1), �(1), q(1), p(1), k(1)), t ∈ [τ1, τ2],

ν(2) = (ρ(2), β(2), γ
(2)
2 , δ(2), α(2), �(2), q(2), p(2), k(2)), t ∈ [τ2, τ3],

(7.19)

and 1/γ
(i)
1 = 1/γ

(i)
2 + 1/α(i), i = 1,2, S2,0 = N − (S1,0 + I0 + J0 + E0 + R0 + D0). The

mean ν0 for the prior is formed by the best approximation for the coefficients found in the

final stage of the previous period and the final values of the variables at τ1. We consider the

same variances for the coefficients and populations as before, as well as the same covariances

as before for the data.

Sampling the resulting posterior distribution by the MCMC algorithm described in Sec-

tion 7.3.3 we obtain the results represented in Table 7.4 for the second and third stages of data

in Fig. 7.1(b). Again, the coefficient values yielding the maximum probability are denoted

by νmax, and the mean of all samples is denoted by νmean. Notice that most of the susceptible

population enters the S2 category, for which transmissibility is reduced by a factor p due to

protective measures. Notice also that p and � increase in the last stage, which suggests a gen-

eralized relaxation in protective and quarantine measures. This is consistent with the end of

home confinement. However, the diagnose rate α and the recovery rates γ1, γ2 increase, and

the epidemic remains stable. Fig. 7.5 compares the corresponding SEIJR solutions to data,

and quantifies uncertainty in the final populations, as well as coefficients and initial popula-

tions.
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Figure 7.5: (a) Counts of diagnosed cases for SEIJR solutions of (7.1) and (7.8) with νννmean
(dashed lines), superimposed on data from Stages 2–3 in Fig. 7.1(b). (b) Same for νννmax. The

differences between them are negligible. (c) Histograms of probabilities for the total number of
people affected by the virus at the end of the period, and for the different SEIJR categories. The

superimposed line represents the average of all samples. (d)–(f) Histograms for a discrete
approximation to the probability distribution of parameters during the two stages: (e) first, (f)

second, as well as the initial data for the period (d). Sampling parameters W = 500, S = 5 × 106,
B = S/4, and acceptance parameter a = 2.
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7.4.3 Equilibrium

These studies show that nonpharmaceutical actions such as lockdowns, protective measures
and distancing can drive a closed SEIJR system from free growth to extinction. The key is-
sue is to reach a regime in which the right hand side in the equation for the exposed E in (7.1)
is negative. As a consequence, the right hand sides in the equations for the infected I and di-
agnosed J will also become negative and the system will reach an equilibrium in which the
susceptible, recovered and dead individuals remain constant. This was achieved acting on the
parameters α, �, p in (7.1) and also ρ in (7.17) and (7.19):

• Increasing α we increase the number of diagnosed infected individuals, and decrease the
number of infected people. This can be done by extensive or well targeted testing policies.

• Decreasing �, we reduce the chances of diagnosed individuals to propagate the infection.
This can be achieved by strict quarantine measures.

• Splitting the susceptible population in such a way that a fraction ρ follows strict distanc-
ing measures, we reduce spread.

• Reducing p, we decrease the susceptibility of that part of the population. It can be the
result of confining them at home or imposing the use of masks outside home.

When the exposed population E is small, increasing α and decreasing � by fostering early
detection of infected individuals and strict quarantine of those diagnosed can render negative
the right hand side of the equation for I in (7.1). However, unless measures to decrease the
number of exposed E are taken too, by introducing ρ and p, the system will remain out of
control. Critical increase will be delayed, but not stopped. By the structure of Eq. (7.1), ρ and
p are the key parameters to reach an extinction regime in the closed system.

7.5 SEIJR model including migration

As we have seen in the previous sections, an epidemic governed by a SEIJR model can be
driven to equilibrium by contention measures in a closed system. When the system is no
longer closed and migration is allowed, this goal is much harder to achieve.

Migration can be incorporated in the model considering different degrees of complexity. For
instance, [22] considers several cities (or states, or countries) in interaction by introducing a
SEIJR system for each of them and additional terms coupling all of them. Often, there are so
many local, national, and international interactions at different levels that it is hard to consider
all individually. Here, we will represent incoming and outcoming populations by means of
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sink and source terms:

dS1

dt
= −βS1(t)

I (t) + qE(t) + �J (t)

N(t)
+ θ1μinrin(t) − η1μout rout (t),

dS2

dt
= −βpS2(t)

I (t) + qE(t) + �J (t)

N(t)
+ θ2μinrin(t) − η2μout rout (t),

dE

dt
= β(S1(t) + pS2(t))

I (t) + qE(t) + �J (t)

N(t)
− kE(t)

+ θ3μinrin(t) − η3μout rout (t),

dI

dt
= kE(t) − (α + γ1 + δ)I (t) + θ4μinrin(t) − η4μout rout (t),

dJ

dt
= αI (t) − (γ2 + δ)J (t),

dR

dt
= γ1I (t) + γ2J (t) + θ5μinrin(t) − η5μout rout (t),

dD

dt
= δI (t) + δJ (t),

(7.20)

where θ1 + θ2 + θ3 + θ4 + θ5 = 1, η1 + η2 + η3 + η4 + η5 = 1, θi, ηi ≥ 0, i = 1,2,3,4,5
and N(t) = Ntotal + μin

∫ t

0 rin − μout

∫ t

0 rout is the total population. Here, μinrin, μout rout

represent the individuals entering and exiting the system. Multiplying by θi we get the frac-
tions of susceptible, exposed, infected, and recovered subjects. If a definite functional form
for the time evolution of incoming and outgoing population rin(t) and rout (t) was known we
could apply the parameter identification framework we have developed to infer the missing
parameters.

Assuming the coefficients and initial populations are such that the epidemic spread would be
on the brink of extinction in a closed system, incoming infected and exposed individuals con-
tribute the terms which can destabilize the system. The requirement of negative tests before
admitting outsiders would set θ4 to zero and θ3 ∼ 0. As long as the contribution θ3μinrin(t)

does not make positive the right hand side of the equation for E in (7.20), the epidemic would
remain controlled. The system will become unstable when either θ3μinrin(t) is large enough
to change that sign, or p is large enough to have the same effect due of a relaxation of con-
tention measures, see Fig. 7.1(b).

7.6 Optimization approach to control

As we have already observed, to keep the systems (7.1) and (7.20) out of the exponential
growth regime, we need a negative right hand side in the equation for E. We discuss here a
possible control strategy. Let us assume that the coefficients and initial populations for the
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(7.1) model are such that the epidemic in the closed system is extinguishing, as it happens for
the coefficients and populations obtained in Section 7.4.2.

We wish to identify the reduction factor p representing the protective measures enforced on
the population S2 who obeys the rules. Therefore, we will consider the cost C(p) given by

Minp∈[0,1]

⎧⎨
⎩1

2

M∑
i=1

[(
β(S1(ti) + pS2(ti))

I (ti) + qE(ti) + �J (ti)

N
− kE(ti)

)+]2

+ c

2
p2

⎫⎬
⎭ ,

(7.21)
where c

2p2, c > 0, represents the cost of enforcing such measures, subject to the differential
constraint (7.1). A similar cost can be used for the open system (7.20) including there source
and sinks representing migration, as we comment later. We can approximate the solution of
this optimization problem by Newton techniques [24], which requires the knowledge of the
first and second order derivatives of the cost (7.21).

Let us denote F(i,p) = β(S1(ti) + pS2(ti))
I (ti )+qE(ti )+�J (ti )

N
− kE(ti). Then

dC

dp
=

N∑
i=1

F(i,p)+Fp(i,p) + cp. (7.22)

We can apply gradient methods to optimize or exploit the characterization of minima in di-
mension one:

dC(p)

dp
= 0,

d2C(p)

d2p
> 0. (7.23)

This equation can be solved by standard methods for nonlinear equations, such as Newton-
Raphson schemes [24]

pn+1 = pn −
(

d2C(pn)

d2p

)−1
dC(pn)

dp
. (7.24)

These schemes involve the second order derivative

d2C

dp2 =
N∑

i=1

[F+(i,p)Fp,p(i,p) + χF>0Fp(i,p)2] + c (7.25)

which fails to exist when F(p) = 0, points at which, if encountered, the iteration should be
modified switching to a gradient scheme. We can obtain all the required first and second order
population derivatives with respect to p by simply differentiating twice the (7.1) system with
respect to p and solving the resulting systems of differential equations. Setting

R(p) = I + qE + �J

N
,Rp(p) = Ip + qEp + �Jp

N
,Rpp(p) = Ipp + qEpp + �Jpp

N
,
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we have

dS1,p

dt
= −βS1(t)Rp(t) − βS1,p(t)R(t),

dS2,p

dt
= −βpS2(t)Rp(t) − βpS2,p(t)R(t) − βS2(t)R(t),

dEp

dt
= β(S1(t) + pS2(t))Rp(t) + β(S1,p(t) + pS2,p(t))R(t)

− kEp(t) + βS2(t)R(t) = Fp,

dIp

dt
= kEp(t) − (α + γ1 + δ)Ip(t),

dJp

dt
= αIp(t) − (γ2 + δ)Jp(t),

(7.26)

dS1,pp

dt
= −βS1(t)Rpp(t) − βS1,pp(t)R(t) − 2βS1,p(t)Rp(t),

dS2,pp

dt
= −βpS2(t)Rpp(t) − βpS2,pp(t)R(t) − 2βpS2,p(t)Rp(t)

− 2βS2,p(t)R(t) − 2βS2(t)Rp(t),

dEpp

dt
= β(S1(t) + pS2(t))Rpp(t) + β(S1,pp(t) + pS2,pp(t))R(t) − kEpp(t)

+ 2β(S1,p(t) + pS2,p(t))Rp(t) + 2βS2,p(t)R(t) + 2βS2(t)Rp(t) = Fpp,

dIpp

dt
= kEpp(t) − (α + γ1 + δ)Ipp(t),

dJpp

dt
= αIpp(t) − (γ2 + δ)Jpp(t),

(7.27)

with zero initial data.

If the solution we find satisfies F(p)+ = 0 in the end, our system remains out of the expo-

nential growth region. Note that the additional term cp2 suppresses a possible continuum of

candidates. Nevertheless, values for c are difficult to estimate in practice.

When we are using initial data and coefficients obtained from Bayesian inference in a previ-

ous time period, we can quantify uncertainty in the range of possible p by solving the opti-

mization problem for each sample of coefficients and initial data, and constructing histograms

with the resulting solutions. However, some of the samples may not lead to F(p)+ = 0 in the

fixed time tM , forcing an increase. This fact yields information on the uncertainty on the con-

trol time.



Parameter identification in epidemiological models 123

A similar strategy could be applied for the open system (7.20) modifying F to include the
source:

F(ρ) = β(S1(t) + pS2(t))
I (t) + qE(t) + �J (t)

N(t)
− kE(t) + θ3[μinrin(t) − μout rout (t)],

and taking into account that the total population N(t) is no longer constant.

7.7 Conclusions

We have developed a Bayesian inference framework to estimate unknown parameters in epi-
demiological models, like model coefficients or initial data, given population counts along
the progression of the epidemic. This technique quantifies uncertainty in the fittings, provid-
ing parameter ranges to guide and focus analytical studies. We can obtain predictions for the
final distribution of populations, including subjects difficult to track, such as asymptomatic
individuals, and the total magnitude of the affected population. We have modified the model
to include migration effects, discussing the potential role of key parameters to prevent expo-
nential growth. Simple optimization formulations may allow us to establish control regimes,
though how to estimate the cost of the contention measures necessary to implement them is an
open question.
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