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Abstract

There is growing recognition that the composition of the gut microbiota influences

behaviour, including responses to threat. The cognitive-interoceptive appraisal of

threat-related stimuli relies on dynamic neural computations between the anterior

insular (AIC) and the dorsal anterior cingulate (dACC) cortices. If, to what extent, and

how microbial consortia influence the activity of this cortical threat processing cir-

cuitry is unclear. We addressed this question by combining a threat processing task,

neuroimaging, 16S rRNA profiling and computational modelling in healthy partici-

pants. Results showed interactions between high-level ecological indices with threat-

related AIC-dACC neural dynamics. At finer taxonomic resolutions, the abundance of

Ruminococcus was differentially linked to connectivity between, and activity within

the AIC and dACC during threat updating. Functional inference analysis provides a

strong rationale to motivate future investigations of microbiota-derived metabolites

in the observed relationship with threat-related brain processes.
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1 | INTRODUCTION

Emerging work suggests that the composition and diversity of the

intestinal (gut) microbiota plays a key role in altering brain activity and

related behaviour (Cryan and Dinan, 2012). Microbiota-deficient and

germ-free mice have provided initial accounts of the effect of micro-

biota on brain processes, including emotion and affect (Bravo

et al., 2011), social behaviour (Sherwin et al., 2019), and cognition

(Desbonnet et al., 2015). By extension, there is growing motivation to

assess how microbial perturbations are linked to the expression of

psychiatric symptoms including the ability to protect against (Clarke

et al., 2013), or induce (Neufeld et al., 2011) stress and anxiety-like

behaviour.

A key feature underpinning anxiety is the impaired ability to flexi-

bly respond to threat and modify behavioural responses in volatile

learning environments (Schiller et al., 2008). Within a broader network

of cortico-subcortical regions, the anterior insular cortex (AIC) and

dorsal anterior cingulate cortex (dACC) have been the most consis-

tently implicated regions in neuroimaging studies of human threat

processing (Fullana et al., 2016). In this capacity, the AIC-dACC
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circuitry has been hypothesised to support the subjective experience

of threat processing via cognitive-interoceptive appraisal mechanisms

(Kalisch and Gerlicher, 2014; Harrison et al., 2015; Fullana

et al., 2016). Specifically, the AIC is thought to be responsible for gen-

erating an awareness of the current emotional and internal physical

state (Craig, 2009; Fullana et al., 2016), including gastrointestinal and

cardiorespiratory bodily changes (Garfinkel et al., 2015; Rebollo

et al., 2018). This information is relayed to the dACC, where its activ-

ity has been more directly linked to the cognitive appraisal of bodily

sensations of anxiety (Harrison et al., 2015). Given their joint contri-

bution in receiving and processing afferent visceral information, the

AIC-dACC network represents a natural candidate to study gut micro-

biota interactions with higher-level brain function (Kano et al., 2018).

Bidirectional communication between the microbiota and the

brain is facilitated by several mechanisms, including immune, endo-

crine, vagal and microbiota-derived metabolite signalling

(Raybould, 2010; Mayer, 2011; Cryan and Dinan, 2012; Kaelberer

et al., 2018). Microbial-derived metabolites like short-chain fatty acids

(SCFAs) can activate receptors expressed on the colonic epithelium

and within enteroendocrine cells, modulating vagal afferents or immu-

nomodulatory pathways (Le Poul et al., 2003; Koh et al., 2016). Vagal

signalling may represent the most direct route through which the

microbiota can relay action potentials to cortical regions involved in

threat processing (Rhee et al., 2009; Raybould, 2010; Forsythe

et al., 2014; Kaelberer et al., 2018). The latency of onset to evoking

afferent vagal responses occurs within minutes of intraluminal probi-

otic administration (Perez-Burgos et al., 2012), while the SCFA

butyrate—a by-product of microbial metabolism—has been shown to

elicit vagal responses within seconds (Lal et al., 2001). Afferent

viscerosensory signals converge in the nucleus tractus solitarius (NTS)

and are projected via nuclei in the brainstem—including locus

coeruleus, parabrachial nucleus and dorsal raphe nuclei—to higher cor-

tical regions, including the AIC and dACC (Azzalini et al., 2019). The

proposed relationship between the viscera and the AIC-dACC net-

work is also supported by the cellular substrate underpinning commu-

nication between these two cortical regions: the von Economo

neurons (VEN; Mayer, 2011). These cells contain receptors (serotonin

2b) and peptides (neuromedin B) that are also abundant in the enteric

nervous system (Allman et al., 2010). The peculiar expression of

receptors and peptides in both viscera and VENs suggest a likely role

of the AIC-dACC network in linking brain and gut signals.

Preclinical work has revealed how manipulation of the microbiota

impacts threat-related processes (Chu et al., 2019). These works pro-

vide preliminary support for the notion that changes in the composi-

tion of the microbiota, and associated metabolite production,

modulates neural activity in distinct brain regions. However, due to

the large variability between the mouse and human microbiota, pre-

clinical observations have not always replicated in human studies

(Sherwin et al., 2019). It is also unclear whether human microbiota-

brain interactions can be characterised by shifts in high-level ecologi-

cal measures (e.g. alpha diversity), or whether they emerge within tax-

onomic scales at finer resolutions. To bridge this knowledge gap, we

combined a threat processing paradigm (Savage et al., 2020a;

Figure 1a), 16S rRNA gene sequencing (of stool samples), functional

magnetic resonance imaging (fMRI) and computational modelling.

Using established conditioning procedures, the adopted task facili-

tates the assessment of both general threat learning as well as threat

updating responses in AIC and dACC. Recently, using this task, it was

shown that threat updating responses in dACC were especially predic-

tive of subjectively reported bodily anxiety sensations (Savage

et al., 2020a).

Our first aim was to extend existing neuroimaging work by demon-

strating the effective (causal) connectivity patterns between neural

populations within the AIC and the dACC during the assessment of gen-

eral threat acquisition, and subsequent updating processes. To under-

stand whether inter-individual differences in microbiota covaried with

evoked AIC-dACC responses during threat processing, we adopted a

Bayesian and multivariate statistical framework (Zeidman et al., 2019).

Specifically, effective connectivity measures were assessed against

(i) high-level ecological measures (α-diversity and phylum ratio) and

(ii) specific (genus-level) measures to discern the resolution/s at which

interactions emerge. High-level microbial measures were selected a priori

based on previous work (Ley et al., 2006; Mariat et al., 2009; Lozupone

et al., 2012). At genus-level, we used a validated data-driven clustering

approach (Arumugam et al., 2011) to discern features contributing to the

largest variance among samples. The selection of genus-level candidates

were consistent with previous literature (Tillisch et al., 2017; Valles-

Colomer et al., 2019) and were assessed both independently (multiple

regressions) and in the context of a multivariate microbiome-brain rela-

tionship (sparse canonical correlation analysis). Finally, guided by preclini-

cal work, we assessed the predicted functional capacity of the

microbiota—focusing on pathways involved in SCFA production. This last

analysis aimed to provide support to previously proposed causal path-

ways linking microbiota to brain (van de Wouw et al., 2018; Boehme

et al., 2019; Lee et al., 2020).

2 | MATERIALS AND METHODS

2.1 | Participants

The study was approved by the Human Research Ethics Committee of

QIMR Berghofer Medical Research Institute (P3435). Written

informed consent was obtained for all participants. Thirty-eight

healthy adult participants (31.7 ± 8.8 years; 23 female) were recruited

from the Brisbane (Australia) metropolitan area by an accredited prac-

tising dietitian (CVH; Table S4). Exclusion criteria included: a BMI of

<18.5 or > 30.0; current or previous history of a major psychiatric ill-

ness or neurological disorder (assessed via the Mini-International Neu-

ropsychiatric Interview [Sheehan et al., 1998] performed by a trained

psychologist); chronic or clinically significant pulmonary, cardiovascu-

lar, gastrointestinal, hepatic, renal, or dermatological functional abnor-

mality as determined by medical history; history of cancer (excluding

medically managed squamous or basal cell carcinomas of the skin); his-

tory of active, uncontrolled gastrointestinal condition, disease, or

irregular bowel movements (including persistent diarrhea or
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constipation); history of psoriasis or recurrent eczema; major changes

to dietary intake in the past month (self-report); consumption of ≥5

standard alcoholic drinks per day; recreational drug use ≥1 occasion in

the past 3 months; acute disease at time of enrolment; pregnancy or

lactation; and use of the following medications within the past

3 months: antibiotics, antifungals, antivirals, antiparasitics, corticoste-

roids, cytokines, methotrexate or immunosuppressive cytotoxic

agents, large doses of commercial probiotics, or selective serotonin

reuptake inhibitors. Gastrointestinal and microbiota-related exclusion

criteria were adapted from an existing framework provided by The

Human Microbiome Project Consortium (Methé et al., 2012). Dietary

assessments, including the Traditional Mediterranean diet (TMD)

questionnaire, reported gastrointestinal symptoms, current medication

use, and recent changes to major food groups was administered by an

Accredited Practising Dietitian (APD). Each participant completed: (i) a

health and neurocognitive assessment; (ii) home collection of a stool

sample and (iii) structural (T1) and functional magnetic resonance

(MR) scans. Study requirements were separated into two sessions; the

second session completed no longer than 14 days after the first (4.8

± 3.9 days between sessions, mean ± SD).

2.2 | Experimental paradigm

A validated framework to study threat learning and updating is a Pav-

lovian threat processing paradigm, wherein an emotionally neutral

F IGURE 1 Behavioural results and neural correlates of threat acquisition and reversal. (a) Design of the threat processing paradigm
implemented in the MRI scanner. The fMRI task lasted for 17 min and had three phases: baseline (top row), acquisition (middle row), and reversal
(bottom row). Blue and yellow spheres were used as the conditioned stimuli (CS). Between each CS presentation, a white fixation cross appeared
which served as a fixed interstimulus interval (ISI). The unconditioned stimulus (US, lightning bolt) was an aversive auditory burst. During
acquisition, the US co-terminated with one of the CS (forming a threat, CS+) and not with the other (forming a safety, CS�). During reversal, the
pairing of the US and CS was switched. Immediately after each phase (in-scanner, as a continuation of the task phase), participants were asked to
rate the spheres in terms of subjective bodily anxiety sensations and affective valence on a five-point Likert scale (Self-Assessment Manikins,
SAM; Bradley and Lang, 1994). (b) Behavioural results for subjective in-scanner ratings of the threat and safety signals during baseline, acquisition
and reversal for bodily anxiety sensations (left) and affective valence (right). The ratings confirmed the differential aversiveness of the threat
relative to the safety signal, and the acquisition/reversal compared to the baseline stimulus (where no US was present). For post-hoc t tests
(Bonferroni-corrected), **denotes pFWE < 0.001 and ***denotes pFWE < 0.0001. (c) The contrast overall (combining acquisition and reversal task
phases) threat (CS+) > safety (CS�) was associated with significant (pFWE < 0.05 at cluster level, high threshold of puncorrected < 0.001) group level
activation in cortical and subcortical brain regions, including the mid dACC (white circle ‘1’) and right AIC (white circle ‘2’; details in Table S1).
(d) The difference in mean percent BOLD signal change responses between threat and safety signals were assessed in the dACC and AIC during
acquisition (first and second half) and reversal (first and second half). Solid dots and black lines represent the group-level mean percent BOLD
signal change responses. For post hoc paired t tests (Bonferroni-corrected), *denotes pFWE < 0.05, and ***denotes pFWE < 0.0001
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stimulus (CS) is differentially conditioned with an aversive auditory

event (US) before the contingency is subsequently switched in a later

reversal phase. The fMRI task, previously used by Savage

et al. (2020a), lasted for 17 min and had three phases: baseline, acquisi-

tion, and reversal (Figure 1a). Blue and yellow spheres, presented for

2 s against a black background, were used as the conditioned stimuli

(CS). Between each CS presentation, a white fixation cross appeared,

which served as a fixed inter-stimulus interval (ISI, 12 s). The uncondi-

tioned stimulus (US) was an aversive auditory (white noise) burst

(50 ms) presented at 75-100 dB that occurred at the end of CS+ pre-

sentation and co-terminated with the CS. The US volume was deter-

mined during a pre-task calibration, where participants were asked to

rate the unpleasantness/averseness of the white noise. The white

noise burst serving as the US has been validated in previous fMRI

studies (Harrison et al., 2017; Savage et al., 2020a). During baseline,

the CS were each presented five times and no US occurred. During

acquisition, the US co-terminated with one of the CS (forming a CS+)

and not with the other (forming a CS�, safety). The colour of the CS+

was counterbalanced across subjects and the CS-US pairing occurred

one third of the time, enabling the classification of CS + unpaired tri-

als and the subsequent analysis of threat responses without US con-

founding. During the reversal phase, the pairing of the US and CS was

switched. 10 presentations of the CS+ unpaired, five of the CS+

paired and 10 presentations of the CS� occurred during both acquisi-

tion and reversal task phases, with no more than two consecutive tri-

als of the same stimuli. Throughout the paper, the CS + unpaired is

simply referred to as threat (initial threat for the acquisition phase and

updated threat for the reversal phase) for ease of readability. Immedi-

ately after each phase (in-scanner, as a continuation of the task

phase), participants were asked to rate the spheres in terms of antici-

patory anxiety and emotional valence on a five-point Likert scale

(Self-Assessment Manikins, SAM; Bradley and Lang, 1994). Upon

completion of each task phase, participants were instructed to

respond to questions assessing subjective anticipatory anxiety (“How

anxious did the [blue or yellow] sphere make you feel?” Responses

ranged from 1 = ‘not at all anxious’ to 5 = ‘very anxious’); and emo-

tional valence (“How unpleasant/pleasant did you find the [blue or

yellow] sphere?” Responses ranged from 1 = ‘very unpleasant’ to

5 = ‘very pleasant’). Responses were made using a hand-held button-

press box held in the participant's dominant hand. Prior to the scan,

participants were familiarised with the scales, response box, and the

volume of the US.

2.3 | Image acquisition and pre-processing

Images were acquired on a 3 T Siemens Prisma MR scanner equipped

with a 64-channel head coil. For the fMRI task, whole brain echo-

planar images were acquired using a multiband sequence (multiband

factor of 8, GRAPPA factor of 1). 1227 volumes were collected with

the following parameters: voxel size = 2 mm3; TR = 810 ms;

TE = 30 mm; flip angle = 53�; FOV = 212 mm; slice

thickness = 2 mm; 72 slices; 0.63 ms echo spacing. T1 and spin echo

(anterior to posterior and posterior to anterior directions) images were

also acquired to assist with pre-processing of the functional data.

Image pre-processing was performed using fMRIPrep version 1.3.2

(Esteban et al., 2019) and Python scripts developed in-house (available

online: https://zenodo.org/record/3556980#.XlZUr6j7TIU). Briefly,

pre-processing involved head-motion correction, susceptibility distor-

tion correction, confounds estimation, coregistration, and regression

of nuisance covariates including WM, CSF, and the six head motion

parameters. Smoothing using a FWHM Gaussian filter (10 mm) was

performed with the SPM12 software (Wellcome Trust Centre for

Neuroimaging, UK).

2.4 | Stool collection

Participants were provided with a stool collection kit customised for

this study and were advised to collect and return the stool sample

within 24–48 h before/after the MR scan. We advised participants

that a failure to return the stool sample within the required timeframe

would result in their exclusion from the study. No individuals were

excluded at this stage. The kit included a stool nucleic acid collection

and preservation tube (Norgen Biotek Corp., Thorold, Ontario,

Canada), written instructions on how and when to collect the stool

sample, and a pair of plastic gloves. Upon return, each stool sample

was labelled with a de-identified participant code, and transported

and stored in a �80�C freezer until sample processing.

2.5 | DNA preparation and 16S rRNA gene
sequencing

Tissue homogenization was performed using tubes containing 1.4 mm

ceramic beads (Precellys Lysing Kit). DNA was extracted from samples

and quantitated using Nanodrop 2000 (Thermo Scientific). PCR ampli-

fication was performed on the V3–V4 hypervariable region of the 16S

rRNA gene, and sequenced on a MiSeq sequencer (Australian Genome

Research Facility, Brisbane). Paired-end reads were joined using PEAR

v0.9.6 and PCR primer sequences were removed using Cudadapt.

Sequence data were processed using Quantitative Insights Into Micro-

bial Ecology (QIIME) software suite v1.9.1 using default settings. The

raw read length was 300 base pairs. Of the total reads generated, 87–

90% of raw reads had a quality score > 30. The average number of

reads per sample was 81,524 (range: 13,028–134,069). USEARCH

v8.0 was used to cluster the sequences into Operational Taxonomic

Units (OTUs) using the identity threshold of 97%. Only OTUs with at

least two reads were included. Representative sequences of each

OTU were taxonomically classified using USEARCH, and aligned to

the Greengenes reference alignment (v13.8) using PyNAST. The OTU

table was normalised (total sum scaling) and square root transformed

to account for the non-normal distribution of taxonomic count data.

Samples were rarefied to a read depth of 5511 for diversity analyses.

For α-diversity indices, we calculated Chao1, Shannon, Simpson and

Inverse Simpson measures. For our high level assessment linking
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microbiota to brain, we opted to use Inverse Simpson diversity due to

its large inter-individual variability. The functional capacity of each

sample was predicted using a computational modelling approach,

called Phylogenetic Investigation of Communities by Reconstruction

of Unobserved States (PICRUSt) (Langille et al., 2013). Gene counts

encoding enzymes were then predicted using the met-

agenome_predictions.py script which were then mapped onto Kyoto

Encyclopaedia of Genes and Genomes (KEGG) pathways (Kanehisa

and Goto, 2000). We focused specifically on gene counts encoding

terminal enzymes (i.e. final conversions) involved in SCFA production,

identified using the KEGG reference pathways for butanoate metabo-

lism (KEGG ref: 00650) and propanoate metabolism (KEGG ref:

00640). Gene counts that were not represented in at least 50% of

samples were excluded from further analyses. The contributions of

OTUs were predicted using the metagenome_contributions.py script,

and were further summarised into percent contributions at the genus,

order and phylum level. Tutorial steps outlining the full PICRUSt pipe-

line can be found online (http://picrust.github.io/picrust/).

2.6 | Neuroimaging analyses

For each participant, the pre-processed images were included in a

first-level GLM analysis, performed with SPM12. For all three phases,

the onsets of each CS event-type (baseline: n = 5 per CS; acquisition

and reversal: CS� (safety) = 10, CS + unpaired (threat) n = 10, CS

+ paired, n = 5) were modelled as a series of delta (stick) functions,

convoluted to the canonical haemodynamic response function (HRF).

Model parameters were estimated using Restricted Maximum Likeli-

hood (ReML). The resulting set of first-level contrast images were car-

ried forward to group-level random-effects analysis. The difference in

percent BOLD signal change between the threat and safety signals

was extracted from the AIC and dACC during the acquisition and

reversal task phases using the Marsbar toolbox for SPM (Brett

et al., 2002). To disentangle the effects within each phase, we inde-

pendently examined the differences between early (first five CS+

unpaired presentations) and late (last five CS+ unpaired presenta-

tions) mean responses in both the acquisition and reversal task phases.

Neuroimaging analyses were reproduced using an alternative smooth-

ing kernel of 5 mm and demonstrated consistent group-level GLM

and DCM results (Figure S7 and Table S5).

2.7 | Specification and inversion of DCMs at the
first level

We used DCM, a computational framework to investigate the effec-

tive (directed) connectivity between and within (self-connections) cor-

tical regions. To do this, DCM for fMRI couples a bilinear model of

neural dynamics with a biophysical model of haemodynamics. Details

regarding this method can be found elsewhere (Friston et al., 2003).

Subject-specific regions of interest (ROIs) were defined as a 5 mm

sphere centred over each subject's peak functional activation,

constrained within the functional mask generated by the group-level

contrast overall (acquisition and reversal) threat > safety (pFWE

< 0.05 at cluster-level, high threshold of puncorr < 0.001; Figure 1c).

Subjects who had no or minimal task-related fMRI activation in AIC

and dACC were excluded from the DCM analysis (puncorr < 0.1;

Figures S8 and S9). Having identified the AIC (x = 32, y = 34, z = 0)

and dACC (x = 2, y = 20, z = 28) coordinates at the group level, the

spatially closest (Euclidian distance) peak coordinates for each individ-

ual subject were manually located and the time series were extracted

as the peak eigenvariate for all remaining participants (n = 33, exclu-

sion of 5). Inspection of the ROIs showed that they were all located

within 10 mm from the group level peak (Figure S1) and were anatom-

ically consistent with previous work (Savage et al., 2020a; Tian and

Zalesky, 2018). DCM, as a hypothesis-driven framework, operates on

a user-defined model space specified through the choice of:

(i) endogenous (context-independent average) connections,

(ii) contextual (experimental) modulation of endogenous connections

and (iii) direct inputs (e.g. CS stimuli) to the system. We constructed

three models, all of which considered bidirectional endogenous con-

nections between the AIC and dACC, and intrinsic connections at

both brain regions (i.e. a fully connected A-matrix). The driving inputs

(C-matrix) consisted of visual (threat/safety) and auditory (CS

+ paired) stimulus, modelling the possibility that input could enter at

either the AIC or dACC. This allowed the US (white noise) to affect

driving inputs separately from the CS+ for which there was a threat

response but no auditory sound. The difference between models

arises from the choice of contextual modulators (B-matrix). Specifi-

cally, the B-matrix was specified to test whether there were differen-

tial modulatory effects between the two task phases: acquisition and

reversal. The first model accounted for the modulation evoked exclu-

sively by the CS+ events during acquisition and reversal (each phase

considered as a separate modulator, Figure 2b, Model 1). The second

model accounts for the modulatory effects of all events (all trials of

CS+, safety and ISIs) acquired during the acquisition and reversal task

phases (i.e. to model tonic block effects from threat processing;

Figure 2b, model 2). Finally, the third model combines the two afore-

mentioned models, accounting for both threat-related, and block-

related events for acquisition and reversal task phases (Figure 2b,

Model 3). Model inversion was performed for each subject using the

DCM12 routines implemented in SPM12. Bayesian model selection

with random effects analysis was used to select the most likely model

given the data (as assessed by the highest exceedance probability).

2.8 | Second-level parametric empirical Bayes
analysis

The winning DCM model was brought forward to a second-level Para-

metric Empirical Bayes (PEB) analysis to investigate where the mean

endogenous (task-independent) and modulatory effects were

expressed, as well as assessing inter-subject, microbiome-associated

variability in responses. To do this, the PEB scheme begins by collating

the estimated parameters of interest from all subjects, including the

HALL ET AL. 737

http://picrust.github.io/picrust/


expected values of the parameters, their covariance matrices and

approximate likelihoods. Next, Bayesian model comparison was per-

formed using these first level model parameters to infer group effects.

The group mean was modelled by including a constant term in the

design matrix. Bayesian model reduction over the second level param-

eters was subsequently performed, which performs a greedy search

over all parameters, and prunes away those that do not contribute to

the model's log evidence (Friston et al., 2016). With an understanding

of the group-level effects, we then performed a second PEB, this time

specifying a design matrix with three regressors. The first regressor

modelled the group mean, and the second and third modelled the

microbiota covariates (orthogonalised and mean-centred). High-level

microbial measures including the ratio between Bacteroidetes/

Firmicutes (B/F), and α-diversity—were selected a priori based on

previous work (Ley et al., 2006; Mariat et al., 2009; Lozupone

et al., 2012). We note that unlike previous work (Ley et al., 2006), we

did not observe a significant relationship between B/F ratio and body

mass index (BMI; R = �0.21, p = 0.25). PEB returns each parameter,

where covariate-specific and group means are reported in terms of

the expected values (Ep) and their corresponding posterior probabili-

ties (Pp). Consistent with (Zeidman et al., 2019), Pps > 0.95 were con-

sidered to have a nonzero effect.

2.9 | Enterotype clustering

To perform the brain-microbiota assessment at genus-level, we

reduced the dimensionality of the microbiota into features that

F IGURE 2 Neural dynamics supporting threat learning and updating. (a) Specification of the DCM model space in terms of: (i) task-
independent effective connectivity (grey, dashed lines) (A-matrix); (ii) modulatory connections (B-matrix) (blue), including threat signals in both
acquisition and reversal task phases; and (iii) direct inputs to the system (C-matrix) comprising visual (all CS events) and auditory (US) stimuli (red).
(b) Three models were estimated for each subject (see text for details). The difference between models arises from the specification of contextual
modulators (threat signals, all trials, or both). Bayesian Model Selection showed that the exclusive modulation by threat signals (Model 1) best
explained the fMRI data (as accessed by the highest exceedance probability). (c) Results from Bayesian Model Reduction (BMR) on second level
Parametric Empirical Bayes analysis of trial-independent (fixed) connections across individuals. Results showed a positive modulation from the
dACC to the AIC, a negative modulation from the AIC to the dACC, and local effects within both regions. (d) BMR results showed a significant
modulatory effect of threat signals on patterns of effective connectivity during acquisition and reversal (left). Results highlight very consistent
modulatory effects of task phase (from acquisition to reversal) on AIC ! dACC (top, right) and AIC self-connections (bottom, right)
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represented the greatest sources of variability in the data. Microbiota

samples were clustered into enterotypes using methods previously

described in Arumugam et al. (2011), which are readily available online

(http://enterotype.embl.de/enterotypes.html). We used the Calinski–

Harabasz (CH) index (Cali�nski and Harabasz, 1974) to identify the

optimal number of clusters (from k = 2 to k = 20). The CH index is

used as a measure of clustering performance, representing the ratio of

the sum of between-clusters dispersion to inter-cluster dispersion for

all clusters. A higher CH index represents more well-defined and sepa-

rated clusters:

CHk ¼
Bk
k�1
Wk
n�k

where Bk is the between-cluster sum of squares (i.e. the squared dis-

tances between all samples that are not in the same cluster), and Wk

is the within-cluster sum of squares (i.e. the squared distances

between all samples that are from the same cluster), and n is the num-

ber of samples. The number of clusters, k , was selected based on the

maximum CHk score (representing a higher ratio between between-

cluster distances to within-cluster distances). Additionally, the silhou-

ette index (SI; Rousseeuw, 1987) was adopted to assess how similar a

sample was to its own cluster (cohesion), compared to other clusters

(range of �1 to +1, where a high positive value indicates that samples

are well aligned to its own cluster). The SI is based on the Euclidean

distance between points in the same cluster, compared to the dis-

tance of points of different clusters:

S ið Þ¼ b ið Þ�a ið Þ
max a ið Þ,b ið Þð Þ

where a ið Þ is the average dissimilarity (or distance) of sample i to all

other samples in the same cluster, while b ið Þ is the average dissimilar-

ity (or distance) to all objects in the closest other cluster. Between-

class analysis (BCA) was performed using the R package ade4, and

provided a visualization of the clusters and the taxonomic drivers for

the enterotypes (Figure S2a). Specifically, the genera that most

influenced the partitioning of samples into the three enterotypes were

identified based on the top relative abundance in each enterotype

(cluster).

2.10 | Co-abundance network construction

Using the relative abundances at genus-level (total sum scaled and

square root transformed), we computed the Pearson correlation coef-

ficients between the four enterotype-driving genera (Bacteroides,

Ruminococcus, Oscillospira, and Prevotella) and all other genera to gen-

erate an undirected, weighted co-occurrence network. Positive (co-

occurrence) and negative (co-exclusion or competitive) relationships,

using cut-offs at >0.39 and < �0.39, respectively, were visualised

using the interactive platform Gephi (Version 0.9.2), using the force

atlas template (Bastian et al., 2009). To confirm the robustness of

network interactions, we also computed Sparcc correlations (Friedman

and Alm, 2012) on count data collapsed at genus level (Figure S6).

2.11 | Multiple regression analysis

Multiple linear regression analysis was used to test the association

between AIC-dACC responses with the relative abundance of each

driving genera. To avoid overfitting the models, we used PCA to

reduce the dimensionality of each of the normalised (z-scored) sets of

brain measures. For PCA inputs, we used the DCM modulatory con-

nections for threat conditioning (four parameters) and reversal (four

parameters), as well as the percent signal change values for both task

phases in the AIC (four parameters) and dACC (four parameters). If

the first PCA explained <50% variance, the second PCA component

was also included. This resulted in seven PCA components (2 � threat

conditioning; 1 � threat reversal; 2 � AIC percent BOLD signal change;

2 � dACC percent BOLD signal change) representing our 16 brain

measures (Figure S4).

2.12 | Sparse canonical correlation analysis

l1-norm regularised sparse canonical correlation analysis (sCCA) was

implemented using default settings in the R package, “PMA” (Witten

et al., 2009). This approach has been designed to partially alleviate

modelling challenges in small sample sizes by introducing a penalty for

the elements of the weight vectors (Wang et al., 2020). The aim of

this analysis is to reduce the variable set according to their most

important directions of linear variation, while allowing the microbiota-

brain associations to be interpreted within the original variable space.

In this implementation, the tuning parameter was automatically

selected for each dataset (microbiota and brain) using a permutation

scheme (n = 10,000), repeated across 10 different candidate sparsity

parameters (ranging from 0.1 to 0.7). The best penalty for each

dataset was selected based on the highest z-statistic, and the sCCA

was then repeated using this parameter (Figure S5a). Leave-one-out

(LOO) cross-validation was performed to confirm the absence of any

single subject outliers (Figure S5b). A secondary cross-validation was

performed by randomly removing 15% of the total sample (permuta-

tions = 1000) and assessing the stability of the (a) sCCA correlation

and (b) brain and microbiota weights (Figure S5b). An overview of the

complete preprocessing and analysis pipeline is shown in Figure S10.

3 | RESULTS

3.1 | Behavioural results

Participants completed a differential threat conditioning task that

involved initial learning (“acquisition phase”) of threat (CS+) and safety

(CS�) signal associations, and subsequent updating of these associa-

tions during a “reversal phase” (Savage et al., 2020a; Figure 1a). At the
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end of each task phase (including a baseline phase), participants rated

the extent to which the threat and safety signals evoked bodily anxi-

ety sensations, respectively, as well as their affective valence. Consis-

tent with previous work (Savage et al., 2020a), results from the

participants' subjective in-scanner ratings confirmed that the threat

signals induced significantly (p < 0.001) higher bodily anxiety sensa-

tions (anxious arousal) and were more unpleasant (negative valence)

than the safety signals during both acquisition and reversal phases, as

well as compared to the threat signals during baseline (pre-condition-

ing, where no US was present; Figure 1b, Data S1). As expected, there

were no significant differences in participants' subjective ratings of

the threat and safety signals at baseline (Figure 1b and Data S1).

Results from two-factor repeated measures ANOVAs and post-hoc

paired t tests are reported in Data S1.

3.2 | Computations within specialised brain
regions

As participants demonstrated successful differential learning across

both the acquisition and reversal task phases, we examined the general

neural correlates of threat learning by averaging responses to the

threat and safety signals across these phases. That is, we assessed

brain regions showing higher activity to the threat signals during

acquisition and reversal, when compared to the safety signal. We

selected the right AIC and mid dACC as our regions of interest

(Table S1 and Figure S1). The right AIC (opposed to left) has more

robustly been linked to the awareness and representation of intero-

ceptive visceral cues, providing a specific neural substrate to assess

gut–brain interactions (Critchley et al., 2002; Critchley et al., 2004).

While sub-regions of the cingulate and prefrontal regions

(e.g. subgenual ACC, ventromedial prefrontal cortex) are also

suggested to support important and distinct aspects of threat and

safety learning, the dACC has specifically been described as the

“viseromotor” interoceptive cortex, having a more selective role in

integrating internal bodily signals to regulate our responses to threat

(Harrison et al., 2015; Fullana et al., 2016). As expected, our results

showed a robust group-level difference in the right AIC and mid dACC

(pFWE < 0.05 at cluster-level, cluster isolated using puncorr < 0.001,

Figure 1c), consistent with previous work using this task (Savage

et al., 2020a, b). Additional brain regions, including the middle frontal

gyrus, and ventral striatum were also more active in the overall (initial

and reversed) threat > safety contrast (Table S1). While this contrast

reflects the joint neural correlates of acquisition and reversal phases,

we also examined the specificity of AIC and dACC activation patterns

over time (comparing acquisition to reversal). To do this, we extracted

the difference in mean fMRI percent signal change responses

between threat and safety signals relative to the baseline of the AIC

and dACC (regions defined by two 5 mm spheres using the peak max-

ima from the overall contrast; Brett et al., 2002). In line with previous

work using a similar task (Schiller et al., 2008), we separately assessed

brain responses during the early (first half) and late (second half)

acquisition and reversal phases to examine putative learning-related

changes (Brett et al., 2002). Results of a one-way repeated-measures

ANOVA showed a global difference across conditions for both dACC

(F3,99 = 13.99, p = 1.12 � 10�7, ηp2 = 0.24) and AIC (F3,99 = 3.01,

p = 0.03, ηp2 = 0.07; Figure 1d). In the dACC, post hoc paired t-tests

(Bonferroni-corrected) showed a significant increase in response from

early acquisition to late acquisition (t33 = �2.89, pFWE = 0.04), and

from acquisition to reversal (early acquisition vs. early reversal, t33

= �4.63, pFWE = 3.34 � 10�4; early acquisition vs. late reversal, t33

= �4.84, pFWE = 1.75 � 10�4; late acquisition vs. early reversal, t33

= �3.27, pFWE = 0.02; Figure 1d). In the AIC, an increase in response

was observed in the transition from early acquisition to late acquisition

(t33 = �3.43, pFWE = 0.01) and early acquisition to reversal (early

acquisition vs. early reversal, t33 = �4.14, pFWE = 0.001; early acquisi-

tion to late reversal, t33 = �4.46, pFWE = 5.30 � 10�4; Figure 1d).

Stronger shifts in dACC and AIC responses were captured between

task phases, rather than between early and late divisions within each

phase.

3.3 | Neural dynamics supporting threat
processing

We used Dynamic Causal Modelling (DCM, see Section 2) to study

neural interactions between the AIC and dACC. We estimated three

model variants for each subject, assuming bidirectional connections,

modulatory effects on all possible connections, and allowing direct

inputs at both nodes (Figure 2a). The three models occupied distinct

functional pathways that could be altered by threat and/or all task-

related events (Figure 2a,b). More specifically, the first model tested

for modulatory effects evoked exclusively by the threat signals during

acquisition and reversal (two regressors, as each phase was considered

as a separate modulator, Figure 2b, Model 1). The second model

accounted for the modulatory effects of all trials occurring during the

acquisition and reversal phases, including threat, safety, and inter-

stimulus intervals (two regressors, Figure 2b, Model 2). The third

model combined the two aforementioned models, accounting for both

threat-related, and trial-related events for acquisition and reversal (four

regressors, Figure 2b, Model 3). This approach allowed us to assess

whether directed connectivity strengths within the AIC-dACC net-

work were modulated exclusively by threat-related stimuli, or whether

a “tonic-like” effect exists (responses to threat produces a constant or

increasing modulatory response over the duration of the task).

Bayesian model selection with random effects indicated the first

model (threat-based signals) as the most likely given the data

(as assessed by exceedance probability; Figure 2b). To identify signifi-

cant connections within this model at the group-level, we applied

PEB. This uses Bayesian model reduction (BMR) to automatically sea-

rch over all parameters and prune effects that do not meaningfully

contribute to the model's log evidence. Significant effects are here

defined by parameters where the posterior probability (Pp) of a non-

zero effect was ≥0.95. We started by assessing connection strengths

independent of task activation. These results showed that across all

trials there was a positive connection from the dACC to the AIC, an
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inhibitory connection from the AIC to the dACC, and local responses

at the AIC and dACC that were consistent across individuals

(Figure 2c). We next tested the effects of threat acquisition and rever-

sal on all potential connections (AIC to dACC, dACC to AIC, AIC and

dACC self-connections). In the acquisition phase, the threat-based sig-

nals enhanced bottom-up connectivity from the AIC to dACC, as well

as local inhibitory responses at the AIC (Figure 2d, blue). The same

pattern of results was observed during threat reversal, but with stron-

ger effects overall (Figure 2d, pink). The expected values (Ep) and Pps

for all parameters are presented in Table S2.

3.4 | α-Diversity covaries with AIC-dACC
dynamics

Addressing the first of our microbiota-brain aims, we investigated

whether patterns of effective (modulatory) connections underpin-

ning threat learning and updating covaried with high-level microbial

properties. Emerging evidence suggests that high-level microbial

measures, including the B/F ratio and α-diversity (a joint measure of

the richness and evenness of microorganisms), are important and

distinct indicators of the promotion and maintenance of host health

(Ley et al., 2006; Mariat et al., 2009; Lozupone et al., 2012). As there

was sufficient variability in these measures across individuals, the

B/F ratio and α-diversity constituted two group-level parametric

covariates (Figure 3a,b). To test for an effect of these covariates on

directed patterns of connectivity, we again applied the Parametric

Empirical Bayes method—this time testing for the presence of

microbial covariation within the neural data. We assessed different

combinations of covariates: group-level effects, a single microbiota

covariate, or both microbiota covariates (Figure 3c). Results indi-

cated that the most likely model included the second microbiota

covariate, α-diversity (Model 3, posterior probability of 0.96,

Figure 3c). To confirm the validity of these findings, we repeated the

analyses on surrogate models generated by permuting values within

the microbiota covariates. The posterior probability of our winning

model was significantly higher compared to the random surrogate

models (n = 1000 permutations; Figure 3d). To isolate the significant

parameters contributing to the model evidence, that is specific con-

nections that covaried with α-diversity, we applied BMR on the win-

ning model (Figure 3e). Inter-individual measures of α-diversity

covaried with regulatory (inhibitory) control from the dACC to AIC,

and local inhibitory responses at the AIC during threat reversal

(Figure 3e,f). A confirmatory analysis further suggested that stronger

signalling from the dACC to the AIC during reversal downregulates

AIC activity (inhibitory modulation; Data S2). To control for common

confounds often associated with human microbiota-based research,

we adopted the relevant exclusion criteria from The Human Micro-

biome Project Consortium (Methé et al., 2012) and ensured that fae-

cal samples were collected within a 48-h window before or after the

scanning session (see Section 2). Furthermore, a confirmatory analy-

sis controlling for the effects of sex and age showed highly consis-

tent results.

3.5 | The human microbiota exhibits variability of
enterotype-driving genera

We next investigated whether similar patterns of microbiota-brain

interactions emerged at lower levels of the taxonomic hierarchy

(i.e. from coarse-level measures to genus level). To reduce the

dimensionality of the microbiota into features that represent the

greatest sources of variability in the data, we performed an

enterotype analysis which uses the partitioning around medoids

(PAM; Kaufman and Rousseeuw, 2009) clustering (Data S3 and

Figure S2). In line with previous work (Arumugam et al., 2011),

between-class analysis revealed that clusters were driven by inter-

individual variability in the following genera (Falony et al., 2016):

Bacteroides (enterotype 1), Ruminococcus/Oscillospira (enterotype 2),

and Prevotella (enterotype 3; Figure S2). While clusters were non-

random (Data S3 and Figure S3), they were also not exclusively dis-

crete. Instead, visualization of the samples suggested that the data

were distributed along a continuum (Figure S2). Based on these find-

ings, our subsequent analyses focused on a dimensional assessment

of the link between the four discriminate genera and brain dynamics.

This approach was also motivated by previous work, suggesting an

interrogation of dominant taxa that drive separation between sam-

ples, rather than the enterotype classifications themselves, as fea-

tures to link with clinical or behavioural variables (Gorvitovskaia

et al., 2016; Cheng and Ning, 2019).

3.6 | Distinct effects of genus abundance on
threat-processing brain dynamics

We first assessed whether AIC-dACC network strengths were linearly

correlated with the abundance of each driving genus independently.

Specifically, separate multiple linear regressions were used to assess

the association between the abundance of each candidate genus

(Bacteroides, Oscillospira, Ruminococcus, and Prevotella) with distinct

brain indices (threat-induced connectivity strengths and percent

BOLD signal change). To reduce the dimensionality and improve inter-

pretability, a principal components analysis (PCA) was separately

applied to the values of (a) AIC-dACC connectivity during threat

acquisition; (b) AIC-dACC connectivity during threat reversal; and per-

cent BOLD signal change responses in the (c) AIC; and (d) dACC.

When the first principal component (PC) for each brain set (a-d)

explained <50% variance, the second component was also included.

This resulted in seven PCs (2 � threat acquisition, 1 � threat reversal,

2 � AIC, and 2 � dACC percent signal change) which together consti-

tuted our regression features (Figure S4). PCs representing brain vari-

ables explained a significant amount of the variance in Ruminococcus

(R2 = 0.49, F[25,33] = 3.48, p = 0.01, Figure 4a). Ruminococcus abun-

dance yielded three significant regression weights (β = �0.47, t(25)

= �2.65, p = 0.01; β = �0.37, t(25) = �2.43, p = 0.02; β = 0.45, t(25)

= 2.71, p = 0.01), supporting an interaction with connectivity

responses during threat acquisition (first PCA for threat acquisition),

threat reversal (first PCA for threat reversal) and local activity in the
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dACC (first PCA for dACC percent BOLD signal change), respectively.

While the overall regression model was not significant for Bacteroides

(R2 = 0.37, F[25,33] = 2.12, p = 0.08; Figure 4b) or Oscillospira (R2

= 0.33, F[25,33] = 1.74, p = 0.15, Figure 4c), there were individual var-

iables that were significant. For Bacteroides, the model yielded one

significant regression weight (β = 0.40, t(25) = �2.80, p = 0.01),

suggesting an association with connectivity responses during threat

acquisition (represented by first PCA for threat acquisition).

Oscillospira abundance was significantly associated with local

activity in the dACC (first PCA for dACC percent BOLD signal

change; β = 0.52, t(25) = �2.81, p = 0.01). Variance in Prevotella

(R2 = 0.25, F[25,33] = 1.16, p = 0.36; Figure 4d) was not related to

any specific set of brain measures. Multiple regression results are

reported in full in Table S4. A confirmatory analysis controlling for

F IGURE 3 Effects of high-level microbial properties on threat learning and updating. (a) Inlet (left) shows the mean proportions of B/F, and
the violin plot (middle) shows the distribution of α-diversity (Inverse Simpson diversity) scores in our samples (n = 38). These two microbiota
features constituted our two regressors in the Parametric Empirical Bayes model (design matrix columns two and three, right). The first column
models the group mean. (b) Specification of the model space showing all possible modulatory connections where the microbiota features can
interact within the AIC-dACC network. (c) Model space (left) showing possible second level models (including a null model), where both covariates
(Model 1), one covariate (Models 2 and 3), or no covariates (Model 4, null) contribute to the model evidence. The winning second level model
(right) included the second covariate (Model 3), at a posterior probability (Pp) of 0.96. (d) Distribution of Pp results from surrogate testing. Dashed
black line indicates the Pp (0.96) of the winning model for the original (nonpermuted) data. (e) Results from Bayesian Model Reduction (BMR)
showing the effect sizes (expressed in Hz) of modulatory connections associated with α-diversity during threat reversal. Significant parameters are
those with a Pp > 0.95, indicated with an asterisk. The length of the bars corresponds to the expected probability (Ep) and the error bars are 90%
Bayesian confidence intervals. SC represents self-connections. (f) Anatomical representation showing the significant modulatory connections
associated with α-diversity during the threat reversal phase
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the effects of sex and age showed highly consistent results (R2 = 0.49,

F[25,33] = 3.48, p = 0.01).

3.7 | Multivariate association between driving
genera and threat processing brain dynamics

We next investigated the hypothesis that the microbiota and AIC-

dACC activity exhibit a multivariate relationship—that is multiple

dimensions along the genus axes could map to multivariate brain pat-

terns. This hypothesis is motivated by the fact that driving genera are

unlikely to exert independent effects on the neural substrates of

threat processing. Results from a sCCA showed a single mode of pop-

ulation variation linking threat-related brain responses with the driv-

ing genera (Figure 4e, (r) = 0.73, pFWE = 0.004, see Section 2). This

analysis identified a significant canonical mode that associated

increased Ruminococcus abundance with stronger feedforward con-

nectivity from the AIC to dACC, and local activity within the AIC and

dACC during threat reversal (Figure 4f). The stability of the significant

sCCA was supported by a LOO cross-validation analysis. This analysis

involved performing 32 sCCAs using the same sparsity parameter as

the original sCCA, but with each iteration removing one subject

(r = 0.73 ± 0.01, 0.69–0.77 [mean ± SD, range], Figure S5). To further

confirm the stability of the sCCA, we performed a secondary

F IGURE 4 Associations between the driving genera and threat-related brain processes. Principal components analysis (PCA) was used to
reduce the dimensionality of brain variables, which resulted in seven PCs representing connectivity strengths during threat learning (task
acquisition phase), threat reversal (task reversal phase), and percent BOLD signal change responses at the AIC and dACC. Results from four
independent multiple regressions showed that brain responses predicted the relative abundance of Ruminococcus (a). While there were individual
regression weights that were significant for (b) Bacteroides and (c) Oscillospira, the overall regression model was not significant. Variance in
(d) Prevotella was not related to any specific set of brain measures. 95% confidence intervals are represented by the dashed red lines.
(e) Multivariate analysis (sparse CCA, sCCA) showed a single significant mode of population covariation linking threat processing measures of
brain activity and effective connectivity with Ruminococcus abundance. (f) Bold text shows microbiome and brain weights (coefficients)
contributing to the sCCA. Features in grey text represent zero-contributing features to the sCCA, as imposed by the l1-norm penalty term. Brain
variables prefixed with an ‘A' refer to those occurring in the task acquisition phase, ‘R' refers to brain variables in the task reversal phase, and ‘SC’
refers to modulatory self-connections

HALL ET AL. 743



cross-validation by randomly removing 15% of the dataset (permuta-

tions = 1000) and assessing the stability of the CCA correlation and

weights (r = 0.74 ± 0.03, 0.61–0.82, [mean ± SD, range], Figure S5b).

3.8 | Potential mechanisms linking genus
abundance to threat-related brain processes

Growing preclinical evidence supports a causal relationship between

the production of SCFAs—including butyrate, propionate, and

acetate—and host behaviour (Stafford et al., 2012; van de Wouw

et al., 2018). Specifically, it has recently been suggested that SCFAs

may be critical modulators of neuronal functions associated with

threat reversal (Stafford et al., 2012) and anxiolytic effects (Burokas

et al., 2017). In the light of these findings, we assessed whether the

driving genera linked to threat-induced AIC-dACC network activity

were major contributors to the microbial production of SCFAs. Given

that microorganisms work in consort to perform and maintain meta-

bolic functions (c.f. cross-feeding relationships [Belenguer et al., 2006;

Baxter et al., 2019]), we started by assessing how the driving genera

interact with the broader microbiota ecosystem. To achieve this goal,

we constructed interaction networks highlighting co-abundance (posi-

tive correlations, r > 0.39) and co-exclusion (negative correlations,

r < �0.39) relationships between the driving genera and the wider

microbial community (Figure 5a–c). The co-abundance networks rev-

ealed that nodes within the Oscillospira/Ruminococcus network

(Figure 5a) were negatively correlated with nodes within the Bacte-

roides network (Figure 5b). A confirmatory network analysis using

Sparcc correlations (Friedman and Alm, 2012) supported the above

results (Figure S6).

We then predicted the functional capacity of each microbial sam-

ple from its 16S profile using PICRUSt [Langille et al., 2013]). This

algorithm predicted the functional capacity of microorganisms by

using ancestral-state reconstruction to estimate which gene families

are present and how they interact to form the composite

metagenome. Functional predictions were then mapped onto the

Kyoto Encyclopaedia of Genes and Genomes (KEGG; Kanehisa and

Goto, 2000) to isolate the gene content encoding for terminal

F IGURE 5 Link between microbiota genera associated to threat-related brain processes and functional pathways supporting the production

of short-chain fatty acids. Co-occurrence and co-exclusion relationships between the driving genera (large nodes) including (a) Ruminococcus/
Oscillospira, (b) Bacteroides, and (c) Prevotella. Unclassified genera are described at a broader taxonomic rank above genus level (i.e. family or order)
and are marked by asterisks. Graphs are visualised as a force-directed layout using Gephi (Version 0.9.2), using the force atlas template (Bastian
et al., 2009). (d) Metabolic pathways (derived from the Kyoto Encyclopaedia of Genes and Genomes pathways) representing final enzymatic
conversions (terminal enzymes) involved in butyrate, propionate, and acetate production. The major contributor(s) to each gene-encoding enzyme
have been identified in coloured boxes. (e) Decomposition of core/major genera and orders contributing to SCFA pathways. Dark tones represent
contributions from a higher taxonomic rank: order. Hatched and lighter tones represent contributions from driving genera
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enzymes involved in the production of SCFAs (i.e. butyrate, propionate

and acetate; Figure 5d). The estimated contributions (i.e. the degree to

which each microorganism contributed to each sample's gene content)

were represented at both the genus and order scale, and were

summarised at the group level (Figure 5e). Members of the Clostridiales

order, including Ruminococcus and Oscillospira, were identified as major

contributors to all terminal enzymes involved in SCFA production.

Other genera within the Clostridiales order, including Blautia,

Lachnospira, and Coprococcus were also contributors to these pathways.

Bacteroidales (order), with a substantial contribution from Bacteroides

(genus) (Figure 5e), were involved in the sub-terminal reaction (K00634)

in butyrate production. As showed in Figure 4e, Ruminococcus is the

strongest multivariate driver of brain patterns. Crucially, results from

our functional analysis highlight that the SCFA production pathways

also rely on Ruminococcus and the order (Clostridiales) from which it

originates. These findings are consistent with the notion that the

detected microbiota features contributing to gut–brain associations

supporting threat processing are linked to SCFA production, either

directly or in consort with co-occurrence interactions.

4 | DISCUSSION

We used a multidisciplinary approach to assess the relationship

between the human gut microbiota and a brain network supporting

the subjective experience of threat processing via cognitive-

interoceptive appraisal mechanisms (Fullana et al., 2016; Harrison

et al., 2015; Kalisch and Gerlicher, 2014). Results highlighted an asso-

ciation between microbial abundance patterns—reflected across dif-

ferent taxonomic scales—with neural dynamics between the AIC and

dACC during threat learning and threat updating processes. By con-

sidering broad ecological relationships and estimated functional prop-

erties of the microbiome, we provide support for the notion that

microbial genera influencing threat-related brain processes are

involved in SCFA production. More broadly, our findings provide

impetus to pursue future research assessing the viability of the gut

microbiome to impact brain activity and behaviour linked to threat-

related disorders (Harrison et al., 2015).

High-level ecological measures are thought to recapitulate key

organizational principles of the gut microbiota (Ley et al., 2006; Mariat

et al., 2009; Lozupone et al., 2012). We found that inter-individual

variability in α-diversity—a joint measure of the evenness and richness

of residing microorganisms—was associated with the strength of

inhibitory patterns of connectivity from the dACC to the AIC, and

self-inhibitory responses within the AIC during threat reversal

(Figure 3e,f). The reversal of learned threat stimuli associations

requires an updating process, where former safety signals are re-

evaluated as a new threat. The α-diversity-mediated modulation of

dACC to AIC is consistent with previous work, suggesting that pro-

cesses involving threat updating are supported by cognitive computa-

tions within the dACC (Stevens et al., 2011; Savage et al., 2020a).

These findings are noteworthy, as α-diversity is thought to engender a

microbial ecosystem that is robust and resilient to environmental

perturbation (Bokulich et al., 2016). Higher functional redundancy

allows the microbiota to compensate for the functions of absent spe-

cies, including adequate production of microbiota-derived metabolites

to meet host demands (Valdes et al., 2018). Accordingly, reduced

α-diversity has been linked to exacerbated fear reactivity in infants

(Aatsinki et al., 2019; Gao et al., 2019) and altered insular connectivity

in adults (Curtis et al., 2019). The Bacteroidetes to Firmicutes ratio

was not linked to threat-related AIC-dACC patterns of activity and

connectivity. While some evidence suggests a link between this ratio

and inflammation (Verdam et al., 2013), obesity (Ley et al., 2006), and

chronic pain (Labus et al., 2017), the utility of phyla-level ratios as a

biomarker in mental health remains debated. Findings from the cur-

rent study do not support the putative link between the Bacteroidetes

to Firmicutes ratio and threat-related brain processing.

While diversity measures are important from a whole systems

approach, when considered in isolation it is unclear whether effects are

driven by highly conserved features (i.e. common to all members of

major phyla), or if they emerge within finer taxonomic scales. The analy-

sis of genus-level composition is thought to represent an intermediate

scale; striking a balance between the complexities of interpreting high-

level ecological measures, with a reductionist approach that isolates spe-

cies of interest. Results from the multiple regression and sCCA analysis

converge in supporting an association between Ruminococcus abundance

and activity from the AIC to the dACC, as well as local activity within the

AIC and dACC during threat reversal. More broadly, Ruminococcus

appears to link to key brain processes facilitating the update of previ-

ously reinforced safety signals to new threat associations (Figure 4a,f).

The biological mechanisms supporting the causal interplay

between the gut microbiome and brain processes underpinning

human behaviour are not yet fully understood. The microbiota is

thought to impact brain activity via the production of SCFAs including

acetate, propionate, and butyrate (Dalile et al., 2019). Accordingly,

recent preclinical studies suggest that alterations in microbiota-

derived metabolites, including SCFAs, contribute to neuronal activity

and behaviour linked to threat processing (Stafford et al., 2012; Whit-

tle and Singewald, 2014). SCFAs are thought to exert their effects on

the CNS directly or indirectly through immune, endocrine, vagal, and

other humoral pathways (Dalile et al., 2019). Locally, SCFAs maintain

intestinal barrier integrity (Lewis et al., 2010), promote mucous pro-

duction (Pelaseyed et al., 2014), and regulate the secretion of interleu-

kins (Soliman et al., 2012), all of which reduce systemic inflammation.

Proinflammatory cytokines and molecular intermediates linked to sys-

temic inflammation have been thought to influence neu-

roinflammation and associated changes in mood and behaviour by

crossing the blood–brain barrier (BBB; Reichenberg et al., 2001;

Harrison et al., 2009; Schrepf et al., 2018). SCFAs are also signalling

molecules that act as histone deacetylase inhibitors (Kratsman

et al., 2016; Stilling et al., 2016), as well as endogenous ligands for G-

protein coupled receptors, free fatty acid receptor (FFAR) 2 and

FFAR3 (Brown et al., 2003). These receptors are expressed on enter-

oendocrine cells, various immune cells, and vagal afferents (Nøhr

et al., 2015; Egerod et al., 2018). While SCFAs have been shown to

cross the blood brain barrier (Liu et al., 2015; Sun et al., 2016), this
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pathway is not thought to be a major route via which SCFAs exert

their influence on cortical activity and related behaviour.

Enteroendocrine-mediated vagal signalling is considered to be a more

direct and accessible route via which SCFAs influence cortical dynam-

ics and behaviour (Lal et al., 2001; Bonaz et al., 2018). Within enter-

oendocrine cells, SCFAs are also thought to promote the synthesis of

important neurotransmitters, including serotonin, which can indepen-

dently exert their influence on the gut–brain axis via the vagal nerve

(Reigstad et al., 2015). Information from vagal afferents converge in

the nucleus tractus solitarius, which can then be relayed to cortical

brain regions including the AIC and the dACC. Accordingly, associa-

tions between enzymes involved in butyrate production and the insula

structure have recently been reported (Labus et al., 2017). Here, we

provide evidence indicating that Ruminococcus and co-occurring taxa

play an important role in the estimated production of acetate, propio-

nate, and butyrate. This finding is consistent with previous studies

showing that Ruminococcus spp. are strongly linked to the fermenta-

tion of resistant starch, and therefore may contribute to butyrate

(Morrison and Preston, 2016; Baxter et al., 2019), acetate (Louis

et al., 2014; Fernández et al., 2016; Koh et al., 2016), and propionate

(Koh et al., 2016) production in the colon. While our findings are esti-

mations and thus cannot be directly extrapolated, they provide a solid

rationale to motivate future work directly testing the putative key role

of SCFAs in the modulation of brain processes. Future work that spe-

cifically focuses on SCFAs would also support the growing body of

existing preclinical and emerging human data (Burokas et al., 2017;

Boehme et al., 2019; Dalile et al., 2019; Lee et al., 2020). More specifi-

cally, preclinical work suggests a link between Ruminococcus-induced

increases in SCFAs and improvements in anxiety-related behaviours

(Yu et al., 2020), and stress and emotional instability (Provensi

et al., 2019). However, important to note is that clinical translation of

this work has yielded conflicting results. A recent study in healthy

men showed that colonic administration of SCFAs attenuated the cor-

tisol response to physiological stress, but had no effect on threat

learning as assessed by subjective ratings and skin conductance

responses (Dalile et al., 2020).

A number of caveats need to be considered while interpreting the

results from this study. Our analysis focused on a well-defined two-

region circuit consistently implicated in human threat processing

(Fullana et al., 2016). Moreover, this network has recently been linked

to individual differences in anxiety sensitivity—a well validated trait

measure of the fear of bodily anxiety sensations (Harrison et al., 2015;

Savage et al., 2020a). Future work could assess how AIC-dACC cir-

cuitry interacts with the broader network of brain regions supporting

the contextual processing of threat, and its possible interactions with

the microbiota. With regards to the fMRI task, while the use of a fixed

ISI has been adopted by previous work (Savage et al., 2020a; Schiller

et al., 2008), we acknowledge that future work may benefit from a

task variant with more events and a nonfixed ISI. We attempted to

minimize common confounds associated with both acute (e.g. recent

medication use and dietary intake) and general lifestyle changes in

microbiota composition by selecting relevant exclusion criteria pro-

vided by The Human Microbiome Project Consortium (Methé

et al., 2012). Furthermore, confirmatory analyses of the PEB and

genus-level assessments when controlling for the effects of sex and

age showed highly consistent results. Stool sample collection and neu-

roimaging were also performed in close temporal proximity (within a

48-h window). However, collection of repeat faecal samples could

provide a more nuanced assessment of the relationship between

microbiome and brain processes. In the current study, 16S rRNA

sequencing was used as this method has been demonstrated to pro-

vide sufficient resolution to characterise genus (and broader) level

interactions (Rausch et al., 2019). Furthermore, previous work has

demonstrated that functional assessments performed using PICRUSt

are sufficiently well correlated with genomic content to yield accurate

predictions in human gut microbiome samples (Langille et al., 2013).

However, as this emerging field continues to develop, the importance

of combining neuroimaging and behavioural datasets with higher reso-

lution sequencing (shotgun metagenomics), and untargeted or

targeted metabolomics will be critical to extend upon this work. The

specificity of SCFAs and their putative mechanistic role in altering

AIC-dACC dynamics will also need to be replicated in adequately

powered human interventional studies. Current results provide key

knowledge and motivation to invest in future targeted work assessing

the link between gut features and threat-related neural dynamics.

5 | CONCLUSION

There is convincing preclinical evidence demonstrating the effect of

the gut microbiota in altering brain mechanisms supporting threat

processing. However, there remains a large gap in the understanding

of how microbiota consortia engenders variability in neural dynamics

underpinning human threat processing. Our study supports distinct

interactions between microbial abundance patterns—reflected across

different taxonomic scales—with neural dynamics supporting threat

learning and threat updating processes in healthy individuals. While

research in this field is still in its infancy, current data highlights that

the assessment of the microbial milieu may provide insights into the

emergence of, and vulnerability to threat-related disorders. For exam-

ple, a characterisation of key microbiota features, including diversity

measures and the presence/absence of microbial communities

(e.g. Ruminococcus), could be used as biomarkers in the assessment of

vulnerability to anxiety-related disorders. Growing interest in the aca-

demic and medical community has also coincided with a patient-

driven preference for alternative or adjunct therapies (beyond medica-

tion) to manage mental illness. Personalised modulation of the micro-

biome by boosting or reducing microbial communities related to

maladaptive brain and behavioural responses via a dietary interven-

tion, may represent a low-risk, efficacious, and cost-effective

approach to manage affective disorders.
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