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Abstract

symptoms in the long-run.

metabolism

Combined malonic and methylmalonic aciduria (CMAMMA) is an inborn error of metabolism which has been
proposed being a benign condition. However, older patients may present with neurological manifestations such as
seizures, memory problems, psychiatric problems and/ or cognitive decline. In fibroblasts from CMAMMA patients
we have recently demonstrated a dysregulation of energy metabolism with increased dependency on {3-oxidation
for energy production. Because of the inability of the brain to rely efficiently on this pathway to retrieve the
required energy to a great extent, we hypothesize an alternative disease-causing mechanism that does not only
include the accumulation of the metabolites malonic and methylmalonic acids. Here, we suggest a novel
hypothesis on the possible pathophysiological mechanism responsible for the development of neurological
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Combined malonic and methylmalonic aciduria
(CMAMMA) is an inborn error of metabolism caused
by deficiency of the mitochondrial enzyme malonyl-
CoA synthetase encoded by ACSF3 [1]. This enzyme
catalyzes the enzymatic activation of malonic acid to
malonyl-CoA which is the first step of the mitochon-
drial fatty acid biosynthesis (mtFASII) pathway. A
cross-sectional multicenter retrospective study identi-
fied 25 patients with favorable clinical course strongly
suggestive of the benign condition of CMAMMA [2].
On the other hand, this disease was associated in the
past with a wide range of neurological symptoms in-
cluding seizures, memory problems, psychiatric prob-
lems and/ or cognitive decline especially in older
patients [3-6]. Despite few reports describing symp-
tomatic CMAMMA patients [6, 7], the clinical signifi-
cance of this disease remains controversial [2]. So far,
the mechanism of symptoms development has not yet
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been elucidated, although the involvement of the ac-
cumulating metabolites malonic acid (MA) and
methylmalonic acid (MMA) has been proposed. Very
recently our work on the comprehensive metabolic
phenotyping of fibroblasts from CMAMMA patients
demonstrated a deeply altered metabolic flexibility.
This was characterized by a reduced mitochondrial
respiration and glycolytic flux due to a lower lipoyla-
tion degree as well as by the reduction of anaplerotic
amino acids to address very likely the required energy
need [8]. Of particular importance was the finding
that the dysregulation of mitochondrial energy metab-
olism was accompanied by the compensatory in-
creased dependency on p-oxidation for energy
production [8]. Focusing on this special point, we
here propose a new hypothesis on the possible long-
term mechanism of neurological symptoms associated
with this disorder.

A similar phenotype to CMAMMA does appear in a
very recently described new disorder of mtFASII path-
way, namely MEPAN (mitochondrial enoyl CoA reduc-
tase protein-associated neurodegeneration) [9]. This
neurodegenerative disease may present with childhood-
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onset dystonia, optic atrophy, and basal ganglia signal
abnormalities, whereas intellectual abilities may remain
unaffected [9]. The symptoms mimic mitochondrial dis-
eases by the involvement of organs with high energy de-
mand and an overall high susceptibility to oxidative
stress [9]. In contrast to MEPAN, lipoylation degree is
not uniformly reduced in all analyzed ACSF3 fibroblasts
[8, 9]. The mitochondrial ACC1 isoform 1 in mamma-
lian cell is able to cover in part the activation to
malonyl-CoA in case of deficient ACSF3 [10] a process
that may also explain the wide heterogeneous clinical
phenotype described for CMAMMA. Our data in fibro-
blasts suggest a role of mtFASII in the regulation of en-
ergy homeostasis [8], although this can be extremely
variable as it may depend on the energy need and the
ability to adapt which is organ and tissue specific.

With special regard to neural cells, despite the high
energy demand [11], they are not able to rely efficiently
on the degradation of fatty acids for energy production
to a great extent [12]. With the exception for specialized
hypothalamic neurons [13], the oxidation of fatty acid
with the specific purpose of energy production occurs
exclusively in glial cells [14] although a tight metabolic
cooperation between neurons and astrocyte is required
to maintain cellular functionality [15, 16]. From an evo-
lutionary point of view, it has been suggested that the
disadvantage of the biochemical process of degradation
of fatty acids has driven the pressure to promote glucose
oxidation in the brain [17]. Indeed, the degradation of a

Page 2 of 3

molecule of palmitate requires higher oxygen con-
sumption than oxidizing a molecule of glucose, thus
avoiding the risk of hypoxia that limits the regener-
ation of ATP by mitochondria [17-19]. Moreover, en-
hanced B-oxidation is also linked to the generation of
superoxides and oxidative stress [20, 21]. Our data on
CMAMMA fibroblasts clearly demonstrated a shift to-
wards p-oxidation for energy production, a biochem-
ical finding associated to a reduction of respiratory
complexes I to III and an increase of cardiolipin spe-
cies [8]. Although our results cannot be automatically
translated to neural cells under physiological condi-
tions, we may speculate that a possible compensative/
adaptive upregulation of fatty acid degradation may
occur in brain cells. Our hypothesis is that the
chronic and latent upregulation of mitochondrial -
oxidation with the subconsequent increment of risk
for hypoxia and oxidative stress in CMAMMA pa-
tients may be crucial for the onset of neurological
symptoms in the long-run.

Due to the key role of mtFASII pathway on metabolic
flexibility and cellular energy maintenance in fibroblasts
and neural cells [8, 9], it is conceivable to assume an up-
regulation of [-oxidation in case of hypofunctional
mtFASII also in brain cells. We may speculate that the
long-term stimulation of fatty acid oxidation may be
counterproductive and increase the risk for hypoxia and
oxidative stress in a chronic and latent manner Fig. 1.
This effect together with additional variables such as
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Fig. 1 Schematic representation of the compensatory/ adaptive mechanisms of upregulation of mitochondrial 3-oxidation in response to
hypofunctional mtFASII pathway due to mutations in ACSF3 gene. Figure modified and adapted from [8]
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increased levels of MA and MMA and environmental
factors may lead in some patients to the onset of neuro-
logical symptoms in the long run. Long-term studies in
mouse model of ACSF3 deficiency and human iPS-
derived cell lines will be critical to support the role of
mtFASII in mammalian systems.
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