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Abstract

Here, we discovered an endogenous dafachronic acid (DA) in the socioeconomically impor-
tant parasitic nematode Haemonchus contortus. We demonstrate that DA promotes larval
exsheathment and development in this nematode via a relatively conserved nuclear hor-
mone receptor (DAF-12). This stimulatory effect is dose- and time-dependent, and relates
to a modulation of dauer-like signalling, and glycerolipid and glycerophospholipid metabo-
lism, likely via a negative feedback loop. Specific chemical inhibition of DAF-9 (cytochrome
P450) was shown to significantly reduce the amount of endogenous DA in H. contortus;
compromise both larval exsheathment and development in vitro; and modulate lipid metabo-
lism. Taken together, this evidence shows that DA plays a key functional role in the develop-
mental transition from the free-living to the parasitic stage of H. contortus by modulating the
dauer-like signalling pathway and lipid metabolism. Understanding the intricacies of the DA-
DAF-12 system and associated networks in H. contortus and related parasitic nematodes
could pave the way to new, nematode-specific treatments.

Author summary

In the present study, using an integrative multi-omics approach, we show that dafachronic
acid (DA) plays a critical functional role in the developmental transition in larvae of the
parasitic nematode Haemonchus contortus (barber’s pole worm) by modulating the
dauer-like signalling pathway and lipid metabolism. The DA-DAF-12 signalling module
in H. contortus provides a paradigm to explore its developmental and reproductive biol-
ogy at the molecular level, to study physiochemical cross-talk between the parasite and its
hosts, and to discover novel anthelmintic targets.
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Introduction

Dafachronic acids (DAs) are bile acid-like, steroidal hormones, which were first discovered in
the free-living nematode Caenorhabditis elegans [1]. In this nematode, A7-DA binds to the
nuclear hormone receptor DAF-12 to modulate developmental and reproductive processes in
response to changing environmental conditions [2-8]. For instance, under favourable condi-
tions, the DA-DAF-12 module is activated to promote continuous larval development to the
adult stage, whereas under unfavourable conditions, this module is inactivated to suppress
development, leading to larval arrest (called dauer formation or diapause) [9,10]. This
DA-DAF-12 system—essentially a “developmental switch”—is regulated by the dauer signal-
ling pathway, which comprises elements of the cyclic guanosine monophosphate (cGMP),
DAF-7 transforming growth factor-f (TGF-f), DAF-2 insulin/insulin-like growth factor 1
(IGF-1) and steroid-hormone signalling cascades [9-11].

The DA-DAF-12 system is not unique to C. elegans. It has been shown to be functional in
the free-living nematode Pristionchus pacificus [12] and in the parasitic nematodes of Ancylos-
toma ceylanicum (clade V) and Strongyloides stercoralis (clade IV) [13-16]. Using informatic
approaches, components of this system have been identified in parasitic nematodes represent-
ing different evolutionary clades, including Trichinella spiralis, Trichuris trichiura (clade I);
Brugia malayi and Loa loa (clade III), [17]; and, recently, DA was discovered in Ascaris suum
and Toxocara canis (ascaridoids; clade III) [18]. Published information indicates that this
endocrine system (controlling dauer formation, or developmental arrest) is relatively con-
served for members of the phylum Nematoda [19-21], raising interest in the proposition that
DAF-12 and/or associated molecules might represent suitable targets for new anthelmintics
[13,22-24]. This aspect is particularly important, given the nature and extent of anthelmintic
resistance in socioeconomically important parasitic nematodes of animals, and the adverse
impact that it has on the agricultural and associated industries through reduced animal pro-
ductivity [25]. However, surprisingly, as yet there has been no detailed structural or functional
investigation of DA-DAF-12 and associated signalling pathways in economically significant
nematodes of livestock animals.

The barber’s pole worm, Haemonchus contortus (order Strongylida), is particularly
well-suited for molecular explorations [26]. It is arguably the most pathogenic nematode
of ruminants, and the disease that it causes (haemonchosis) has a major, adverse impact
on animal health and production worldwide [27,28]. This worm has a short life-cycle (~ 28-
30 days), has major reproductive potential and, thus, can be readily produced in large num-
bers in experimental sheep, allowing detailed in vitro studies. The worm develops from the
egg to the adult stage through four larval stages, with a dauer-like developmental arrest at
the third stage (L3) in the environment, and a possible developmental arrest (hypobiosis)
at the fourth stage (L4) within the host animal [29-31]. Recently, we established an efficient
in vitro-culture system for larval stages of this parasitic nematode [32], which facilitates
in-depth studies of developmental processes and mechanisms [33-35], underpinned by
extensive genomic resources [36-38] and enabled by a ready accessibility to transcriptomic,
proteomic, lipidomic and informatic technologies [33,35,39,40]. Using these resources
and technologies, in the present study, we elucidate the functionality of DA-DAF-12 system
and explore how it modulates associated pathways in this highly significant parasitic nema-
tode—H. contortus.
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Results

Transcriptional changes link to the dauer-signalling pathway during
larval transition, and the identification and quantitation of endogenous
A7-DA

Haemonchus contortus undergoes a morphological transition from an infective L3, via the
exsheathed L3 (called xL3), to the parasitic L4 stage [29], which can be carried out in vitro
[32]. Here, we investigated, the transcription of genes inferred to be linked to dauer-signalling
[34] during this transition in vitro, and then identified and quantitated A7-DA in respective
larval stages of the nematode.

We recorded significant alterations in the transcription of 14 of 61 genes inferred to be
involved in dauer signalling in H. contortus (Fig 1A and 1B): three genes (Hc-daf-21 [or hsp-
90], -scd-1 and -hsb-1) were highly upregulated in xL3s versus L3s, one (Hc-daf-36) was highly
upregulated in L4s versus xL3s, and 10 genes (Hc-gpa-2, -gpa-3, -daf-7, -daf-3, -scd-2, -akt-1,
-daf-16, -emb-8, -daf-12 and -ugt-65) were substantially downregulated in L4s versus xL3s
(FC > 2, P < 0.01; S1 Table).

Based on prior knowledge for C. elegans [9], these transcriptional alterations (Fig 1B) sug-
gested that DAs are integral to this developmental transition in H. contortus, because the bio-
synthesis of DAs likely represents the outcome of the dauer signalling pathway (Fig 1A) [34].
Therefore, we investigated H. contortus L3s for the presence of DA. Endogenous A7-DA
(retention time: 4.2 min; mass error: ~ 0.5 part per million) was unequivocally identified
in L3s (Fig 1C), and then quantified in all larval stages studied here (Fig 1D). The abundance
of A7-DA increased substantially from L3 to xL3 (24 h following exsheathment) and then
decreased gradually in the ensuing 6 days of in vitro-culture (Fig 1D).

Synthetic, exogenous (25S)-A7-DA activates Hc-DAF-12

To examine whether (255)-A7-DA might bind to the ligand-binding domain (LBD) of Hc-
DAF-12, we compared the structural model of this predicted LBD with that of Ac-DAF-12
from Ancylostoma caninum (a canine hookworm which is a related strongylid nematode)
(cf. [13]). Using three independent algorithms, we showed high structural similarity, achiev-
ing a root-mean-square deviation (RMSD) of 1.05, a structural distance measure (SDM) of
20.89 and a Q-score of 0.88 (Fig 2A), suggesting that Hc-DAF-12 and Ac-DAF-12 have a
similar binding affinity and ability to activate DAF-12. This proposal was confirmed by
showing that, in a luciferase reporter assay, (25S)-A7-DA at 50 nM to 1 uM activated Hc-
DAF-12 with an ECs, of 12.54 nM, which is similar to that of Ac-DAF-12 (12.80 nM)

(Fig 2B).

Exogenous (25S)-A7-DA stimulates larval growth and development

Knowing that (25S)-A7-DA activates Hc-DAF-12, we then explored whether we could influ-
ence larval exsheathment, growth and/or development in vitro using exogenous, synthetic
(25S)-A7-DA. There was no significant difference (P > 0.05) in exsheathment between L3s
and L3s exposed for 48 h to 10 uM of (25S)-A7-DA (Fig 2C). However, when cultured for 48 h
in the presence of 10 uM of (25S)-A7-DA, 49% more xL3s developed to L4s in vitro, and the
development from xL3s to L4s was significantly more rapid than unexposed controls (7 days)
(Fig 2D). This stimulatory effect of (25S)-A7-DA on larval growth and development was both
dose- and time-dependent (Fig 2E and 2F). There was a positive correlation between the con-
centration (r = 0.99, P < 0.001) of (25S)-A7-DA (0-1.25 uM) and larval development (82-
96%) after 2 days of culture, and (25S)-A7-DA of 1.25, 2.50, 5.00 and 10.00 uM achieved a
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Fig 1. Transcriptional changes pertaining to dauer signalling genes, and quantification of dafachronic acids in Haemonchus
contortus during developmental transition. (A) Model of the cyclic guanosine monophosphate (cGMP) (red), DAF-7-related
transforming growth factor-p (TGF-B) (orange), DAF-2-related insulin-like growth factor 1 (IGF-1) (green) and steroid
hormone signalling (blue) pathways proposed for H. contortus [34]. This model is predicted to play a role in integrating
environmental signals to control the biosynthesis of one or more dafachronic acids (DAs), which activate the nuclear hormone
receptor DAF-12. The DA-DAF-12 module might serve as a checkpoint for developmental decisions and associate with nutrient
metabolism in parasitic nematodes [8,14,17,34]. (B) Transcriptional profiles (Z-score normalised, mapped reads per million) of
61 gene homologues involved in the cGMP (red), TGF- (orange), IGF-1 (green) and steroid hormone (blue) signalling pathways
are displayed for the developmental transition from the dauer-like third larval stage (L3), via exsheathed L3 (xL3), to the parasitic
fourth larval stage (L4) of H. contortus in vitro. (C) Using (25S)-A4-DA (calculated mass: 413.3061, retention time: 4.0 min) and
(258)-A7-DA (calculated mass: 413.3061; retention time: 4.2 min) as references (blue peaks), endogenous A7-DA (retention time:
4.2 min; red peak) was detected in H. contortus with mass error estimated at 0.5 part per million (ppm). (D) The relative
abundance of endogenous A7-DA following larval exsheathment and in the ensuing larval development in vitro is indicated.

https://doi.org/10.1371/journal.ppat.1007960.9001

similar development rate (Fig 2E). Under the condition of treatment with 1.25 pM of (25S)-
A7-DA, there was a positive correlation (r = 0.99, P < 0.05) between the time of treatment (0-
48 h) and larval development (83-96%) (Fig 2F). The half maximum effective concentration
(ECsp) of (25S)-A7-DA on larval development was estimated at 320 nM.
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Fig 2. The influence of (255)-A7-DA on larval activation and development. (A) Comparison of the ligand-binding

domain (LBD) of DAF-12 of Haemonchus contortus (Hc-DAF-12) with that of Ac-DAF-12 from Ancylostoma caninum,
using the following parameters: sequence length, root-mean-square deviation (RMSD), structural distance measure

(SDM) and Q-score. (B) Activation of Hc-DAF-12 and Ac-DAF-12 by (25S)-A7-DA) in a luciferase reporter assay. The
effects of 10 uM of (25S)-A7-DA on (C) larval exsheathment and (D) larval development. The effect of (25S)-A7-DA on

larval development is both (E) dose- and (F) time- dependent. An error bar indicates a standard deviation (SD; four
replicates). Statistical significance is indicated with one or more asterisks (*P < 0.05, **P < 0.01, ***P < 0.001, using

Student’s t-test).

https://doi.org/10.1371/journal.ppat.1007960.9002

Establishment of transcriptomic, proteomic and lipidomic data sets for

subsequent analyses

To explore molecular responses in H. contortus associated with DA, we established transcrip-
tomic, proteomic and lipidomic resources. Individual transcriptomic, proteomic and lipido-
mic data sets were produced for xL3s (0 h), xL3s (24 h) and (255)-A7-DA-treated xL3s (24 h)
(four replicates each) (S1A Fig). The ‘larval’ transcriptome, proteome and lipidome comprised
12,217 mRNAs, 1,425 protein groups and 653 lipids (representing 23 classes), respectively;
proteins were detected for 10% of all transcripts identified. Principal component analyses
showed that the three data sets clustered into three distinct groups (xL3s (0 h), xL3s (24 h) and
(25S)-A7-DA-treated xL3s (24 h)), and hierarchical cluster analyses indicated differences in
mRNA transcription, protein expression and lipid abundance between or among the groups

(S1B and S1C Fig).
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Analysis of differential transcription, protein expression and lipid
abundance

Using individual transcriptomic, proteomic and lipidomic data sets produced (52, S3 and S4
Tables), we studied molecular changes in H. contortus xL3s and xL3s exposed to (25S)-A7-DA
for 24 h. Extensive changes in mRNA transcription, protein expression and lipid abundance
were recorded (52, S3 and S4 Tables). Specifically, significantly higher levels of 1,055 mRNAs,
101 proteins and 180 lipids, and significantly lower levels of 1,029 mRNAs, 46 proteins and
109 lipids were detected in xL3s (at 24 h) compared with L3s immediately following exsheath-
ment (Fig 3A-3C; S2, S3 and S4 Tables). More differences were seen in xL3s exposed to (255)-
A7-DA at 24 h, including significantly increased levels of some mRNAs (n = 1,378), proteins
(n =263) and lipids (n = 177) and significantly decreased levels of other mRNAs (n = 1,362),
proteins (n = 126) and lipids (n = 109) (S2, S3 and S4 Tables). Most significant molecular
changes detected in xL3s (at 24 h) were identified in (25S)-A7-DA-treated xL3s (at 24 h); these
changes were inferred to be associated with biological processes including environmental
information processing (principally signal transduction), genetic information processing
(including folding, sorting and degradation) and lipid metabolism (including fatty acid degra-
dation and steroid hormone biosynthesis) (Fig 3D; S2 Fig). Changes in lipid metabolism
related predominantly to sphingolipids (ceramide and sphingomyelin), glycerolipids (DG and
TG) and glycerophospholipids (PA, PC, PE, PG, PI and PS) (Fig 3D; S4 Table).

(25S)-A7-DA modulates transcription in genes associated with dauer
signalling genes and larval growth

First, we explored differential transcription for genes associated with dauer signalling (Fig 4).
In the transition from L3 to xL3s, 24 h following L3 exsheathment, when endogenous DA is at
its highest level in xL3s (Fig 1D), transcription in the dauer signalling cascade was downregu-
lated (FC > 2 and P < 0.01) for 14 genes involved in cGMP (Hc-gpa-2 and -gpa-3), TGF-
(Hc-daf-7, -daf-4, -daf-5 and -scd-2), IGF-1 signalling (Hc-ins-1, -ins-18, -ist-1, -daf-16, -skn-1
and -acs-19) or steroid hormone signalling (Hc-emb-8 and -daf-12), and transcription was
upregulated (FC > 2 and P < 0.01) for one gene (Hc-scd-1) associated with TGF-f signalling
and four genes (Hc-daf-36, -daf-9, -hsd-1 and -lev-9) linked to steroid hormone signalling (Fig
4; S5 Table). In order to assess whether DA biosynthesis alters the differential transcription of
these genes, we undertook an experiment where we added exogenous (25S)-A7-DA (1.25 uM)
to xL3s for 24 h (after exsheathment). The results showed a further, significant reduction
(FC > 2 and P < 0.01) in the transcription of 12 downregulated genes (Hc-gpa-2, -gpa-3, -daf-
7, -daf-4, -daf-5, -scd-2, -ins-1, -ins-18, -ist-1, -daf-16, -skn-1 and -daf-12) and two upregulated
genes (Hc-scd-1 and -daf-36) (Fig 4; S5 Table).

Beyond the dauer signalling pathway, (25S)-A7-DA supplementation induced significant
(P <£0.05) molecular alterations in xL3s following exsheathment. Although a downregulation
was recorded exclusively for mRNA transcription of genes cat-4, cox-6A, hil-1, hsp-16.1, Igc-34
and ttr-17, an upregulation was measured for mRNA transcription (genes clec-48, cyp-14A5,
osta-3 and pgp-1), protein expression (SYM-1 and LPR-3) and lipid abundance [for DG
(15:0_18:1), TG(15:0_10:0_18:2), PC(15:0_20:4), PC(16:0_17:0), LPC(15:0) and PI(15:0_20:4)]
(Fig 5A-5C; S2, S3 and S4 Tables). These differentially transcribed mRNAs and upregulated
proteins were inferred to be involved in larval development, pharynx development and the
attachment of body muscle to the extracellular cuticle (body morphogenesis) (Fig 5D; S2 and
S3 Tables). The altered abundances of particular glycerolipids and glycerophospholipids were
associated with cellular proliferation, lipid signalling and metabolism (Fig 5D).
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Inhibition of endogenous A7-DA by dafadine A compromises larval
exsheathment and development, and alters lipid abundance

As a previous study [41] has shown that dafadine A can specifically inhibit the biosynthesis of
DAs in C. elegans, we elected to test the effect of this inhibitor on A7-DA biosynthesis, larval
exsheathment and development of H. contortus. Treatment with dafadine A (100 uM) slowed
larval development from the L3 to the L4 stage and significantly reduced the level of endoge-
nous A7-DA in dafadine A-treated worms, compared with untreated and (25S)-A7-DA-treated
worms (Fig 6A and 6B). When L3s were exposed to 100 uM of dafadine A in vitro, exsheath-
ment was significantly inhibited (P < 0.001) compared with unexposed L3 controls (Fig 6C).
Similarly, when xL3s were exposed to 100 uM of dafadine A, larval development decreased
significantly (P < 0.001) (Fig 6D). The inhibitory effects of dafadine A on the production of
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https://doi.org/10.1371/journal.ppat.1007960.9005

endogenous A7-DA, larval exsheathment and development were partially or completely “res-
cued” by supplementation with 1.25 pM of (255)-A7-DA (P < 0.001) (Fig 6B-6D).

Since the altered abundances of particular glycerolipids and glycerophospholipids were

linked to (25S)-A7-DA treatment (Fig 5D), we explored the relationship between these mole-
cules and DA in H. contortus. Treatment with dafadine A (100 uM) altered the abundances of
DG(15:0_18:1), TG(15:0_10:0_18:2), PC(15:0_20:4; 16:0_17:0), LPC(15:0) and PI1(15:0_20:4)

in xL3s at 24 h. Specifically, dafadine A significantly (P < 0.01) increased the levels of DG

(15:0_18:1) and TG(15:0_10:0_18:2); the levels of these lipids increased further when exposed
to (25S)-A7-DA (P < 0.05) with reference to untreated controls (Fig 7A and 7B). It was also
evident that treatment with dafadine A for 24 h significantly reduced levels of PC (15:0_20:4,
16:0_17:0), LPC (15:0) and PI (15:0_20:4) (P < 0.05) compared with untreated controls, which
were reversed by supplementation with 1.25 uM of (25S)-A7-DA (Fig 7C-7F).

Discussion

This study identified, for the first time, DA in the strongylid nematode H. contortus, and
showed that this hormone promotes larval exsheathment and development via a relatively
conserved nuclear hormone receptor, DAF-12. In H. contortus, the DA-DAF-12 complex
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Fig 6. Effects of dafadine A on DA biosynthesis, larval development and lipid metabolism. (A) Treatment with 100 uM of
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dafadine-treated worms. The inhibitory effect of dafadine A and rescuing effect of 1.25 uM of (255)-A7-DA on (C) larval
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indicated with one or more asterisks (*P < 0.05, **P < 0.01, ***P < 0.001, using the Student’s t-test).

https://doi.org/10.1371/journal.ppat.1007960.9006

modulates the dauer-like signalling pathway, via a negative feedback circuit, and affects molec-
ular alterations linked to pharynx development, body morphogenesis, cellular growth, lipid
signalling and metabolism.

The A7-DA signal that induces larval development in H. contortus is transduced via DAF-
12. Since the relationship between DA-DAF-12 and developmental regulation in C. elegans is
well-established [4,5,42], a conserved DA-DAF-12 module had been proposed for parasitic
nematodes [13,15,21]. Recently, we also showed quite marked sequence and/or structural simi-
larity in the inferred DAF-12 ligand-binding domain (LBD) between H. contortus and other
individual strongylids (A. ceylanicum and Necator americanus) or rhabditids (S. stercoralis and
C. elegans) [34], suggesting relative functional conservation in dafachronic acid binding and
signalling. Indeed, here we confirmed that (25S)-A7-DA activates Hc-DAF-12 in a luciferase
reporter assay, with an ECs, (12.54 nM) that is similar to Ac-DAF-12 (12.80 nM) from A. cani-
num. These findings suggest that the endogenous A7-DA signal is transduced by DAF-12 to
promote larval development in H. contortus, consistent with Ancylostoma and Strongyloides
spp. (cf. [12,13,15,16]).

It has been reported that the binding of DA to DAF-12 in parasitic nematodes is similar to
that of bile acids to the farnesoid X receptor in mammals, suggesting that a bile acid-like sig-
nalling pathway exists in parasitic nematodes [15]. Interestingly, a common hormone-theme
has been proposed for physicochemical communications between parasite and host animal
[43-45]. A good example of this is that prolactin evokes the transmammary transmission of
larvae of the ascaridoid nematode T. canis in mice [46]. It is readily possible that the DA-DAF-
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(15:0_10:10_18:2)] for the subsequent production of glycerophospholipids [e.g., PC(15:0_20:4), PC(16:0_17:0) and PI(15:0_20:4)], and

which negatively regulates DA biosynthesis to reduce lipid degradation for fat accumulation. The solid arrow indicates the production of
endogenous DA; a dashed line with an arrow indicates an indirect pathway; and a dashed line with a bar indicates a negative feedback loop.

https://doi.org/10.1371/journal.ppat.1007960.9007

12 module in the latter nematode plays a role in regulating or signalling larval activation and
transmission, but this involvement needs to be verified molecularly. Clearly, understanding
the functionality of the DA-DAF-12 module in parasitic nematodes could provide a paradigm
for exploring cross-talk between parasite and host, particularly for worms which can enter into
or exit from hypobiosis (arrested development) in their host, such as some members of the

families Trichostrongylidae and Ascarididae [47,48].

In H. contortus, the upregulated transcription of particular dauer signalling genes during
the developmental transition from the L3 (dauer-like) stage to the L4 stage indicates an active
DA biosynthesis in xL3s, confirmed by measuring an increase in the level of A7-DA following
L3 exsheathment. These alterations are similar to the transcriptional changes and hormone
signal amplification seen in C. elegans during its development to the reproductively-active
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adult stage [6,11]. By contrast, a decreased level of A7-DA during the ensuing larval develop-
ment indicates a reduction of its biosynthesis, which is supported by the observation of a pro-
nounced downregulation of transcription of particular genes linked to dauer-like signalling.
The dynamics of these changes in DA and transcription levels suggest that the endogenous
synthesis of A7-DA is relatively tightly modulated or controlled via an, as yet, uncharacterised
feedback circuit. A similar negative feedback mechanism exists in C. elegans, and operates via
the let-7 family of microRNAs [5,6]. As let-7 homologues have not yet been identified or char-
acterised in H. contortus, further work is required to establish how this feedback mechanism
works in this parasitic nematode. Interestingly, A4-DA was not detected in H. contortus, which
might be due to its absence or undetectable levels in the larval stages studied. However, both
A4-DA and A7-DA have been detected in both A. suum and T. canis at differing levels [18],
suggesting a functional distinctiveness of the two isomers in their involvement in selected bio-
logical processes in the latter two nematodes.

Different “signal intensity thresholds” of DA might be required for larval activation versus
development; we found that 100 uM of (25S)-A7-DA did not induce exsheathment (although
there is a possibility that DA does not penetrate the L3 sheath), but did significantly stimulate
larval development following exsheathment. The specific inhibition of DAF-9 (cytochrome
P450) with dafadine A resulted in a significant reduction of both endogenous A7-DA levels
and larval exsheathment/development, which could be partially reversed through the supple-
mentation of an excess (1.25 M) of exogenous (25S)-A7-DA. These findings are distinct from
those described for Ancylostoma caninum in that (25S)-A7-DA can directly activate infective
larvae (L3s) of A. caninum and can induce post-parasitic larvae of S. stercoralis to develop to
free-living stages [13,16]. The distinct responses to (25S)-A7-DA among H. contortus (clade
V), A. caninum (clade V) and S. stercoralis (clade IV) might relate to evolutionary divergences
in DA-associated signalling pathways within the phylum Nematoda [14,49]. This proposal
warrants future evaluation.

Exogenous (255)-A7-DA-induced changes in mRNA, protein and lipid profiles in xL3s of
H. contortus appear to link to phenotypic distinctiveness (development) and lipid metabolism
(i.e. fatty acid degradation, and glycero- and glycerophospho-lipid biosynthesis) via the
DA-DAF-12 module. To test the functionality of the DA-DAF-12 module, we blocked the bio-
synthesis of A7-DA using a specific inhibitor (i.e. dafadine A) of DAF-9 (cytochrome P450)
[41], which resulted in a reduction of the endogenous A7-DA level, and, consequently, inhib-
ited larval development. Similar results were achieved when the cytochrome P450s of Nippos-
trongylus brasiliensis and S. stercoralis were targeted with a less specific inhibitor, ketoconazole
[16,50]. The significant reduction of PC(15:0_20:4, 16:0_17:0), LPC(15:0) and PI(15:0_20:4)
levels in dafadine A-treated H. contortus larvae could be reversed by supplementation with
(255)-A7-DA, indicating a direct or indirect role for DA-DAF-12 signalling in the metabolism
of selected glycerolipids and glycerophospholipids [51]. In addition, the increases in DG
(15:0_18:1) and TG(15:0_10:0_18:2) levels in dafadine A-treated worms suggest a role for
DAF-9 in glycerolipid metabolism. Interestingly, all of these lipid species are odd-chain fatty
acids, which contrasts the situation in C. elegans, in which only small amounts of straight, odd-
chain fatty acids (likely originating from the worm’s food source—Escherichia coli) accumulate
in lipids [52]. Surprisingly little is known about the origin and functional roles of these odd-
chain lipid species in developmental processes of nematodes. Nonetheless, based on the pres-
ent findings, we propose a dual role for the DA-DAF-12 module in promoting the metabolism
of key glycerophospholipids and inhibiting the degradation of some lipids (possibly promoting
fat accumulation), which functions via a negative feedback to DAF-9 (see Fig 7G), but, clearly,
this hypothesis requires rigorous testing.
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Taken together, the findings of the present study provide evidence for a signalling cascade
in H. contortus, in which host signals (e.g., CO,, pH, insulin and/or metabolites of bile acids)
bind to chemoreceptors, which trigger signal transduction from chemosensory neurons to
endocrine cells and then hypodermal cells through the interconnected cGMP, TGF-f and
IGF-1 pathways. The transduced signal promotes the metabolism of steroids and the biosyn-
thesis of DA, the latter of which activates the nuclear hormone receptor DAF-12, leading to
gene transcription and protein expression associated with body morphogenesis and pharynx
development as well as lipid metabolism. A high level of DA would modulate phosphatidylino-
sitol signalling that activates PI3K-AKT signalling [53], resulting in phosphorylation-depen-
dent cytoplasmic sequestration of the transcription factors DAF-16/FOXO [9,54]. The
activation of DAF-16/FOXO antagonises the upstream cGMP, TGF-B and IGF-1 signalling
[53,55], downregulating DA biosynthesis in a feedback circuit, resulting in a reduced lipid
metabolism, and, consequently, in fat accumulation (Fig 7G). Understanding the biosynthesis
of DAs and nuclear-hormone signal transduction (e.g., via DA-DAF-12) should provide valu-
able insights into the developmental biology and adaptation of parasitic nematodes to host ani-
mals. Experimental evidence [13,23,24] has already shown that S. stercoralis hyperinfection
can be prevented by treatment with (25S)-A7-DA. Although (25S)-A7-DA might regulate
developmental processes in H. contortus (order Strongylida) differently from those in Strongy-
loides [12,13,16], the potential of DAF-9 and DAF-12 as novel intervention targets (cf. [13,22])
should be explored further. Clearly, major success achieved in a recent study [56] opens the
door to assessing the functional essentiality of these steroid hormone signalling components in
Strongyloides species by RNA interference.

In conclusion, current findings for H. contortus indicate that the hormonal signal complex
DA-DAF-12 modulates the dauer-like signalling pathway through a feedback loop, and regu-
lates biological processes associated with cellular growth and lipid metabolism via a conserved
DA-DAF-12 signalling module during developmental transition. This module provides a para-
digm to investigate aspects of the developmental and possibly reproductive biology of H. con-
tortus and related nematodes, to explore physiochemical cross-talk between parasite and host,
and to discover novel intervention strategies against parasitic diseases.

Methods
Ethics approval

Haemonchus contortus (Haecon-5 strain) was produced in Merino lambs (6 months of age;
Victoria, Australia), maintained under helminth-free conditions in facilities in the University
of Melbourne. The procedures for animal maintenance and experiments were approved by the
University of Melbourne (permit no. 1714374), which follows Part 3 of the Prevention of Cru-
elty to Animals Act 1986 and Part 4 of the Prevention of Cruelty to Animals Regulations 2008
of the State of Victoria as well as the Australian Code for the Care and Use of Animals for Sci-
entific Purposes (1969).

H. contortus stages

A monospecific infection of H. contortus was maintained in sheep under well-controlled
experimental conditions [57]; three distinct larval stages of this nematode were produced in
vitro using established methods [32]. In brief, third-stage larvae (L3s) were collected from
coproculture, purified and maintained at 10 °C in a refrigerated incubator; exsheathed L3s
(xL3s) were produced using a well-established hypochlorite-treatment method [32]; and xL3s
were cultured (300 per well of 96-well culture plates), under standardised conditions, in Luria
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Bertani medium (LB) supplemented with Antibiotic-Antimycotic (cat no. 15240-062, Gibco)
(LB*) at 38 °C, 10% v/v CO, to yield fourth-stage larvae (L4s) of H. contortus.

Detection of DA in the worm

Endogenous DA was identified by liquid chromatography-mass spectrometric (LC-MS) analy-
sis of lipids extracted from three distinct developmental stages of H. contortus. Lipids were
extracted from four replicates (each 1 mg dry weight) of each L3s, xL3s and L4s using an estab-
lished method [34]. Each replicate was suspended in ice-cold methanol (40%), homogenised
using zirconium oxide beads (ZROB05, Next Advance, USA) and extracted with chloroform:
methanol (2:1) by centrifugation at 10,000 xg for 15 min, dried and resuspended in methanol
(100%), then subjected to LC-MS analysis in an Orbitrap Fusion Lumos mass spectrometer
coupled to an Ultimate 3000 UHPLC using a C30 column (2.1 x 250 mm) (Thermo Fisher
Scientific, San Jose, CA, USA). Endogenous DA were identified by comparison with the refer-
ence standards (255)-A7-DA and (25S)-A4-DA (cat. no. 23017-97-2; Cayman Chemical, USA)
(exact mass: 413.3061). Peak areas of extracted ion chromatogram were calculated using Sky-
line v.4.2.

Structure modelling and DAF-12 reporter assay

The structure of the LBD of DAF-12 of H. contortus (Hc-DAF-12) (using the inferred amino
acid sequence: GenBank accession no. MK_256962) was modelled using the program I-
TASSER [58] and compared with that of A. caninum (Ac-DAF-12) [15] using UCSF Chimera
v.1.12 [59]. Structural similarities between query and template sequences were established
using sequence length, overall RMSD, SDM and Q-score.

To test whether He-DAF-12 can be activated by (25S)-A7-DA, a well-established reporter
assay was performed as described previously [1,13]. In brief, HEK293 cells were transfected
with the luciferase reporter (50 ng), CMX--galactosidase reporter (10 ng) or Hc-DAF-12
expression plasmids (15 ng). Ethanol or (25S)-A7-DA (0 to 1 uM) was added to cells (8 h fol-
lowing transfection) and incubated for 16 h. Luciferase activity was measured with reference
to a CMX-f-galactosidase control.

Assaying the effect of (255)-A7-DA on larval exsheathment and
development

First, L3s (300 worms per well; four replicates) were exsheathed by incubating them at 38 °C
and 10% v/v CO, for 48 h in physiological saline in the presence or absence of 10 uM of (25S)-
A7-DA. The number and percentage of exsheathed L3s (xL3s) were assessed every 12 h. Sec-
ond, xL3s (300 worms per well; four replicates) were cultured to L4s at 38 °C, 10% v/v CO, in
LB* in the absence or presence of (255)-A7-DA (10 uM to 10*27"7 uM). The numbers of xL3s
and L4s in culture were calculated every 24 h, and the proportion of L4s was calculated at each
time point. Statistical analyses (student’s t-test, Spearman’s rank correlation and non-linear
regression) were performed using Prism 7 (GraphPad, La Jolla, USA).

Transcriptomic, proteomic and lipidomic analyses

The transcriptomes, proteomes and lipidomes were produced from H. contortus xL3s, which
had been exsheathed using the established hypochlorite-treatment method [32] and then
incubated in LB* (38 °C, 10% v/v CO, for 24 h) in the presence or absence of 1.25 uM (25S)-
A7-DA. For each treatment, four replicates of 30,000 xL3s each were incubated at 38 °C, 10%
v/v CO, for 24 h.
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For transcriptomic analysis, total RNA was extracted from each of the replicates of xL3s,
processed and sequenced as described previously [33]. In brief, strand-specific mRNA libraries
were constructed using the TruSeq RNA Library Prep Kit (Illumina) and sequenced on the
BGISEQ-500 platform. Raw reads were processed and mapped to predicted genes of H. contor-
tus (BioProject: PRJEB506) using Bowtie v.2.1.0 [60] within the software package RSEM
v.1.2.11 [61].

For proteomic analysis, proteins were isolated from the replicates as described previously
[33]. In brief, protein (50 ug) samples were reduced with Tris(2-carboxyethyl)phosphine
(TCEP), alkylated with iodoacetamide and digested with Lys-C/trypsin Mix (cat no. V5072;
Promega, USA). The digested samples were acidified with 1.0% (v/v) formic acid and purified
using Oasis HLB cartridges (cat no. 186000383; Waters, USA) and then subjected to LC-MS/
MS analysis using a QExactive plus Orbitrap mass spectrometer (Thermo Fisher Scientific,
USA) with a nanoESI interface in conjunction with an Ultimate 3000 RSLC nanoHPLC (Dio-
nex Ultimate 3000). Mass spectrometry data were analysed using MaxQuant [62] to identify
and quantify peptides.

For lipidomic analysis, lipids were extracted from the replicates and analysed by LC-MS/MS
using an Orbitrap Fusion Lumos mass spectrometer [40]. For the semi-quantitation of identi-
fied lipids, the Splash Lipidomix Mass Spec. Standard (cat no. 330707-1EA, Avanti Polar Lipids,
USA), including phosphatidylcholine [PC, 15:0_18:1(d7)], phosphatidylethanolamine [PE,
15:0_18:1(d7)], phosphatidylserine [PS, 15:0_18:1(d7)], phosphatidylglycerol [PG, 15:0_18:1
(d7)], phosphatidylinositol [PI, 15:0_18:1(d7)], lysophosphatidylcholine [LPC, 18:1(d7)], lyso-
phosphatidylethanolamine [LPE, 18:1(d7)], monoradylglycerol [MG, 18:1(d7)], diradylglycerol
[DG, 15:0_18:1(d7)] and triacylglycerol [TG, 15:0_18:1(d7)_15:0], was used as the internal stan-
dard. Additional PS[15:0_18:1(d7)], MG[18:1(d7)] and DG[15:0_18:1(d7)] were supplemented
to reach a final concentration of 100 pg/ml for each lipid species. Lipids were identified and
quantified using LipidSearch software v.4.2.20 (Thermo Scientific), and manually curated.

The mRNAs, proteins and lipids quantified were subjected to principal component and
hierarchical cluster analyses using the Perseus computational platform [63,64]. Differential
transcription was explored using the limma, glimma and edgeR packages [65]; a fold-change
(FC) of > 2 and a false discovery rate (FDR) of < 0.01 defined a significant difference, unless
otherwise stated (FC > 2 and P < 0.01). Differential protein expression analysis was conducted
using the program Perseus v.1.6.1.1, employing an FC of > 1.5 and an FDR < 0.05 as thresh-
olds. For lipids, an FC of > 1.5 and a P value of < 0.01 were used as cut-offs. Differentially
transcribed mRNAs and expressed proteins were assigned to Kyoto Encyclopedia of Genes
and Genomes (KEGG) Orthology (KO) terms using BlastKOALA [66], and KEGG annota-
tions were analysed and displayed using FuncTree 2 [67].

Inhibition of DAF-9 (cytochrome P450) in the worm

Dafadine A (cat. no. SML0736; Sigma-Aldrich) is known to specifically inhibit DAF-9 in C.
elegans [41]. This chemical was used to inhibit the endogenous production of DAs. In brief,
worms (300 L3s or xL3s per well) were exposed to dafadine A (100 pM) in LB* and incubated
at 38 °C, 10% CO, for 7 days. DMSO, (255)-A7-DA (1.25 pM), and dafadine A (100 pM) +
(255)-A7-DA (1.25 pM) were used as different controls. DA levels, larval development and
lipid abundances were analysed between treated and untreated worms.

Accession numbers

Nucleic acid sequence data from this study are available via the National Center for Biotech-
nology Information (NCBI) sequence reads archive (SRA) under accession numbers
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SUB3797117 and SUB5228712. The proteomic data obtained by mass spectrometry have been
deposited in the ProteomeXchange Consortium via the PRIDE partner repository and are
linked to the dataset identifier PXD012878.

Supporting information

S1 Table. Transcription profiles of dauer signalling genes during the developmental transi-
tion from the free-living L3 stage to the parasitic L4 stage of Haemonchus contortus in
vitro.

(XLSX)

S2 Table. Effect of (25S)-A7-DA on gene transcription during the developmental (larval)
transition of Haemonchus contortus in vitro.
(XLSX)

S3 Table. Effect of (25S)-A7-DA on protein expression during the developmental (larval)
transition of Haemonchus contortus in vitro.
(XLSX)

$4 Table. Effect of (25S)-A7-DA on lipid abundance during the developmental (larval)
transition of Haemonchus contortus in vitro.
(XLSX)

S5 Table. Effect of (25S)-A7-DA on the upstream dauer signalling pathway during the
developmental (larval) transition of Haemonchus contortus in vitro.
(XLSX)

S1 Fig. Transcriptomic, proteomic and lipidomic datasets for the exsheathed third-stage
larvae (xL3s) and (25S)-A7-DA-treated xL3s. (A) Transcriptome, proteome and lipidome
produced from xL3s (0 h and 24 h) and xL3s exposed to (25S)-A7-DA (24 h). (B) Principal
component analyses and (C) hierarchical clustering of the transcriptomic, proteomic and lipi-
domic datasets.

(TIF)

S2 Fig. Annotation and integration of transcriptomic and proteomic data sets. Functional
annotation of mRNAs and proteins differentially transcribed/expressed between exsheathed
L3s (xL3s) at 0 h and xL3s at 24 h. Annotation using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (employing Orthologue (red), Module (orange), Pathway (yellow)
and BRITE levels 2 (green) and 1 (blue); see Materials and methods section). Significantly up-
regulated (red) or down-regulated (blue) molecules and pathways are indicated.

(TIF)
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