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We have previously prepared gold nanoparticles (AuNPs) bearing the

Thomsen-Friedenreich antigen disaccharide (TFag), a pan-carcinoma,

Tumor-Associated Carbohydrate Antigen (TACA), as tools for various

assays and biological applications. Conjugation to AuNPs typically

involves the use of thiols due to the affinity of sulfur for the gold surface

of the nanoparticle. While a use of a single thiol-containing ligand bound to

the gold surface is standard practice, several studies have shown that

ligands bearing multiple thiols can enhance the strength of the

conjugation in a nearly linear fashion. (R)-(+)-α-Lipoic acid (LA), a

naturally occurring disulfide-containing organic acid that is used as a

cofactor in many enzymatic reactions, has been used as a linker to

conjugate various molecules to AuNPs through its branched di-thiol

system to enhance nanoparticle stability. We sought to use a similar

system to increase nanoparticle stability that was devoid of the chiral

center in (R)-(+)-α-lipoic acid. Isolipoic acid, an isomer of LA, where the

exocyclic pentanoic acid chain is shifted by one carbon on the dithiolane

ring to produce an achiral acid, was thought to act similarly as LA without

the risk of any contaminating (L)-(−) isomer. We synthesized AuNPs with

ligands of both serine and threonine glycoamino acids bearing the TFag
linked to isolipoic acid and examined their stability under various

conditions. In addition, these particles were shown to bind to Galectin-3

and inhibit the interaction of Galectin-3 with a protein displaying copies of

the TFag. These agents should prove useful in the design of potential

antimetastatic therapeutics that would benefit from achiral linkers that

are geometrically linear and achiral.
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1 Introduction

Tumor-Associated Carbohydrate Antigens (TACAs) are

glycan structures covalently attached to proteins or lipids in

various forms on the surface of tumor cells (Feizi and Childs,

1985; Hakomori, 1991; Dabelsteen, 1996). They differ from the

normal cell glycan repertoire insofar as the tumor biosynthetic

machinery is modified via a disparate regulation of

glycosyltransferases and hydrolases. This produces aberrant

and distinct cell-surface glycan structures that are unique to

tumors, and these structures impart modified biophysical and

protein binding characteristics to individual tumor types. In

addition, some of these tumor-associated glycans can be

recognized as “non-self” by the immune system (hence the

moniker, “antigen”) eliciting both humoral and (sometimes)

cell-mediated responses (Andreana, 2009). As a result, there

have been myriad attempts to prepare vaccine constructs to

raise effective and durable immune responses to TACAs

(Toyokuni and Singhal, 1995; Xu et al., 2005; Franco, 2008;

Guo and Wang, 2009; Liu and Ye, 2012; Yin and Huang, 2012;

Amon et al., 2014; Feng et al., 2016; Wei et al., 2018; Jin et al.,

2019). In addition, some of these TACAs are also ligands for

carbohydrate-binding proteins (CBPs) that are involved in cell

adhesion as they relate to cancer progression and metastasis.

Thus, inhibition of these interactions is a way to interrupt tumor

aggressiveness and metastatic spread.

One particular TACA that has been used in both of the

aforementioned therapeutic arenas is the Thomsen Friedenreich

antigen (TFag), which is the core 1 O-linked disaccharide Galβ1-
3GalNAc found primarily attached in an α-O-linkage to the

hydroxyl group of serine and threonine residues of various cell-

surface proteins, primarily mucins. TFag is a classically truncated

O-glycan found on many tumors of the breast, prostate and

pancreas. The TFag has been the subject of a wealth of anticancer

therapeutic design, either through inhibition of its binding to

cancer-relevant proteins (Peletskaya et al., 1997; Khaldoyanidi

et al., 2003; Jeschke et al., 2006; Jeschke et al., 2007; Gao et al.,

2012; Glinskii et al., 2012; Poiroux et al., 2017; Hoffmann et al.,

2020) or as an immunogen in various vaccine design strategies

(Slovin et al., 2005; Awad et al., 2012; Brinas et al., 2012; Gaidzik

et al., 2013; Ulsemer et al., 2013; Yi et al., 2013; Bourgault et al.,

2014; Johannes et al., 2015; Son et al., 2016; Sun et al., 2016;

Trabbic et al., 2016; Flechner et al., 2019; Trabbic et al., 2019; Wu

et al., 2019; Kleski et al., 2020; Wu et al., 2021; Berois et al., 2022).

Mechanistically, the TFag has been unequivocally shown to

interact with the CBP Galectin-3, a β-galactoside binding

protein that interacts both intra- and extracellularly with

many glycoproteins, is overexpressed in a variety of tumors

and whose expression is directly correlated with tumor

aggressiveness and metastasis (Takenaka et al., 2002). TFag is

involved in adhesion of tumor cells to the endothelium and these

interactions can mediate signaling that allows extravasation of

primary tumor tissue (Glinsky et al., 2001; Khaldoyanidi et al.,

2003; Glinsky, 2006; Yu et al., 2007; Compagno et al., 2014;

Hauselmann and Borsig, 2014; Xin et al., 2015). Thus, inhibitors

of the Gal-3/TFag interaction are potential therapeutics in several

types of cancers. TFag analogues (Glinskii et al., 2012; Santarsia

et al., 2018), truncated portions of Gal-3 (John et al., 2003), TFag-

mimicking peptides (Glinsky et al., 2000; Newton-Northup et al.,

2013) and natural glycopeptides containing multiple copies of

TFag (Guha et al., 2013) have all been shown to inhibit this

interaction in different cell-based systems. In addition, antibodies

to the TFag have been used as anticancer agents, especially against

breast and prostate tumors (Glinsky et al., 2001; Glinsky et al.,

2003; Tantivejkul et al., 2004). JAA-F11, a monoclonal antibody

(mAb) to α-TFag (Rittenhouse-Olson, 2007), has shown good

in vitro and in vivo activity in breast tumor models, with

inhibition of spontaneous metastasis (Heimburg et al., 2006),

distinct tumor staining of TFag-positive tissue (Ferguson et al.,

2014; Karacosta et al., 2018) and it has been humanized for

potential clinical development (Tati et al., 2017). In our own lab,

we have developed and commercialized an antibody to a TFag-

containing peptide sequence from themucinMUC4, a biomarker

for pancreatic cancer, that is highly selective for tumor tissue and

binds metastatic foci in tissue arrays (Trabbic et al., 2019).

Monovalent carbohydrate-protein interactions (CPIs) are

known to be inherently weak and are strengthened by

multivalency (the “Velcro effect”) (Nicotra et al., 2014). Cell-

surface CPIs utilize multimeric copies of protein and sugar to fine

tune the strength of a specific interaction, and this is also the case

for TFag-Gal-3 (or other CBP) binding events. Multivalent TFag
constructs have been pioneered by the research group of Roy and

coworkers (Baek et al., 2001; Baek and Roy, 2002; Roy and Baek,

2003). These studies showed that dendrimers and saccharide

polymers of the TFag can potentiate the interaction of the

disaccharide with proteins by several orders of magnitude.

Our group has made inroads into the use of gold

nanoparticles (AuNPs) for the multivalent presentation of

TFag and TFag-containing glycopeptides, and showed that

these constructs can bind to Galectin-3 (Gal-3) and inhibit

Gal-3 interactions with other proteins. (Svarovsky et al., 2005;

Sundgren and Barchi, 2008; Barchi, 2011; Brinas et al., 2012;

Glinskii et al., 2014; Biswas et al., 2015). In addition, we have

performed several antimetastatic in vivo studies in our lab with

many of our constructs that early on seemed quite promising, but

results have been inconsistent (and hence unpublishable). We

reasoned that the stability of the TFag ligand on the AuNPmay be

an issue when these AuNP are in the systemic circulation in an

intact animal. In an attempt to address this, we set out to make a

similar construction, with a highly stable and symmetric linker

that could be a common reagent for all subsequent nanoparticle

syntheses. Comprehensive stability and in vitro studies suggested

that this linker strategy is much more desirable than previous

designs and will be useful in future therapeutic design strategies.

Development of novel nanomaterials with 3-dimensional

self-assembled monolayers of gold (AuNPs) has been an
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incredibly active area of research in the past two decades. A wide

array of these constructions has been designed and synthesized

for therapeutic applications against a variety of diseases. In a

majority of studies, the synthesis of AuNPs has followed the

classic Turkevich (Turkevich et al., 1951; Enustun and Turkevich,

1963) or Brust methods (Brust et al., 1994; Brust et al., 1995).

Attachment to the gold surface is usually mediated via a thiol

functionality due to the high affinity of Au for sulfur atoms.

Several studies have shown that additional means of attachment,

through molecules containing 2–3 conjugatable sulfur atoms

increases the strength of binding as each S-atom can

contribute a defined bond strength in an additive way. (Park

et al., 2005; Wojczykowski et al., 2006). This effect is a form of

“multivalency” and the added stabilization prevents simple place

exchange reactions with various concentrations of added soluble

thiols.

One molecule that has garnered substantial attention as a

bidentate ligand for AuNP conjugation is α-lipoic acid (LA),

sometime referred to as thioctic acid (Figure 1). LA is a naturally

occurring cofactor for endogenous enzymatic functions and is

sold as a dietary supplement for its antioxidant properties

(Goraca et al., 2011). Other than AuNPs, LA has been used in

countless applications as a coating for a variety of other

nanoparticles, such as nanospheres, cross-linked polymers and

quantum dots (Koufaki et al., 2009; Jin et al., 2020), as well as for

the preparation of glyco-AuNPs (Yeh et al., 2021) The additional

stability, ready availability and ease of use have been the primary

features that led to LA’s popularity. In addition to the convenient

cyclic disulfide for attachment to metallic nanoparticles, LA has a

“built in” conjugatable carboxylate group that is used for simple

peptide bond coupling to most any molecular family of ligands,

antigens, lipids or nucleic acids. LA has one chiral center and is

often used as a racemic mixture. The (R)-(+)-isomer is the

naturally occurring enantiomer, but many commercial

preparations of “chiral” LA may contain small amounts of the

(S)-(−)-isomer. An achiral analogue that retains similar

conjugation bond strengths would be desirable in applications

where enantiomeric purity is desire. In 2010, Tucker, et al.,

published an improved synthesis of isolipoic acid (iso-LA,

Figure 1B) an achiral analogue of LA where the sidechain was

shifted to the central carbon of the disulfide-containing

5 membered ring (Joly et al., 2010). This symmetrical

molecule suggested a novel way of attaching ligands or other

molecular families to nanoparticles through a “dual-pronged”

approach. We present the synthesis and evaluation of TFag-

coated AuNPs with a new easily prepared linker based on iso-LA.

2 Results

2.1 Synthesis

Previous syntheses of TFag-containing AuNPs in our lab

were built around a TFag glycoamino acid and a specific linker

strategy that we developed previously for our AuNP-based

vaccine design (Brinas et al., 2012). Modifications to the

synthesis were made to accommodate the linkage to a serine

or threonine amino acid (Biswas et al., 2015). A very simple

adjustment was made to build the linker after the preparation of

large amounts the iso-LA precursor (Scheme 1). The yields in all

steps of the iso-LA precursor were consistent with literature

values. Following a similar protocol to one we published

previously, the iso-LA derivatized hexa-PEGylated linker was

prepared from commercially available mono-Boc-protected

diamine PEG compound 1 and iso-LA via simple EDC/

HOBt-mediated peptide coupling followed by Boc

deprotection and repeated peptide coupling to attach the

TFag-conjugated Fmoc-glycoamino acids of both serine and

threonine. Removal of the Fmoc group, N-acetylation and

Zemplen deprotection of the O-acetyl groups yielded

compounds 8 (Serine derivative) and 9 (Threonine

derivative) as precursors to nanoparticle synthesis. An iso-

LA-linked hexaPEG conjugate terminated by a hydroxyl

group was also prepared as a “control” ligand by simply

coupling another commercially available unprotected

hydroxyl-terminated PEG amine 10 with iso-LA to give

compound 11. All steps were high-yielding and all new

compounds were purified by reverse phase HPLC and

characterized by high resolution mass spectrometry and

multidimensional NMR techniques.

FIGURE 1
(A) Structures of lipoic (LA) and (B) iso-lipoic acid (iLA).
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The synthesis of AuNPs proceeded from previously prepared

solutions of AuNPs of defined sizemade via the Turkevichmethod

(Figure 2). Concentrations were such to yield particles in the

16 nm core diameter size range. Solutions of these citrate stabilized

AuNPs were analyzed for gold content by Inductively Coupled

PlasmaMass Spectrometry (ICP-MS) which allowed calculation of

accurate nanoparticle concentrations. Simple place exchange

reactions allowed coupling of the TFag-containing and control

ligands to be attached to the citrate-stabilized (“naked”) AuNPs

after brief treatment with immobilized Tris [2-carboxyethyl]

phosphine (TCEP) resin to reduce the cyclic disulfide bond.

AuNPs 12–14 were purified by concentrating solutions on 50K

cutoff filter membranes followed by resuspension and washing

with MilliQ water. Nanoparticles were lyophilized and fully

characterized as described in Section 2.2.

2.2 Characterization

While there are now thousands of reports on the synthesis

and biomedical applications of AuNPs, characterization data of

individual systems is often highly variable and sometimes

incomplete. Thus, we set out to perform comprehensive

assessments of all of our AuNPs by a variety of methods to

ensure quality control and establish a “Lab Standard” for AuNP

characterization.

SCHEME 1
Synthesis of TF-ag Conjugates (8 and 9) and Control ligand (11).
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Transmission Electron Microscopy (TEM). All precursor

solutions were examined by TEM and showed highly uniform

core sizes with narrow size distribution histograms (Figure 3A

and Supplementary Figure S1). Liganded nanoparticles met

identical criteria for uniformity and size consistency.

UV-Vis Surface Plasmon Band. Three-dimensional self-

assembled spherical AuNPs are known to interact with light

at specific wavelengths to cause oscillation of the free electrons at

the gold surface; these oscillations are in resonance with the

incoming light frequency, resulting in an absorption/emission

spectrum where the absorption is in the 520 nm range. Emission

is dependent on size and shape and is often in the red spectrum

(700 nm). Citrate stabilized AuNPs of 16 nm have a maximum at

520 nm; addition of ligand causes a slight but consistent red shift

to 524 nm (Figure 3B). This is also indicative of particle

dispersiveness whereas aggregation cause a loss of signal and

is characteristic of agglomeration (vide infra).

MALDIMass Spectrometry. There have been several studies

that have used MALDI mass spectrometry to study the

morphology and the ligand distribution of AuNPs (Luo et al.,

2017). MALDI was used to determine the presence of ligand on

the particles. Supplementary Figure S2 shows the MALDI mass

spec data for each of the AuNPs X-Y. Each spectrum contains

peaks from the sodium adducts of each ligand that was coated on

the gold core.

Dynamic Light Scattering (DLS). Hydrodynamic diameters

were determined by DLS. All materials prepared gave quite

uniform and single peak in the spectrum (Supplementary

Figure S3). Intensity and volume measurements were similar

where very few larger particles were observed in the intensity

data. All correlation functions converged and thus the uniformity

of the AuNPs were very high with Polydispersity Indices (PDI) all

below 0.1 (Table 1).

Zeta Potential. Citrate-stabilized AuNPs are coated with

anionic citrate ions that impart a highly negative zeta

potential that is partially neutralized by the addition of

neutral organic ligand layers, such as the ones used in this

study. This was the case here as the zeta potential adjusts

from −35 mV for the naked particles to between (−15)–(−17)

mV for the coated particles. This drop in voltage did not have any

detrimental effect on the stability or aggregative properties of the

prepared AuNPs (vide infra).

Quantitation of TFag Disaccharide on AuNPs. The copy

number of the serine and threonine-linked TFag-containing

ligands on the AuNPs were quantitated by the well-known

Phenol-Sulfuric acid method using a standard curve with

varying concentration of β-lactose. Table 2 shows this number

to be close to 1,600 for each nanoparticle prepared. This number

was consistent among different batches and the copy number was

essentially identical for each ligand, suggesting that the choice of

FIGURE 2
Synthesis of AuNPs prepared in this work and structure of AuNPs 12–14.
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amino acid conjugate does not alter the place exchange process.

Table 2 also shows the average occupied surface area for each

ligand as calculated from the core diameter and known surface

properties of the gold 3-dimensional self-assembled monolayers.

AuNP Stability in high salt and human serum. The UV

plasmon band of each prepared AuNP was monitored in sodium

chloride solutions from concentrations ranging from 0 to 1-M

salt. The known aggregation of citrate-stabilized nanoparticles,

indicated by the loss of this band at 520 nm, occurs at around

50 mM NaCl, whereas of AuNPs 12–14 show no loss of UV

absorption in this region over the entire salt concentration range

(Supplementary Figure S4). Similar behavior was observed in

human serum. Equal volumes of AuNPs and human serum were

incubated at 37°C. After 24 h, the AuNPs were pelleted by

centrifugation, the supernatant discarded and the AuNPs were

re-dissolved in MilliQ water and the hydrodynamic diameter

measured by DLS. Figure 4 shows very little, if any, change in size

distribution after incubation with serum, suggesting that the

nanoparticles will maintain their physical properties and not

aggregate if used in an intact organism.

2.3 In vitro biological activity

Binding to Galectin-3. As mentioned previously, the binding

of Gal-3 to the TFag is an important functional interaction in the

metastatic spread of various tumor cell types. Both homotypic

adhesion of tumor cells to form clusters and the subsequent

FIGURE 3
(A) Transmission electronmicrographs of citrate-stabilized AuNPs and of AuNPs 12–14. (B) Plasmon band UV/Vis spectra of same AuNPs as in A,
along with table of SP maximum for each material.

TABLE 1 Physical properties of materials prepared in this work.

AuNPs Avg Hydrodynamic Diameter
by DLS (nm)

Core Size by TEM
(nm)

PDI Zeta Potential (mV)

Cit-AuNPs 23.9 ± 4.28 16.14 ± 1.88 0.034 −35.4 ±7.63

Control- AuNPs 25.3 ± 7.60 16.27 ± 1.62 0.097 −15.1 ±4.64

TF-ag-Ser- AuNPs 24.6 ± 4.90 16.34 ± 1.71 0.061 −17.3 ±3.50

TF-ag-Thr- AuNPs 24.7 ± 6.46 16.36 ± 1.48 0.049 −16.7 ±3.20
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binding of these to the endothelium prior to extravasation and

tumor spread have both been shown to be mediated by the TFag-

Gal-3 interaction (Glinsky et al., 2001; Takenaka et al., 2002;

Glinsky et al., 2003; Yu et al., 2007; Zhao et al., 2010; Glinskii

et al., 2012; Reticker-Flynn and Bhatia, 2015; Rodriguez et al.,

2015). We evaluated our particles in three in vitro assays in

binding to Gal-3: 1) aggregation assay, 2) direct binding assay

and 3) competitive inhibition assay.

First, Aggregation of Gal-3 by the particles was performed by

addition of varying concentrations of Gal-3 to a defined

concentration of AuNPs and recording both absorption

spectra and DLS size measurements vs. time (Supplementary

Figures S5, S6). Aggregation is indicated by an obvious increase

in hydrodynamic diameter of the particle solution and a dramatic

red shift of the plasmon band in the UV spectrum (Boden et al.,

2017) (Otten et al., 2016). Both the serine and threonine-coated

AuNPs caused rapid and complete aggregation of Gal-3 where

the control particles showed no activity at any concentration,

indicating that a multivalent display of the TFag structure is

critical and that simply a random display of hydroxyl groups is

incapable of causing agglomeration. Plots of absorbance at

700 nm as well as size increase vs. time from DLS data were

used to calculate the kinetics of aggregation (Hill function in

GraphPad/Prism). The apparent calculated Kd values of

aggregation were 116 nM and 101 nM for AuNPs 12 and 13,

respectively.

Second, direct binding was measured by simple ELISA where

the AuNPs themselves were coated on 96 well plates. A small

range of concentrations of Gal-3 were examined and the data is

shown in Figure 5. A clear dose response was observed even

though the concentrations studied only covered a narrow range

(2 μM–4 μM). Both AuNP’s 12 and 13 displayed almost identical

binding, while the control AuNPs 14 were completely inactive.

The relatively large increase in optical density over this short

TABLE 2 Copy number and surface occupancy of ligands on the TFag-containing AuNPs.

AuNPs Conc. of TF-ag
conjugate per 100 μ
of AuNP (μM)

Number of TF-ag
conjugate per AuNP

Average Occupied Surface
Area on AuNP
(nm2)

TF-Ser-AuNPs 61 ± 0.0015 1620 ± 41 0.51

TF-THr-AuNPs 63 ± 0.0012 1660 ± 32 0.50

FIGURE 4
Stability in human serum as analyzed by Dynamic Light Scattering.
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range of Gal-3 concentrations suggest a multivalent mechanism

is operational in this binding event.

Third, we performed a competitive binding assay to assess

whether the AuNPs would inhibit the binding of a known ligand

for Gal-3 (Bumba et al., 2018). Thus, we examined the behavior

of nanomaterials 12–14 as inhibitors of the binding of Gal-3 to

asialofetuin (ASF). ASF contains several complex N-linked

glycans whose branches are terminated by N-acetyl-

lactosamine (LacNAc) units, and hence has been employed

previously as a multivalent “carrier” of LacNAc. (Dam et al.,

2005). Endogenous LacNAc is considered a natural ligand for

many galectin family proteins. Inhibitory studies were carried out

by treating ASF-coated 96 well plates with Galectin-3, with or

without compounds 12–14; LacNAc was used as a positive

control. Figure 6 shows that AuNPs 12 and 13 inhibit the

binding of Gal-3 to ASF at low nanomolar concentrations,

whereas control AuNPs 14 were again inactive. Inhibition by

LacNAc showed a similar trend as our nanoparticles, although at

concentrations that were more than 3 orders of magnitude

higher, again arguing for the multivalent binding/inhibitory

effect of the AuNPs.

2.4 Discussion

AuNPs have been prepared in many different guises and used

in a variety of biomedical applications for more than

two decades. Even with their relatively low toxicity, ability to

be made biocompatible and the chemistry available to coat them

with any family of molecule, there is yet to be any true AuNPs

approved for clinical use in therapeutic arenas such as cancer.

Continued research into the development of AuNPs that possess

the necessary properties for translation should foster FDA

approval of selected metal-based nanomaterials.

In this work we developed a new linker strategy for

preparation of AuNP tools for functional studies that

hopefully could lead to their use as anticancer therapeutics.

The use of lipoic acid has been a mainstay for “dual-pronged”

bis-thiol attachment to gold and other metallic surfaces, while

“isolipoic” has only been used in one other instance for

attachment to a gold surface (Joly et al., 2010). Our reasoning

to use of iso-LA in place of LA for the preparation of functional

AuNPs was twofold: 1) The achiral nature of iso-LA solves the

issue of “contamination” by the unnatural isomer of LA, thus

preventing any unwanted immune responses for use in any in

vivo setting and 2) Positioning the sidechain in the center of the

dithiolane ring produces a linker with a linear directionality from

FIGURE 5
Binding of Gal-3 to AuNPs by simple ELISA experiments with
AuNP-coated 96-well plates.

FIGURE 6
Inhibition of Gal-3 binding to ASF by TFag-coated AuNP. (A) Schematic depiction of the assay as shown in reference (Otten et al., 2016). (B) Bar
graph depicting inhibition of Gal-3 binding to ASF by compounds materials 12–14.
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the nanoparticle core, which may relieve any unwanted crowding

of ligands like those with LA linkers that protrude from the

surface at a distinct angle.

Similar to LA linkers, our TFag ligands were attached more

strongly to the AuNP as those with a single thiol end

group. Stability studies showed that these particles maintain

excellent uniformity under relatively harsh conditions (1.5 M

salt, 50% human serum). All physical properties were aligned

with well-constructed AuNPs, where solubility and functionality

were maintained in all synthetic materials. AuNPs 12–14 were

stable for many months at 4°C with minimal signs of flocculation

or aggregation. Preliminary bioassay evaluation of these

constructs showed binding Gal-3, a lectin that is involved in

tumor aggression and metastasis. Inhibition of Gal-3 binding to

ASF, a known protein ligand of Gal-3, was also shown to be a

function of these AuNPs; the concentrations for this inhibitory

effect were much lower than the same level of inhibition by the

monomeric disaccharide LacNAc, a known cognate ligand of

many galectins. These results suggest that a multivalent effect is

operational with these constructs in inhibition of protein-

carbohydrate binding. As stated in the introduction, many

platforms that display multiple copies of TFag have been

prepared and also function through multivalency. We feel that

these particles are unique in that 1) Their stability rivals other

particles, even those with covalent conjugation of the ligand, 2)

Synthesis is relatively simple and high yielding and 3) A host of

other ligands from diverse structural families can be attached in

to these platforms in a straightforward manner.

These properties prompted us to perform a large in vivo

study of AuNPs 12–14 to evaluate their antimetastatic

properties in a 4T1 triple negative breast cancer model. Four

groups of 14 animals each were treated either with AuNPs 12,

13 or 14 where the fourth group was treated with PBS. While

little toxicity was evident in the animals after AuNP treatment,

all groups were very similar with respect to survival, lung

metastasis and overall health. While the in vitro data

suggested some therapeutic effects would translate to

antitumor/antimetastatic effects in vivo, this disappointing

result suggested that either the AuNPs were simply inactive

in this model or the model itself is not suitable for this mode of

treatment. We are comprehensively evaluating the

biodistribution and in vivo stability of these materials in

hopes to achieve therapeutic efficacy in future in vivo studies.

The results herein show that a simple modification of a

popular linker can produce AuNPs of excellent stability while

maintaining function. Our data show that these reagents are

useful for analyzing TFag binding and inhibition, and, when

compared to other AuNPs with LA-based or other bifunctional

linkers, can offer clues as to the optimum disposition of ligands

for usefulness as analytical or therapeutic tools. Comparisons of

various in vitro and in vivo bioassays between the present iso-LA-

based AuNPs with those based on other linkers is currently in

progress.
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