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Abstract
Study Objectives: Consumer sleep-tracking devices are widely used and becoming more technologically advanced, creating strong interest from researchers and 

clinicians for their possible use as alternatives to standard actigraphy. We, therefore, tested the performance of many of the latest consumer sleep-tracking devices, 

alongside actigraphy, versus the gold-standard sleep assessment technique, polysomnography (PSG).

Methods: In total, 34 healthy young adults (22 women; 28.1 ± 3.9 years, mean ± SD) were tested on three consecutive nights (including a disrupted sleep condition) 

in a sleep laboratory with PSG, along with actigraphy (Philips Respironics Actiwatch 2) and a subset of consumer sleep-tracking devices. Altogether, four wearable 

(Fatigue Science Readiband, Fitbit Alta HR, Garmin Fenix 5S, Garmin Vivosmart 3) and three nonwearable (EarlySense Live, ResMed S+, SleepScore Max) devices were 

tested. Sleep/wake summary and epoch-by-epoch agreement measures were compared with PSG.

Results: Most devices (Fatigue Science Readiband, Fitbit Alta HR, EarlySense Live, ResMed S+, SleepScore Max) performed as well as or better than actigraphy on 

sleep/wake performance measures, while the Garmin devices performed worse. Overall, epoch-by-epoch sensitivity was high (all ≥0.93), specificity was low-to-

medium (0.18–0.54), sleep stage comparisons were mixed, and devices tended to perform worse on nights with poorer/disrupted sleep.

Conclusions: Consumer sleep-tracking devices exhibited high performance in detecting sleep, and most performed equivalent to (or better than) actigraphy in 

detecting wake. Device sleep stage assessments were inconsistent. Findings indicate that many newer sleep-tracking devices demonstrate promising performance 

for tracking sleep and wake. Devices should be tested in different populations and settings to further examine their wider validity and utility.
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Statement of Significance

Representing a fast-growing trend, hundreds of millions of people now use consumer devices to track sleep and other biometric data. 
Previous studies found that device performance is quite variable, although sleep-tracking in some recent devices has improved. If validated, 
such devices could be used to help maintain or improve sleep health and potentially be important tools in research and clinical practice. 
In this study, we rigorously tested the sleep-tracking claims of seven devices against the gold-standard, polysomnography, and found most 
performed as well or better than the mobile sleep assessment standard, actigraphy, on key performance metrics. The current findings dem-
onstrate promise for many newer devices to serve as valid sleep-tracking alternatives to actigraphy, however, further performance testing 
is needed.
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Introduction

Sleep plays an integral role in our physical and mental health 
[1–4] and for achieving high levels of alertness and performance 
[5–7], thereby impacting everyday functioning. Therefore, how 
sleep is defined and measured is important, because under-
standing the role of sleep in critical areas of health and behavior 
relies on the precision of the sleep metrics obtained. In the ob-
jective measurement of sleep, polysomnography (PSG) provides 
the most direct assessment and thus has remained the gold-
standard technique in research laboratories and sleep medicine 
clinics for over half a century. Aside from the measurement 
and diagnosis of sleep disorders, PSG is also used to determine 
sleep and wake states as well as individual sleep stages based 
on standard criteria [8]. However, PSG is not practical outside the 
laboratory or clinic due to a number of factors. These include 
its relatively high cost, the specialized training, and the time 
burden required to conduct and interpret studies. Moreover, PSG 
recording procedures and equipment require controlled set-
tings, are cumbersome, and can be disruptive to sleep itself.

Actigraphy, on the other hand, overcomes many of these bar-
riers. Actigraphy utilizes a research-grade wrist-worn device to 
collect physical activity data that are later processed with al-
gorithms to estimate sleep and wake [9–12]. These devices are 
portable, relatively easy to set up, have long battery life, and 
are less expensive and obtrusive than PSG. Actigraphy was an 
important advance in the sleep field because it expanded the 
capability of objective sleep assessment into home and field en-
vironments, and it allows continuous recording over multiple 
weeks. However, there are many limitations of actigraphy com-
pared with PSG [11–17]. Actigraphy performs best when wrist 
movements during wake are robust, although people do not 
always make robust movements during awakenings and such 
times are likely to be misclassified as sleep. This results in the 
overestimation of sleep and underestimation of wake, versus 
PSG [11–17]. Further, because it is an indirect measure of sleep, 
actigraphy has less resolution and precision than PSG—limiting 
it to binary sleep and wake classifications only, as opposed to 
individual sleep stages. To achieve the highest level of precision, 
actigraphy algorithms need to be manually directed to the exact 
timing of sleep episodes during the postprocessing analysis. 
This places added burdens on the user to denote bed and wake 
times each day using sleep diaries, and on the researcher or clin-
ician to complete the postprocessing steps.

Although actigraphy is considered the mobile sleep assess-
ment standard, the recent and rapid development of advanced 
multisensor consumer devices has raised questions about the 
possible validity and utility of consumer devices as acceptable 
alternatives to actigraphy in the measurement of sleep [17–23]. 
The majority of consumer devices that offer sleep-tracking are 
in the form of “wearables” that are worn on the wrist, how-
ever, some are designed for other body areas too (e.g. finger, 
head, torso). Alternatively, several companies have developed 
nonwearable (or “nearable”) devices that are placed close to the 
user (e.g. under a mattress, on a bedside table) to track sleep 
using remote detection of physiological and behavioral signals. 
Compared with actigraphy devices, consumer devices are lower 
cost and come equipped with additional features, enabled by 
wireless or Bluetooth connections that allow for near-real-time 
data processing. Although most consumer devices contain ac-
celerometers similar to the ones in actigraphy devices, many 

contain other sensors (e.g. heart rate) that are used as additional 
inputs into proprietary sleep algorithms. With multiple physio-
logical and behavioral data inputs and continued improvements 
in sensor technology, sleep-tracking devices may be able to 
equal or out-perform standard actigraphy. Indeed, several recent 
studies [24–29] of the latest generation consumer devices versus 
PSG have found improvements in sleep-tracking performance—
suggesting that consumer devices are demonstrating promise 
toward stronger validation, and with further testing and devel-
opment may prove useful in the maintenance or improvement 
of sleep health over time.

In 2019, around 30% of consumers surveyed in the United 
States owned a wearable device [30] with an additional 350 mil-
lion wearable device units that were projected to ship in 2020 
[31]. Apart from fitness-tracking (the most popular selling point 
and use for these devices), around 25% of US adults surveyed 
have used a wearable device or phone application (“app”) to 
track their sleep at least once [32]. With more devices now of-
fering sleep-tracking to users, the wearable sleep-tracking de-
vice market is projected to reach $7 billion by 2026 [33]. These 
trends indicate that a large section of the population is now 
tracking their sleep, and potentially using device data to inform 
their sleep habits and other health, wellness, and behavioral 
choices. However, whether these devices perform well enough 
to generate accurate and reliable data, and whether the choices 
people make concerning their health and behavior can be well-
informed from the use of these devices, are critical questions in 
this generation of the “quantified self.”

Given the large scope of current device use, rapid techno-
logical advancements, promising findings from recent per-
formance studies, and strong interest from researchers and 
clinicians for their possible use as alternatives to actigraphy, 
it is important to continue evaluating the performance of con-
sumer sleep-tracking devices. Accordingly, in the present study 
we tested many of the latest wearable and nonwearable devices 
against PSG, and alongside actigraphy for direct comparison. 
Validation testing is a multistep process, and the initial step 
is to test performance under well-controlled conditions. Thus, 
following the guidelines for implementation and reporting of 
sleep device performance studies recently put forth by the Sleep 
Research Society [23] and others [34], we aimed to provide an 
initial evaluation of the performance and reliability of multiple 
consumer sleep-tracking devices in a controlled laboratory set-
ting with a sample of healthy young adult participants.

Methods

Participants

In total, 34 healthy young adults (12 men, 22 women) aged 28.1 ± 
3.9 years (mean ± SD) participated in the study. Screening con-
sisted of a self-report medical history questionnaire to assess 
the following exclusion criteria: age <18 or >35 years, body mass 
index (BMI) <18.5 or ≥30.0 kg/m2 (24.2 ± 2.1 kg/m2; mean ± SD), 
average nightly sleep duration <6 or >9 h, any diagnosed sleep, 
mental health, or other significant medical disorder, use of any 
prescription or over-the-counter sleep medications in the pre-
vious one month, use of any nicotine product in the previous 
one month, use of any illegal drug in the previous 6  months, 
pregnant women, any physical or living conditions affecting 
the ability to complete the home or laboratory protocols, and 
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any shift work (night shifts or rotating shifts) or travel >1 time 
zone within one month prior to study. Height and weight were 
measured by research staff at the screening appointment to 
calculate BMI.

The study protocol was approved by the Naval Health 
Research Center Institutional Review Board and was conducted 
in accordance with the Declaration of Helsinki. All participants 
provided signed informed consent prior to the study and were 
compensated for their participation with gift cards.

Prestudy conditions

Beginning 6  days prior to the first in-lab study visit and con-
tinuing throughout the study, participants stopped their con-
sumption of caffeine and alcohol. For the four nights prior to 
the first lab visit, participants maintained consistent 8-h sleep 
schedules at home and refrained from taking naps. Specifically, 
participants were asked to self-select a target sleep schedule 
with time in bed (TIB) for exactly 8 h that they could maintain 
across all four prestudy nights at home, and they were allowed 
to deviate from their target sleep schedule by only up to 30 min 
(earlier or later) on each night while still maintaining exactly 
8-h TIB.

During the prestudy period, participants wore the Actiwatch 
2 (Philips Respironics, Inc.; Murrysville, PA, USA) research-grade 
wrist actigraphy device (hereafter referred to as “Actiwatch”) and 
completed written sleep diaries. Participants were instructed 
to continuously wear the Actiwatch (except when showering 
or during other activities where it could get damaged) on their 
nondominant wrist and to complete the sleep diary entries 
every morning, denoting the exact bed and wake times for all 
four prestudy home sleep nights. Upon admission to the first lab 
visit, actigraphy data and sleep diary entries were checked by re-
search staff to verify compliance to the prestudy sleep schedule.

Study eligibility criteria and compliance to the study con-
ditions were further verified upon admission to the lab on all 
three study visits—participants were required to sign a form at-
testing that they still met each of the study eligibility criteria 
and adhered to all the prestudy conditions, and they were tested 
with an alcohol breathalyzer to verify sobriety. Upon admis-
sion on the first lab visit only, female participants were asked 
to provide a urine sample for research staff to test and verify 
nonpregnancy status.

In addition to the Actiwatch, during the four prestudy days 
and nights all participants continuously wore the subset of con-
sumer wrist devices that they were subsequently tested with on 
their lab visits. Thus, by the first lab visit, participants were al-
ready familiarized to wearing the devices—which was intended 
to mitigate some of the possible effects on sleep during the lab 
visits that could arise from wearing multiple wrist devices at 
once (e.g. novelty, discomfort).

Study protocol

The study was conducted at the Naval Health Research Center 
in San Diego, CA, USA, and consisted of three consecutive over-
night lab visits. On Lab Visit 1, participants reported to the lab 
~2.5  h prior to their calculated habitual bedtime and under-
went a PSG electrode application conducted by trained research 
staff members. During the start of each lab visit, research staff 

ensured that devices were worn correctly according to each 
device company’s guidelines. Participants were allowed to use 
their personal electronic devices (e.g. cell phone) until 30 min 
prior to their bedtime, at which time their personal devices were 
removed from the study bedroom for the remainder of the visit.

To account for individual differences in habitual sleep sched-
ules and estimated circadian timing, the sleep schedule of each 
participant’s lab visits was calculated and set from the midpoint 
average of their bed and wake times from their four prestudy 
nights. TIB was exactly 8 h and their bed and wake times were 
set at the same clock times on all three lab visits. Participants 
slept in individual sound-attenuated research bedrooms, 
without windows or clocks. Room lighting was set to ~150 lx, 
as measured from a seated position in the room. At scheduled 
bedtime, the room lights were turned off and participants slept 
in darkness. Research staff monitored the study from a control 
station outside the bedroom equipped with an infrared video 
display and an audio intercom system. At wake time, research 
staff turned on the lights, entered the room, removed the elec-
trodes, and synced the sleep device data to a tablet computer 
(iPad; Apple Inc.; Cupertino, CA, USA). Afterward, participants 
left the lab and were required to continue wearing all devices 
during the daytime and report back later that evening for the 
next study visit. Participants were not given any additional re-
strictions on their activities in between lab visits other than the 
prestudy conditions previously described.

Experimental sleep disruption protocol

An experimental sleep disruption protocol occurred on one of 
the final two overnight lab visits. This provided an opportunity 
to examine the effects of disrupted (i.e. fragmented) sleep pat-
terns on device algorithm performance. Understanding the 
sleep-tracking performance of devices on nights with disrupted 
and/or poor sleep (like a sleep-maintenance insomnia profile) 
could yield important additional findings that would not be 
easily achievable given the healthy sleep cohort included in 
the study, and especially if only tested under ideal undisrupted 
sleeping conditions—as is typical in laboratory sleep research 
studies. The experimental sleep disruption protocol used audi-
tory tones played through a speaker in the bedroom to awaken 
participants for a brief scheduled period at every hour within 
the sleep episode. The disrupted sleep protocol was randomized 
and counterbalanced between Lab Visits 2 and 3, and during 
the other visit, the participants were not disrupted by external 
stimuli during the sleep episode (see Supplemental Materials for 
additional details on the experimental sleep disruption protocol 
methods).

Consumer sleep-tracking devices tested

In total, seven consumer devices were tested in the study. Four 
of the devices were wrist-worn wearables: Fatigue Science 
Readiband (Fatigue Science; Vancouver, BC, Canada), Fitbit 
Alta HR (Fitbit, Inc.; San Francisco, CA, USA), Garmin Fenix 5S 
(Garmin, Ltd; Olathe, KS, USA), and Garmin Vivosmart 3.  The 
three other devices tested were nonwearables (or “nearables”) 
that plug into a wall outlet for power. One of the nonwearables 
was an under-mattress device that uses a piezoelectric sensor to 
detect heart rate, breathing, and physical movement, that was 
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placed 6 in. from the side of the bed and under the participant’s 
chest: EarlySense Live (EarlySense, Ltd; Woburn, MA, USA). The 
two other nonwearables were bedside devices using ultra-low-
power radiofrequency waves for signal detection, placed about 
one arm’s length away on a bedside table at the same height 
as the top of the mattress and with the device pointed toward 
the participant’s chest: ResMed S+ (ResMed, Inc.; San Diego, CA, 
USA) and SleepScore Max (SleepScore Labs; Carlsbad, CA, USA). 
Epoch duration for sleep data output by one of the wearables 
(Fitbit Alta HR) and all the nonwearable devices (EarlySense Live, 
ResMed S+, and SleepScore Max) was 30 s. However, three of the 
wearable devices (Fatigue Science Readiband, Garmin Fenix 5S, 
and Garmin Vivosmart 3) only output sleep data in 60-s epochs. 
Prior to sleep testing on each lab visit, all devices and the PSG 
computers were time synced to the clock time displayed on the 
tablet computer.

Due to practical constraints, not all devices could be tested at 
once or on all the participants. Therefore, each participant wore the 
Actiwatch and used a subset of consumer devices that included 
multiple wearable devices and one or more nonwearable devices 
(see Table S1 in the Supplemental Materials which depicts the de-
vices used by each participant). The following are the total number 
of participants who used each device: Fatigue Science Readiband: 
15, Fitbit Alta HR: 20, Garmin Fenix 5S: 11, Garmin Vivosmart 3: 15, 
EarlySense Live: 19, ResMed S+: 19, SleepScore Max: 15. Additional 
details on consumer sleep devices, testing methods, and analysis 
are included in the Supplemental Materials.

PSG recording and analysis

Overnight laboratory PSG recordings were acquired using a 
digital PSG recorder (Siesta; Compumedics USA, Inc.; Charlotte, 
NC, USA), with PSG data sampled and stored at 256 Hz. The PSG 
montage included electroencephalography recordings at six 
brain sites referenced to contra-lateral mastoid processes for 
F3-M2, F4-M1, C3-M2, C4-M1, O1-M2, and O2-M1. Left and right 
electrooculograms, left and right mentalis electromyograms, 
and two-lead electrocardiogram were also recorded in the PSG 
montage. Impedances were ≤10 kΩ at the start of the record-
ings. PSG electrode sites were measured and applied according 
to standard criteria (International 10–20 System of Electrode 
Placement).

PSG sleep stages (N1, N2, N3, and rapid eye movement [REM]) 
and wake were manually scored in 30-s epochs by two experi-
enced American Academy of Sleep Medicine (AASM) certified 
Registered Polysomnographic Technologists (RPSGTs) who had 
>90% scoring agreement with AASM gold-standard PSG records. 
PSG data were scored using the standard criteria [8], and all 
three PSG nights for a given participant were scored by the same 
RPSGT. As stated above, the devices output data in either 30- or 
60-s epochs. The standard 30-s PSG-scored epochs were used for 
all the sleep summary and epoch-by-epoch (EBE) analyses of the 
30-s devices. For the EBE analyses, the PSG data were addition-
ally scored in 60-s epochs to align with the devices that output 
data in this way (Fatigue Science Readiband, Garmin Fenix 5S, 
and Garmin Vivosmart 3). The same RPSGT scored these records 
using the standard scoring criteria [8] but applied over every 
60-s epoch starting from bedtime. Several of the consumer de-
vices also output data for individual sleep stages but, in addition 
to REM, only characterize the non-REM (NREM) sleep stages as 

two stages: “light” and “deep.” Therefore, for the comparison of 
device sleep stage data with PSG (and in following the analysis 
procedures of previous device performance studies [24, 26–29, 
35–37]), the PSG epochs scored as N1 and N2 were combined to 
form a light PSG sleep stage, and PSG epochs scored as N3 were 
the deep PSG sleep stage.

In addition to the total time and percentage of the 8-h sleep 
episodes spent awake or in each sleep stage, the following sleep 
summary measures were calculated: total sleep time (TST; total 
time spent in all sleep stages), sleep efficiency (SE; percentage 
of TST divided by TIB), sleep latency (time taken to fall asleep 
from bedtime), and wake after sleep onset (WASO; time awake 
in each sleep episode occurring after sleep onset). Sleep latency 
was calculated in two ways: (1) sleep onset latency (SOL), the 
time from bedtime to the first epoch scored as any sleep stage, 
and (2) latency to persistent sleep (LPS), the time from bedtime 
to the first epoch of 10 consecutive minutes scored as any sleep 
stage. WASO was calculated from both SOL and LPS. REM latency 
was also calculated, as the time from bedtime to the first epoch 
scored as REM.

Device data export procedures and analysis

Consumer device sleep data were exported and/or viewed from 
the device apps on the tablet computer or from an online web-
site portal set up by the device company that also provides de-
vice data to the user. Additionally, upon our request, several of 
the device companies also provided access to the data via re-
search portals, which were outside the standard device apps 
and online user account web portals. This was the case for the 
EBE sleep data analyzed from the EarlySense Live, ResMed S+, 
and SleepScore Max devices. Fitbit, Inc. does not directly provide 
the EBE sleep data for their devices via any of the standard data 
viewing or export channels. Instead, the Fitbit Alta HR EBE data 
were exported via Fitabase (Small Steps Labs, LLC; San Diego, 
CA, USA), a licensed third-party data management platform. 
Actiwatch actigraphy sleep and wake data were analyzed in 30-s 
epochs using the medium sensitivity threshold with the soft-
ware package Actiware, version 6.0.9 (Philips Respironics, Inc.; 
Murrysville, PA, USA).

Missing data procedures

On each lab visit, the research staff carefully synced and charged 
all devices, actigraphy watches, and computers/tablets in order 
to capture sleep data for PSG, actigraphy, and all devices over the 
scheduled 8-h sleep episode. However, despite these best prac-
tices, issues with missing data, partial data loss, and/or time 
syncing of devices did occasionally occur (see the Supplemental 
Materials for additional detailed information on the treatment 
of missing data for analysis).

Statistical analysis

The sample sizes for the sleep/wake summary and EBE analyses 
were dictated by the availability of valid pairs of data between 
PSG and each device. The final sleep/wake summary analysis 
sample sizes are shown in the respective tables, and the total 
EBE sample sizes are shown in the EBE contingency tables 
(Tables S2 and S3) in the Supplemental Materials.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa291#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa291#supplementary-data
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The following EBE agreement statistics were calculated for 
the analysis of all sleep versus wake epochs for each device, 
in comparison to the same epoch as scored by PSG: sensitivity 
(true positive rate; the proportion of PSG sleep epochs correctly 
detected as sleep by the device), specificity (true negative rate; 
the proportion of PSG wake epochs correctly detected as wake 
by the device), positive predictive value (PPV; proportion of 
device-scored sleep epochs that were true PSG sleep), negative 
predictive value (NPV; proportion of device-scored wake epochs 
that were true PSG wake), accuracy (proportion of all PSG epochs 
correctly detected by the device), and the prevalence and bias-
adjusted kappa (PABAK; Cohen’s kappa weighted to account 
for the amount of inequality between the number of sleep and 
wake epochs).

Most of the devices (Fitbit Alta HR, Garmin Fenix 5S, Garmin 
Vivosmart 3, EarlySense Live, ResMed S+, SleepScore Max) also 
output individual sleep stage classifications (light, deep, REM) 
for each epoch (rather than just a binary sleep versus wake clas-
sification, as was the case for the Actiwatch and Fatigue Science 
Readiband). Therefore, for the devices that output sleep stages, 
EBE agreement statistics were calculated for each stage versus 
the combination of all other classifications (e.g. EBE agree-
ment for light sleep was calculated as the light sleep epochs 
versus the combination of all wake, deep, and REM epochs, etc.). 
Because there are multiple classification possibilities with sleep 
stage analysis, the proportions of misclassification were also de-
termined for each stage (e.g. how often PSG light sleep epochs 
were misclassified by a device as deep sleep, etc.).

Bland–Altman plots [38] for sleep summary measures were 
constructed for each device to show all the individual night dif-
ferences versus PSG as well as the overall levels for bias (the 
average difference between the device and PSG) and the upper 
and lower limits of agreement (two standard deviations) from 
the bias. Best-fit curves shown in Bland–Altman plots are lo-
cally estimated scatterplot smoothing (LOESS) curves, with 95% 
confidence bands (using standard errors). LOESS methods use 
low degree polynomials to model local structure in subsets of 
the data, displaying possible local patterns in the data without 
forcing a particular global form at the outset. Device summary 
measures were statistically compared with PSG using Student’s 
paired t-tests, Hedges’ g effect sizes, and R2 proportional biases. 
Proportional bias was calculated using linear regression methods 
for Bland–Altman plots [39] (and has been used previously for 

device performance testing [29]), which indicates the reliability 
of the bias versus PSG (y-axis value) and whether it changes in 
proportion to the mean of the device and PSG (x-axis value) in 
the Bland–Altman plots. p-values at the p < 0.05 level were con-
sidered statistically significant.

Statistics were performed using the statistical analysis soft-
ware package R, version 3.5.3 (R Foundation, Vienna, Austria).

Results

Sleep/wake summary results

Sleep/wake summary measures versus PSG for all combined 
nights are shown in Tables  1–4 and Supplemental Tables S4 
and S5, and corresponding Bland–Altman plots in Figures  1–4 
and Supplemental Figures S1 and S2. The Actiwatch signifi-
cantly differed from PSG on all the sleep/wake summary meas-
ures—it overestimated the sleep-related measures (TST and 
SE) and underestimated the wake-related measures (SOL, LPS, 
and WASO from both SOL and LPS). Several consumer devices 
(Garmin Fenix 5S, Garmin Vivosmart 3, and EarlySense Live) 
also significantly overestimated TST (Table  1) compared with 
PSG. The SE results (Table  2) were very similar to the TST re-
sults (largely because TIB was fixed at 8 h) and thus all the de-
vices that significantly overestimated TST also did so for SE. The 
Bland–Altman plots for TST and SE (Figures  1 and 2) demon-
strate that the biases for each device versus PSG were gener-
ally the lowest magnitude and least variable when participants 
had higher TST and SE, and was generally more variable and 
biased on nights with lower TST and SE. This was especially the 
case for the Actiwatch, Fitbit Alta HR, Garmin Fenix 5S, Garmin 
Vivosmart 3, and SleepScore Max which each had significant 
levels of proportional bias for TST and SE.

Several of the consumer devices significantly differed 
on the sleep latency measures SOL and LPS (Table  3 and 
Supplemental Table S4, respectively), as compared with PSG. 
These differences, although significant, were low magnitude 
(each <5 min), less than the sleep latency biases of Actiwatch, 
and no consumer device differed from PSG on both sleep la-
tency measures. SOL was underestimated by the Fitbit Alta 
HR and overestimated by the ResMed S+ and SleepScore 
Max, while the Fatigue Science Readiband underestimated 
LPS. Similar to TST and SE, the Bland–Altman plots for SOL 

Table 1. Sleep summary: total sleep time (TST)

Device n
PSG   

Mean ± SD
Device   
Mean ± SD Bias

Lower  
limit

Upper  
limit t (p)

Effect  
size R2 (p)

Actiwatch 98 418.2 ± 40.7 442.1 ± 19.7 23.9 –40.5 88.3 7.3 (<0.001) 0.74 0.51 (<0.001)
Fatigue Science Readiband 41 416.0 ± 47.9 429.3 ± 53.0 13.3 –93.2 119.8 1.6 (0.118) 0.26 0.01 (0.482)
Fitbit Alta HR 49 425.1 ± 33.1 427.7 ± 19.7 2.6 –42.0 47.1 0.8 (0.421) 0.09 0.41 (<0.001)
Garmin Fenix 5S 29 413.1 ± 53.0 456.8 ± 21.0 43.7 –47.0 134.4 5.2 (<0.001) 1.07 0.61 (<0.001)
Garmin Vivosmart 3 43 414.7 ± 48.4 461.5 ± 16.4 46.8 –39.5 133.1 7.1 (<0.001) 1.28 0.69 (<0.001)
Earlysense Live 51 421.6 ± 34.8 435.2 ± 30.1 13.6 –45.1 72.3 3.3 (0.002) 0.42 0.03 (0.214)
ResMed S+ 51 422.3 ± 33.8 422.0 ± 40.0 –0.3 –70.7 70.2 –0.1 (0.953) –0.01 0.04 (0.159)
SleepScore Max 42 413.6 ± 48.9 421.1 ± 37.1 7.5 –60.7 75.7 1.4 (0.162) 0.17 0.14 (0.016)

Summary results for minutes of TST for the devices versus polysomnography (PSG). All nights with available TST data for both the device and PSG are included, 

with the total number of nights (n) indicated in each row. Mean and standard deviation (SD) are shown for PSG and each device. Bias represents the mean differ-

ence between PSG and the device, with positive and negative bias values indicating the device showed an overestimation or underestimation compared with PSG, 

respectively. Lower and upper limits of agreement represent two SDs from the bias. Statistical significance between each device and PSG was assessed with paired 

t-tests and corresponding p-values. Effect sizes (Hedges’ g) and proportional biases (R2) with corresponding p-values are also shown. p-values at the p < 0.05 level were 

considered statistically significant and are shown in bold and italic.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa291#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa291#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa291#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa291#supplementary-data
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(Figure 3) and LPS (Supplemental Figure S1) demonstrate that 
nights with lower sleep latency (i.e. faster time to fall asleep) 
were closer to the zero line of agreement with PSG, and the 
nights with higher sleep latencies were more variable and 
biased. This pattern is further corroborated by the significant 
proportional biases found for all devices, either on one or both 
of the sleep latency measures.

WASO was calculated from both sleep latency measures 
(from SOL in Table 4, from LPS in Supplemental Table S5) and 
was significantly underestimated versus PSG in several devices 
(Garmin Fenix 5S, Garmin Vivosmart 3, EarlySense Live, and 
SleepScore Max). All devices that differed in WASO from PSG 
did so whether calculated from SOL or LPS, indicating negligible 
differences in WASO between the two sleep latency thresholds. 
Corresponding Bland–Altman plots (Figure 4 and Supplemental 
Figure S2) again demonstrate that for nights with lower WASO 
(and thus higher TST and SE) the agreement between devices 
and PSG was better, and on nights when there was higher WASO 
the devices were more variable. Further, all devices except the 
Fatigue Science Readiband and ResMed S+ had significant levels 

of proportional bias for WASO, from either one or both sleep la-
tency measures.

Sleep stage summary results

Sleep stage summary comparisons to PSG are shown for the six 
devices that output sleep stage data for light, deep, and REM, re-
spectively, in Tables 5–7 and corresponding Bland–Altman plots 
in Figures 5–7. All six devices significantly differed from PSG in 
their estimation of light sleep, all with overestimations (except 
the EarlySense Live which underestimated light sleep). Three de-
vices (EarlySense Live, ResMed S+, SleepScore Max) significantly 
differed on deep sleep, all with overestimations. Additionally, 
three devices (Fitbit Alta HR, ResMed S+, SleepScore Max) dif-
fered on REM sleep, all with underestimations. Bland–Altman 
plots (Figures 5–7) generally depict large spreads of data across 
both axes, and greater individual night variability for the sleep 
stages compared with the sleep/wake measures. The EarlySense 
Live had significant proportional bias across all stages, however, 
no other devices had a significant proportional bias for either 

Figure 1. Bland–Altman plots: total sleep time (TST). Bland–Altman plots depicting the mean bias (blue dashed line) and upper and lower limits of agreement (two 

standard deviations from bias; black dashed lines) for minutes of TST for the devices compared with polysomnography (PSG). Black circles are individual nights. Solid 

blue curves represent the best-fit of data, with surrounding gray shaded regions representing 95% confidence bands. The solid black line at zero represents no differ-

ence, with positive and negative y-axis values indicating an overestimation or underestimation, respectively, compared with PSG.

Table 2. Sleep summary: sleep efficiency (SE)

Device n
PSG   

Mean ± SD
Device   
Mean ± SD Bias

Lower  
limit

Upper  
limit t (p)

Effect  
size R2 (p)

Actiwatch 98 87.1 ± 8.5 92.1 ± 4.1 5.0 –8.5 18.4 7.3 (<0.001) 0.74 0.51 (<0.001)
Fatigue Science Readiband 41 86.7 ± 10.0 89.4 ± 11.0 2.8 –19.4 24.9 1.6 (0.117) 0.26 0.01 (0.487)
Fitbit Alta HR 49 88.6 ± 6.9 89.4 ± 4.0 0.9 –8.4 10.2 1.3 (0.191) 0.16 0.45 (<0.001)
Garmin Fenix 5S 29 86.1 ± 11.0 96.6 ± 2.9 10.6 –9.0 30.1 5.8 (<0.001) 1.29 0.82 (<0.001)
Garmin Vivosmart 3 43 86.4 ± 10.1 96.5 ± 3.1 10.1 –7.3 27.6 7.6 (<0.001) 1.34 0.76 (<0.001)
Earlysense Live 51 87.8 ± 7.3 90.8 ± 6.1 2.9 –9.2 15.1 3.4 (0.001) 0.43 0.04 (0.148)
ResMed S+ 51 88.0 ± 7.0 88.0 ± 8.3 0.0 –14.7 14.7 0.0 (0.996) 0.00 0.04 (0.158)
SleepScore Max 42 86.2 ± 10.2 87.8 ± 7.8 1.6 –12.6 15.8 1.5 (0.150) 0.18 0.13 (0.017)

Summary results for the percentage of SE for the devices versus polysomnography (PSG). See Table 1 caption for additional table details.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa291#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa291#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa291#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa291#supplementary-data
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Figure 2. Bland–Altman plots: sleep efficiency (SE). Bland–Altman plots depicting the percentage of SE for the devices compared with polysomnography (PSG). See 

Figure 1 caption for additional details on the interpretation of Bland–Altman plots.

Table 3. Sleep summary: sleep onset latency (SOL)

Device n
PSG   

Mean ± SD
Device   
Mean ± SD Bias

Lower  
limit

Upper  
limit t (p)

Effect  
size R2 (p)

Actiwatch 102 9.7 ± 8.5 2.1 ± 1.2 –7.6 –24.1 8.8 –9.4 (<0.001) –1.25 0.93 (<0.001)
Fatigue Science Readiband 42 9.8 ± 7.4 9.0 ± 10.6 –0.7 –18.2 16.7 –0.5 (0.593) –0.08 0.17 (0.007)
Fitbit Alta HR 57 8.9 ± 7.7 5.8 ± 4.7 –3.1 –19.0 12.8 –2.9 (0.005) –0.48 0.22 (<0.001)
Garmin Fenix 5S 30 9.5 ± 8.1 10.3 ± 13.9 0.8 –26.4 28.0 0.3 (0.750) 0.07 0.26 (0.004)
Garmin Vivosmart 3 44 9.6 ± 7.3 8.5 ± 7.5 –1.1 –12.1 9.9 –1.3 (0.192) –0.15 0.00 (0.789)
Earlysense Live 55 9.7 ± 9.6 10.5 ± 6.9 0.8 –15.2 16.8 0.8 (0.451) 0.10 0.14 (0.004)
ResMed S+ 54 10.1 ± 9.6 14.1 ± 15.9 4.0 –25.1 33.1 2.0 (0.049) 0.30 0.26 (<0.001)
SleepScore Max 44 9.6 ± 7.2 14.0 ± 14.3 4.4 –18.9 27.6 2.5 (0.017) 0.38 0.45 (<0.001)

Summary results for minutes of SOL for the devices versus polysomnography (PSG). See Table 1 caption for additional table details.

Figure 3. Bland–Altman plots: sleep onset latency (SOL). Bland–Altman plots depicting the minutes of SOL for the devices compared with polysomnography (PSG). See 

Figure 1 caption for additional details on the interpretation of Bland–Altman plots.
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light or deep sleep. For REM sleep, proportional bias was also 
significant for the two Garmin devices.

REM latency (Table S6 and Supplemental Figure S3)—the 
time to enter REM sleep, and in this analysis represents the 
ability of a device to track the first NREM–REM cycle of the 
night—significantly differed from PSG for (nearly) all six 
devices that track sleep stages. There was a nonsignificant 
trend for EarlySense Live to underestimate REM latency, 
while the other five devices all significantly overestimated 

REM latency. Further, the Fitbit Alta HR, Garmin Vivosmart 3, 
and ResMed S+ had significant levels of proportional bias for 
REM latency.

EBE classification of sleep versus wake

EBE agreement of sleep versus wake compared with PSG for all 
nights is shown in Table  8. Sensitivity for devices versus PSG 
was very high (all ≥0.93), indicating a high ability for devices 

Table 4. Sleep summary: wake after sleep onset (WASO)

Device n
PSG   

Mean ± SD
Device   
Mean ± SD Bias

Lower  
limit

Upper  
limit t (p)

Effect  
size R2 (p)

Actiwatch 98 52.5 ± 39.5 35.9 ± 19.4 –16.6 –81.0 47.9 –5.1 (<0.001) –0.53 0.47 (<0.001)
Fatigue Science Readiband 41 54.1 ± 47.5 41.6 ± 52.3 –12.5 –119.0 94.0 –1.5 (0.140) –0.25 0.01 (0.506)
Fitbit Alta HR 49 46.6 ± 30.8 44.5 ± 19.4 –2.1 –42.9 38.7 –0.7 (0.472) –0.08 0.35 (<0.001)
Garmin Fenix 5S 29 57.2 ± 52.9 7.7 ± 11.7 –49.5 –144.2 45.1 –5.6 (<0.001) –1.27 0.87 (<0.001)
Garmin Vivosmart 3 43 55.6 ± 48.1 8.0 ± 12.8 –47.6 –129.0 33.8 –7.7 (<0.001) –1.34 0.85 (<0.001)
Earlysense Live 51 49.2 ± 32.2 33.9 ± 26.7 –15.3 –73.2 42.6 –3.8 (<0.001) –0.52 0.05 (0.124)
ResMed S+ 51 48.3 ± 31.1 44.9 ± 34.0 –3.4 –67.8 61.1 –0.8 (0.457) –0.10 0.01 (0.460)
SleepScore Max 42 56.7 ± 48.6 44.6 ± 34.1 –12.1 –79.5 55.3 –2.3 (0.025) –0.29 0.22 (0.002)

Summary results for total minutes of WASO, from sleep onset latency (SOL), for the devices versus polysomnography (PSG). See Table 1 caption for additional table 

details.

Figure 4. Bland–Altman plots: wake after sleep onset (WASO). Bland–Altman plots depicting the minutes of WASO from sleep onset latency (SOL) for the devices com-

pared with polysomnography (PSG). See Figure 1 caption for additional details on the interpretation of Bland–Altman plots.

Table 5. Sleep summary: light sleep

Device n
PSG   

Mean ± SD
Device   
Mean ± SD Bias

Lower  
limit

Upper  
limit t (p)

Effect  
size R2 (p)

Fitbit Alta HR 49 236.6 ± 28.5 256.7 ± 30.1 20.0 –54.1 94.2 3.8 (<0.001) 0.68 0.00 (0.714)
Garmin Fenix 5S 29 238.3 ± 36.2 267.3 ± 35.8 29.0 –74.4 132.4 3.0 (0.005) 0.80 0.00 (0.957)
Garmin Vivosmart 3 43 238.3 ± 31.9 273.0 ± 36.1 34.7 –60.5 129.8 4.8 (<0.001) 1.01 0.02 (0.431)
Earlysense Live 51 237.3 ± 31.0 215.0 ± 51.5 –22.3 –133.6 89.0 –2.9 (0.006) –0.52 0.22 (<0.001)
ResMed S+ 51 235.9 ± 31.1 253.0 ± 34.3 17.1 –58.5 92.6 3.2 (0.002) 0.52 0.01 (0.468)
SleepScore Max 42 236.5 ± 32.2 259.1 ± 38.7 22.7 –51.7 97.0 4.0 (<0.001) 0.63 0.04 (0.196)

Summary results for total minutes of light sleep for the devices versus polysomnography (PSG). For PSG, light sleep was calculated as the combination of N1 and N2 

sleep stages. Results are shown for all devices that output sleep stage classifications. See Table 1 caption for additional table details.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa291#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa291#supplementary-data
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Table 6. Sleep summary: deep sleep

Device n
PSG   

Mean ± SD
Device   
Mean ± SD Bias

Lower  
limit

Upper  
limit t (p)

Effect  
size R2 (p)

Fitbit Alta HR 49 81.1 ± 28.1 75.0 ± 21.1 –6.0 –73.8 61.7 –1.2 (0.219) –0.24 0.08 (0.052)
Garmin Fenix 5S 29 63.3 ± 22.9 69.4 ± 29.3 6.1 –53.0 65.1 1.1 (0.278) 0.23 0.07 (0.170)
Garmin Vivosmart 3 43 66.7 ± 23.1 70.4 ± 28.9 3.7 –57.5 64.9 0.8 (0.431) 0.14 0.06 (0.130)
Earlysense Live 51 79.6 ± 30.3 115.5 ± 42.9 35.9 –66.8 138.6 5.0 (<0.001) 0.96 0.11 (0.017)
ResMed S+ 51 81.5 ± 27.8 96.0 ± 30.5 14.5 –54.8 83.8 3.0 (0.004) 0.49 0.01 (0.504)
SleepScore Max 42 66.8 ± 23.7 87.4 ± 28.9 20.7 –36.3 77.7 4.7 (<0.001) 0.77 0.05 (0.166)

Summary results for total minutes of deep sleep for the devices versus polysomnography (PSG). For PSG, deep sleep was calculated as the N3 sleep stage. Results are 

shown for all devices that output sleep stage classifications. See Table 1 caption for additional table details.

Table 7. Sleep summary: rapid eye movement (REM) sleep

Device n
PSG   

Mean ± SD
Device   
Mean ± SD Bias

Lower  
limit

Upper  
limit t (p)

Effect  
size R2 (p)

Fitbit Alta HR 49 107.4 ± 20.6 96.0 ± 22.9 –11.4 –60.2 37.3 –3.3 (0.002) –0.52 0.01 (0.426)
Garmin Fenix 5S 29 111.4 ± 23.8 120.0 ± 37.8 8.6 –74.9 92.1 1.1 (0.277) 0.27 0.19 (0.018)
Garmin Vivosmart 3 43 109.7 ± 22.6 118.1 ± 40.4 8.4 –75.9 92.6 1.3 (0.200) 0.25 0.28 (<0.001)
Earlysense Live 51 104.7 ± 22.2 104.7 ± 43.1 0.0 –82.9 82.9 0.0 (0.997) 0.00 0.36 (<0.001)
ResMed S+ 51 104.9 ± 20.7 73.0 ± 25.1 –31.9 –85.5 21.8 –8.5 (<0.001) –1.37 0.04 (0.159)
SleepScore Max 42 110.4 ± 22.4 74.6 ± 23.0 –35.8 –95.3 23.7 –7.8 (<0.001) –1.57 0.00 (0.856)

Summary results for total minutes of REM sleep for the devices versus polysomnography (PSG). Results are shown for all devices that output sleep stage classifica-

tions. See Table 1 caption for additional table details.

Figure 5. Bland–Altman plots: light sleep. Bland–Altman plots depicting the minutes of light sleep for the devices compared with polysomnography (PSG). For PSG, 

light sleep was calculated as the combination of N1 and N2 sleep stages. Only devices that output data on sleep stages are depicted. See Figure 1 caption for additional 

details on the interpretation of Bland–Altman plots.
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to correctly detect PSG sleep epochs. However, specificity for 
the devices was variable, ranging from 0.18 to 0.54—indicating 
a lower ability for the devices to correctly detect PSG wake 
epochs than sleep epochs. Specificity for five of the seven con-
sumer devices was substantially higher than the specificity of 
the Actiwatch (0.39), while both Garmin device models had the 
lowest specificities (0.18 and 0.19), indicating much worse per-
formance as compared with the Actiwatch and all of the other 
consumer devices in detecting PSG wake epochs.

Other measures of EBE agreement with PSG (also shown in 
Table 8), largely reflect the sensitivity and specificity results. The 
values for PPV were all high and in a narrow range, indicating a 
high ability of device-scored sleep epochs to be reflected as PSG 
sleep. However, the NPV values were somewhat lower and more 
variable, indicating an overall worse ability for the device-scored 
wake epochs than the device-scored sleep epochs to be correctly 
reflected in the PSG scoring. Across devices, accuracy was high, 
and PABAK values were medium-to-high.

EBE classifications of individual sleep stages

Sleep stage EBE agreement versus PSG are shown for light, 
deep, and REM sleep stages in Tables  9, 10, and 11, respect-
ively. In general, compared with the sensitivity and specificity 
of the sleep/wake EBE classifications (described previously), 
across sleep stages the sensitivity was relatively lower with 
a wider range of values and specificity was relatively higher 
with a more narrow range of values—indicating an overall 

poorer and inconsistent ability of devices to correctly detect 
PSG sleep stage epochs.

Among all sleep stages and devices, levels of sensitivity 
were in the medium range, while specificity levels were me-
dium for light sleep but high for deep and REM. Notably, the 
Fitbit Alta HR had the highest values across most of the light 
and REM EBE agreement measures, while no specific device 
stood out for deep sleep. When devices misclassified PSG sleep 
stage epochs (Table 12), there were particularly high error rates 
for all devices to misclassify PSG wake, deep, and REM epochs 
as light sleep. Likewise, when PSG differed from the device-
scored epochs (Supplemental Table S7), device epochs scored as 
wake, deep, and REM were often classified instead as light sleep. 
Misclassification errors between the other possible stage classi-
fications were all comparatively low.

Discussion
Overall, the consumer sleep-tracking devices we tested had high 
sensitivity but relatively lower specificity, indicating a tendency 
for the devices to accurately detect sleep but to less accurately 
detect wake compared with the gold-standard sleep measure-
ment technique PSG. Mixed results were found for the ability 
of devices to accurately detect sleep stages at the level of in-
dividual epochs or sleep summary measures. Notably, on sev-
eral important performance measures, many of the consumer 
devices performed as well or even better than actigraphy. Like 
actigraphy, most devices also showed proportional bias on sleep/

Figure 6. Bland–Altman plots: deep sleep. Bland–Altman plots depicting the minutes of deep sleep for the devices compared with polysomnography (PSG). For PSG, 

deep sleep was calculated as the N3 sleep stage. Only devices that output data on sleep stages are depicted. See Figure 1 caption for additional details on the interpret-

ation of Bland–Altman plots.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa291#supplementary-data
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Figure 7. Bland–Altman plots: rapid eye movement (REM) sleep. Bland–Altman plots depicting the minutes of REM sleep for the devices compared with polysomnography 

(PSG). Only devices that output data on sleep stages are depicted. See Figure 1 caption for additional details on the interpretation of Bland–Altman plots.

Table 8. Epoch-by-epoch (EBE) agreement: sleep versus wake

Device Sensitivity Specificity PPV NPV Accuracy PABAK

Actiwatch 0.97 0.39 0.91 0.63 0.89 0.78
Fatigue Science Readiband 0.94 0.45 0.92 0.55 0.88 0.75
Fitbit Alta HR 0.95 0.54 0.94 0.58 0.90 0.80
Garmin Fenix 5S 0.99 0.18 0.88 0.74 0.88 0.74
Garmin Vivosmart 3 0.99 0.19 0.89 0.74 0.88 0.76
EarlySense Live 0.96 0.47 0.93 0.62 0.90 0.79
ResMed S+ 0.93 0.51 0.93 0.51 0.88 0.75
SleepScore Max 0.94 0.50 0.92 0.56 0.88 0.75

Proportions for EBE agreement metrics are shown for sleep epochs (versus wake epochs) on all nights for the devices, compared with the corresponding epochs from 

polysomnography (PSG). Higher values (closer to 1.0) indicate better performance on that metric. PPV = positive predictive value, NPV = negative predictive value, 

PABAK = prevalence and bias-adjusted kappa.

Table 9. Epoch-by-epoch (EBE) agreement: light sleep epochs

Device Sensitivity Specificity PPV NPV Accuracy PABAK

Fitbit Alta HR 0.76 0.67 0.70 0.74 0.72 0.42
Garmin Fenix 5S 0.68 0.54 0.58 0.64 0.60 0.19
Garmin Vivosmart 3 0.70 0.55 0.60 0.66 0.63 0.24
EarlySense Live 0.57 0.69 0.64 0.62 0.63 0.25
ResMed S+ 0.67 0.61 0.63 0.65 0.64 0.27
SleepScore Max 0.68 0.60 0.62 0.66 0.64 0.26

Proportions for EBE agreement metrics are shown for light sleep epochs (versus the combination of all other classifications—wake, deep, and REM) on all nights, 

compared with the corresponding polysomnography (PSG) epochs. Results are shown for all devices that output sleep stage classifications. See Table 8 caption for 

additional table details.



12 | SLEEPJ, 2021, Vol. 44, No. 5

wake summary measures, tending to perform worse against PSG 
on nights with poorer/disrupted sleep (lower SE) or longer sleep 
latencies. Taken together, these findings indicate that several 
new consumer sleep-tracking devices demonstrate promise as 
potential valid alternatives to the current mobile sleep moni-
toring standard of actigraphy, at least for the measurement of 
sleep versus wake.

Many of the current findings are consistent with recent 
studies that also tested the performance of consumer sleep-
tracking devices versus PSG. In general, we found that many 
of the sleep/wake summary biases that are common for 
actigraphy [11–17] and other consumer devices [22, 23, 40–44]—
such as overestimating sleep (TST, SE) and underestimating 
wake (WASO)—were also observed for most consumer devices 
in the current study. Actigraphy significantly differed from PSG 
in all the major summary metrics, while many of the consumer 
devices either did not significantly differ from PSG or their 
biases were more modest than for actigraphy—with a few ex-
ceptions (primarily the Garmin devices, which typically had 
more extreme biases than actigraphy). The two primary out-
comes for EBE agreement, sensitivity and specificity, exhibited 

the commonly found pattern for consumer devices to have high 
sensitivity and low or medium levels of specificity [22, 23]. This 
pattern is similar to the known bias for actigraphy to also have 
high sensitivity and lower specificity, and thus to better detect 
sleep epochs than wake epochs [11–17]. Importantly, though, 
most of the consumer devices (five of the seven) performed 
either as well as or better than actigraphy on specificity, the 
primary indicator of a device’s wake-detection capability. The 
overall greatest specificity was for the Fitbit Alta HR, and it is 
notable that recent studies with the same device also found 
equal or greater specificity than actigraphy in comparison with 
PSG [27, 29]. Because actigraphy is the standard technique for 
mobile measurement of sleep/wake and has been validated 
against PSG, it is reasonable to suggest that one of the best ini-
tial benchmarks for judging the validity of consumer devices 
should be evaluating their performance relative to actigraphy 
versus PSG. Thus, based on sleep/wake summary outcomes and 
EBE sensitivity and specificity as primary comparisons, our find-
ings demonstrate positive evidence for the capability of many 
new consumer devices to track PSG sleep and wake as accur-
ately or better than actigraphy.

Table 10. Epoch-by-epoch (EBE) agreement: deep sleep epochs

Device Sensitivity Specificity PPV NPV Accuracy PABAK

Fitbit Alta HR 0.53 0.92 0.58 0.91 0.86 0.71
Garmin Fenix 5S 0.56 0.92 0.55 0.92 0.87 0.73
Garmin Vivosmart 3 0.56 0.92 0.54 0.93 0.87 0.73
EarlySense Live 0.68 0.84 0.46 0.93 0.81 0.62
ResMed S+ 0.59 0.88 0.50 0.91 0.83 0.66
SleepScore Max 0.59 0.88 0.44 0.93 0.84 0.67

Proportions for EBE agreement metrics are shown for deep sleep epochs (versus the combination of all other classifications—wake, light, and REM) on all nights, 

compared with the corresponding polysomnography (PSG) epochs. Results are shown for all devices that output sleep stage classifications. See Table 8 caption for 

additional table details.

Table 11. Epoch-by-epoch (EBE) agreement: rapid eye movement (REM) sleep epochs

Device Sensitivity Specificity PPV NPV Accuracy PABAK

Fitbit Alta HR 0.69 0.94 0.77 0.91 0.89 0.77
Garmin Fenix 5S 0.54 0.84 0.51 0.86 0.77 0.53
Garmin Vivosmart 3 0.50 0.82 0.46 0.84 0.75 0.48
EarlySense Live 0.64 0.89 0.62 0.90 0.84 0.67
ResMed S+ 0.50 0.95 0.71 0.87 0.85 0.69
SleepScore Max 0.49 0.95 0.74 0.86 0.84 0.68

Proportions for EBE agreement metrics are shown for REM sleep epochs (versus the combination of all other classifications—wake, light, and deep) on all nights, 

compared with the corresponding polysomnography (PSG) epochs. Results are shown for all devices that output sleep stage classifications. See Table 8 caption for 

additional table details.

Table 12. Epoch-by-epoch (EBE) agreement: device sleep stage misclassification errors

Device

Wake epochs Light sleep epochs Deep sleep epochs REM sleep epochs

Light Deep REM Wake Deep REM Wake Light REM Wake Light Deep

Fitbit Alta HR 0.35 0.01 0.09 0.06 0.12 0.06 0.03 0.43 0.01 0.05 0.24 0.02
Garmin Fenix 5S 0.54 0.06 0.22 0.02 0.10 0.20 0.00 0.40 0.04 0.00 0.46 0.04
Garmin Vivosmart 3 0.53 0.08 0.20 0.02 0.09 0.18 0.00 0.41 0.03 0.00 0.42 0.04
EarlySense Live 0.35 0.03 0.15 0.06 0.25 0.12 0.02 0.27 0.03 0.02 0.32 0.02
ResMed S+ 0.38 0.01 0.09 0.08 0.19 0.06 0.05 0.35 0.01 0.06 0.42 0.02
SleepScore Max 0.40 0.01 0.09 0.07 0.20 0.05 0.05 0.35 0.01 0.05 0.44 0.02

Proportions for EBE misclassification errors of sleep stage epochs versus polysomnography (PSG). PSG-scored classifications are the larger column categories, with 

the three possible device-scored misclassifications under each category. Results are shown for all devices that output sleep stage classifications.
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While actigraphy is limited to a binary classification of only 
sleep versus wake, many of the consumer devices also output 
metrics for individual sleep stages. Similar to many other recent 
studies that evaluated device sleep stage-tracking performance 
[26–29, 35–37, 45], we found that for both sleep summary met-
rics as well as EBE agreement that the consumer devices dem-
onstrated mixed and often poor results for detection of sleep 
stages versus PSG. All devices significantly differed from PSG in 
total light sleep, mostly with overestimations. Half the devices 
also differed from PSG in the total amount of either deep or 
REM sleep, doing so in a consistent direction (overestimations 
for deep and underestimations for REM). However, all the sleep 
stage summary results should especially be considered in the 
context of the Bland–Altman plots, which had large spreads of 
individual night data across both axes. Thus, the devices that 
did not have significant sleep stage biases versus PSG may only 
have averaged out to be similar to PSG because of high vari-
ability, with a mix of underestimations and overestimations 
across individual nights. Compared with the overall sleep/wake 
EBE results, sensitivity was relatively lower and specificity was 
relatively higher for each of the sleep stages, indicating that 
consumer devices perform only at a medium level for correctly 
detecting PSG sleep stages. Most devices failed to correctly 
identify 30%–50% of both deep sleep and REM sleep, on average. 
Thus, there is an overall substantial likelihood for devices to 
misclassify all sleep stages, and the misclassified sleep stages 
are most often called light sleep.

In this study, we included only healthy individuals with no 
reported sleep problems and fixed TIB to 8 h—thus, our findings 
are best generalized to the performance of devices in healthy 
sleepers on nights with a clinically recommended TIB. However, 
there was variability between nights and we calculated propor-
tional bias to determine whether that variability affected the 
night-to-night reliability of devices versus PSG. While propor-
tional bias always occurred for actigraphy, we found a mix of 
results for the consumer devices. Overall, there were significant 
proportional biases for at least several devices on most sum-
mary measures, which were driven by the higher levels of vari-
ability and bias on nights with poorer/disrupted sleep (i.e. longer 
sleep latency, lower TST and SE, and higher WASO). Thus, the 
proportional bias patterns that actigraphy has on nights with 
poor/disrupted sleep are also found in consumer devices. For 
sleep stages, the devices overall did not show many propor-
tional biases, which may be due to the high variability when 
estimating sleep stages versus PSG in general—therefore few 
proportional bias patterns could emerge. Importantly, these 
proportional biases could have implications for the overall ac-
curacy of devices on poor/disrupted nights of sleep in healthy 
individuals, and generally for those with insomnia. Of note, a 
recent device performance study in insomnia patients [29] 
using actigraphy and the same Fitbit model (Alta HR) found less 
bias overall and fewer proportional biases versus PSG than for 
actigraphy. Together, these findings suggest that device perform-
ance is worse on nights with poor/disrupted sleep, but that most 
devices still perform as well as or better than actigraphy, even 
as summary measures vary across healthy or sleep-disordered 
populations.

Considering all the findings, which device(s) performed best? 
This is a somewhat difficult question to answer, as there is no 
established model for weighting or rank-ordering the various de-
vice performance metrics. Therefore, our approach to answering 

this question is primarily driven by considering what makes a 
consumer sleep-tracking device useful for sleep research or clin-
ical sleep testing, i.e. can a device perform as well as or better 
than—and, thus, could it be considered for use as an alternative 
to—standard actigraphy?

As previously discussed, actigraphy has served as the mobile 
sleep assessment standard for several decades, with its perform-
ance and limitations having been reviewed extensively [11–17]. 
Regarding its sleep/wake-tracking performance, actigraphy is: 
(1) good at detecting sleep epochs (reflected in high EBE sensi-
tivity levels) but it overestimates sleep measures such as TST 
and SE, (2) worse at detecting wake epochs (reflected in poor-
to-medium EBE specificity levels) and underestimates wake 
measures such as SOL and WASO, and (3) more accurate on 
nights with good sleep than poor/disrupted sleep. Let us con-
sider each point with the current findings: (1) We found that 
actigraphy and all the consumer devices had high sensitivity 
levels, indicating that consumer devices perform as well as 
actigraphy in EBE sleep detection. Also, actigraphy significantly 
overestimated TST and SE while only some of the consumer de-
vices did so, suggesting equivalent or better performance for 
consumer devices. (2) Specificity for actigraphy was low but was 
substantially higher in most consumer devices (all except the 
Garmin devices, which were much worse), and actigraphy sig-
nificantly underestimated SOL and WASO whereas only some 
consumer devices did so. Therefore, on wake detection—the 
greatest weakness of actigraphy performance—most devices 
performed better than actigraphy. (3) Actigraphy had the usual 
pattern of worse performance on nights with poor/disrupted 
sleep, indicated by the Bland–Altman individual night data and 
significant proportional biases. Most consumer devices demon-
strated a similar proportional bias pattern, indicating that they 
also tend to perform less accurately on poorer/disrupted nights 
of sleep. Thus, based on these major aspects of actigraphy per-
formance, we conclude that most of the devices we tested per-
formed as well as or better than actigraphy.

Although we conclude that most of the devices performed 
well, did any specific devices perform best or worst? Across most 
of the performance metrics, it appears that the Fitbit Alta HR 
consistently performed either as the best or among the best, and 
thus could be considered the top performer of the devices we 
tested. On summary outcomes, the Fitbit Alta HR tracked the 
sleep/wake metrics very closely with low bias. On EBE outcomes, 
the Alta HR notably had the highest level of specificity. A recent 
review [46] found that newer-generation Fitbit models have 
improved sleep-tracking performance compared with earlier 
models, and that Fitbit performance is overall good for sleep/
wake classification but not for sleep stages—consistent with our 
current findings. Further, regarding the Alta HR model, several 
recent studies [27–29, 36]—comprising different age groups and 
sleep health statuses—also found good sleep-tracking perform-
ance versus PSG but still found relatively poor performance for 
tracking sleep stages. Future studies should further investigate 
whether new Fitbit models remain as top-performing sleep-
tracking devices. The Fatigue Science Readiband, EarlySense Live, 
ResMed S+, and SleepScore Max were the other top-performing 
devices, each demonstrating relatively high performance across 
most metrics that was also as good as or better than actigraphy. 
The worst-performing devices were the two Garmins, which 
ranked last on most performance metrics and with biases that 
were often more extreme than actigraphy. Based on their high 
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EBE NPV values, it is possible that the poor performance of 
the Garmin devices is in part due to having a relatively higher 
threshold for wake (and a lower threshold for sleep) than the 
other devices, which resulted in the Garmin devices performing 
poorly for tracking both sleep and wake because so much actual 
PSG wake was missed—but the wake epochs it did detect were 
more likely to indeed be PSG wake than the other devices.

One of the strengths of our study is that it was carried out 
independently [23]. To our knowledge, except for the Fitbit Alta 
HR, the other device models we tested have not undergone prior 
independent performance testing against PSG. However, there 
were notable nonindependent studies (i.e. studies that were dir-
ectly funded/supported by the device company, and one or more 
employees were authors) conducted for two of the devices. The 
first study [24], for the EarlySense Live, found that it performed 
well against PSG and even better in many regards than our cur-
rent findings (e.g. they reported similar sensitivity but much 
higher specificity, and no differences from PSG in TST or sleep 
stages). The second study [26], for the ResMed S+, also found 
good performance versus PSG and was better than actigraphy in 
most sleep/wake outcomes (e.g. a similar level of sensitivity but 
much higher specificity than the current study, but they found 
an overestimation of TST and some different sleep stage biases). 
Thus, except for the Fitbit Alta HR, to our knowledge, the cur-
rent study represents the first independent performance study 
for these devices and, more broadly, either the first or one of 
the first studies overall for the devices. Additional studies are 
therefore warranted to further evaluate the sleep-tracking per-
formance of these devices beyond the current results.

We should also consider the method of actigraphy and how 
that relates to the use of consumer devices. For actigraphy, it 
remains a standard practice in postprocessing to input TIB data 
into the actigraphy program to ensure accuracy [9–12]. For con-
sumer devices, however, there are no intended postprocessing 
steps, as most device algorithms are designed to carry out sleep-
tracking passively and automatically. It is of concern though 
that the ability of device algorithms to determine TIB without 
user input may lead to errors that affect their accuracy. This 
can be caused by an algorithm “detecting” the start or end of 
a sleep episode earlier or later than it should have, resulting 
in a shortened or lengthened TIB (see Supplemental Materials 
for more discussion on this issue). If consumer devices are to 
be considered for use as alternatives to actigraphy in research 
and/or clinical testing, it would be important to conduct some 
basic level of postprocessing (like with actigraphy) to improve 
data integrity. In this study, we conducted such postprocessing 
(as needed) in order to capture device data over the 8-h TIB, al-
lowing for direct comparison of devices with actigraphy and 
PSG. It is encouraging that some newer devices actually do allow 
the user to edit or postprocess their sleep data in the device app 
(e.g. to correct TIB errors, or to input missed sleep episodes). 
Individual users and future studies could benefit from the use of 
such tools to improve the accuracy of sleep-tracking data from 
consumer devices.

There were both strengths and limitations to the study. In 
addition to this being an independent study, the other major 
strengths were the study design, scope of the study, and testing 
conditions. For example, testing multiple device models and 
different types of devices (wearable and nonwearable), utilizing 
gold-standard comparisons (PSG and actigraphy), including 
a sleep disruption condition night, having well-defined 

participant inclusion criteria, and maintaining prestudy and 
within-study conditions important for laboratory sleep testing. 
Further, the data analysis is broad and comprehensive, and 
complies with recently recommended standards [23, 34] for per-
formance testing of sleep-tracking devices. Limitations of the 
study include: not being able to test all seven consumer devices 
at once or on all participants (due to comfort and other phys-
ical constraints, availability of devices, and to prevent possible 
interference between devices), occasional missing data or par-
tial data loss, the controlled laboratory setting and PSG/device 
applications can affect sleep itself, and the fixed sleep episode 
times and durations do not reflect natural variation in TIB. We 
did not collect race/ethnicity demographic data from partici-
pants, however, future studies should do so to examine possible 
race/ethnicity differences in device performance. This can be 
relevant for testing wearables that have photoplethysmography 
(PPG)-based heart rate sensors (like the Fitbit and Garmin de-
vices), due to concerns regarding PPG sensor accuracy in people 
with darker skin tones and minority race/ethnic groups who are 
often under-represented in device studies in general [47]. Device 
companies occasionally update their device models, apps, and 
sleep-tracking algorithms—therefore the current results cor-
respond best to the versions used during the study period. 
Nonetheless, our group has previously published data [29, 48] 
showing updates to one specific device utilized here (Fitbit Alta 
HR) during a ~2-year data collection period did not impact sen-
sitivity, specificity, and accuracy values for any sleep measure. 
Additionally, we used the medium sensitivity threshold set-
ting for the Actiwatch analysis, as this is the default and most 
commonly used actigraphy setting for healthy young adults. 
It is possible that use of different actigraphy settings could 
have produced slightly different results, however that may 
come with tradeoffs (e.g. a lower threshold may result in in-
creased EBE specificity, but that may also cause lower EBE sen-
sitivity). Ultimately, researchers should use the recommended 
actigraphy settings that best match the participants and condi-
tions of their study.

In summary, our findings demonstrate that many (but not 
all) new consumer sleep-tracking devices perform as well as, or 
better than, actigraphy on sleep/wake summary and EBE per-
formance metrics—indicating that some consumer devices are 
promising in their initial validity versus the gold-standard PSG. 
Additional device performance testing is warranted, especially 
in other populations and settings, to further define and reveal 
the strengths, weaknesses, and limitations, as well as broaden 
the scope for the use of consumer devices to track sleep. To ini-
tially address ecological validity, in our prior study the same 
participants with insomnia were tested in the lab [29] and at 
home [48], and the Fitbit Alta HR had comparable performance 
between settings. Compared with PSG and actigraphy, there are 
benefits to utilizing consumer devices due to their wide avail-
ability, diverse device types, the low burden on the user, relatively 
low cost, multiple sensors and functions, and ability to rapidly 
sync with phones or computers to provide real-time data. Thus, 
devices have the capacity to be used daily, help establish nor-
mative sleep data for an individual, and be used toward mean-
ingful and actionable endpoints. For example, sleep-tracking is 
urgently needed in areas where PSG and actigraphy cannot be 
adequately used, such as operational settings (like the military) 
where device data could be utilized as inputs in fatigue models 
for optimized scheduling, risk mitigation, and performance 
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enhancement. Clinically, devices could be used to identify when 
an individual’s sleep pattern (or sudden change in sleep pat-
tern) may signify a sleep disorder that should be evaluated, and 
for tracking compliance and progress in a sleep disorder treat-
ment plan. The wide use, rapid technological advancement, and 
promising initial research findings demonstrating the improved 
sleep-tracking performance of many recent-generation con-
sumer devices warrant further testing versus gold-standards 
in different conditions, populations, and settings in order to 
evaluate their wider validity and utility—toward their consider-
ation as possible valid alternatives to actigraphy.
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