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Abstract

Introduced mammalian predators can have devastating impacts on recipient ecosystems

and disrupt native predator–prey relationships. Feral cats (Felis catus) have been implicated

in the decline and extinction of many Australian native species and developing effective and

affordable methods to control them is a national priority. While there has been considerable

progress in the lethal control of feral cats, effective management at landscape scales has

proved challenging. Justification of the allocation of resources to feral cat control programs

requires demonstration of the conservation benefit baiting provides to native species sus-

ceptible to cat predation. Here, we examined the effectiveness of a landscape-scale Eradi-

cat® baiting program to protect threatened northern quolls (Dasyurus hallucatus) from feral

cat predation in a heterogeneous rocky landscape in the Pilbara region of Western Australia.

We used camera traps and GPS collars fitted to feral cats to monitor changes in activity pat-

terns of feral cats and northern quolls at a baited treatment site and unbaited reference site

over four years. Feral cat populations appeared to be naturally sparse in our study area, and

camera trap monitoring showed no significant effect of baiting on cat detections. However,

mortality rates of collared feral cats ranged from 18–33% after baiting, indicating that the

program was reducing cat numbers. Our study demonstrated that feral cat baiting had a

positive effect on northern quoll populations, with evidence of range expansion at the treat-

ment site. We suggest that the rugged rocky habitat preferred by northern quolls in the Pil-

bara buffered them to some extent from feral cat predation, and baiting was sufficient to

demonstrate a positive effect in this relatively short-term project. A more strategic approach

to feral cat management is likely to be required in the longer-term to maximise the efficacy of

control programs and thereby improve the conservation outlook for susceptible threatened

fauna.
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Introduction

The introduction of mammalian predators outside their natural range can have severe conse-

quences on recipient ecosystems [1–3] and be particularly disruptive to native predator–prey

relationships [4, 5]. Introduced predators tend to adapt well to their new environment [2], and

native species become ‘easy prey’ probably due to behavioural naïveté to these novel predators

[6, 7]. Moreover, once predators have established in an area, effectively controlling them poses

a significant challenge [8, 9]. The detrimental impacts of introduced predators on native biodi-

versity can be seen in countries like Australia and New Zealand with disproportionately more

extinctions of native species (mammals–Australia; birds–New Zealand) than other developed

countries [2, 10, 11]. In Australia, predation by the introduced red fox (Vulpes vulpes) and

feral cat (Felis catus) has been implicated in the decline and extinction of many native species

[11–13]. Large scale fox-baiting programs have been shown to be relatively effective in reduc-

ing their impact on native fauna [14, 15]. However, there is also some evidence that feral cat

populations can increase in response to fox control [16, 17].

To avert further extinctions of native fauna from the Australian mainland and to improve

their prospects of recovery, land managers need effective and affordable methods to control

the detrimental impacts caused by feral cats [12, 18]. There have been considerable advances

made in the lethal control of feral cats in the past decade [19–21], as evidenced by the recent

removal of this invasive predator from Dirk Hartog Island off Western Australia (WA). At 630

km2, Dirk Hartog Island is the largest successful feral cat eradication campaign for an island in

the world to date [22]. Controlling feral cats in open mainland systems, however, presents an

ongoing and formidable challenge to conservation practitioners. Local removal of feral cats

from the landscape effectively forms a ‘sink’, creating opportunity for other cats to either

encroach as territory becomes available or locally reproduce and occupy the space [23, 24].

Therefore, control efforts should be continual, or relatively consistent, and large-scale, for any

benefit to native fauna species to be realised–a costly exercise and a challenge in itself [8, 25].

The aerial application of toxic baits is currently considered to be the most effective and effi-

cient method for controlling feral cats at a large scale, if the risk to non-target species is mini-

mal [20, 26–28]. The recent registration of the Eradicat1 feral cat bait (i.e., sausage-style baits

containing the toxin sodium fluoroacetate or 1080) may provide land managers with an

affordable tool to control feral cats at the scale required [20, 28]. Sodium fluoroacetate is a nat-

urally occurring plant toxin that is found in more than 30 species of mainly Western Austra-

lian plants [29]. Owing to their long evolutionary exposure to these plants, many Australian

animal species show a higher degree of tolerance to the toxin than most unadapted non-native

species, particularly eutherian carnivores [29, 30]. However, the operational use of Eradicat1
in northern Australia is currently prohibited as the risk to the endangered northern quoll

(Dasyurus hallucatus) in the wild had not been assessed at the time of bait registration [31].

Like most arid regions of the Australian mainland, the Pilbara bioregion of northwest WA,

has suffered significant biodiversity loss in the past 200 years. Twelve species of terrestrial

mammal have become extinct from the mainland and another seven species have declined [32,

33]. A review of the conservation values, threats, and management options for biodiversity

conservation in the Pilbara, identified feral cat control as one of the top three management

strategies to be implemented based on the relatively low cost and high benefit of this option for

multiple species of threatened fauna, including northern quolls [34]. However, this review also

indicated that the probability of success of cat control over a 20-year management period was

uncertain, with a 49% predicted chance of success [34]. This uncertainty is likely to be related

to the challenge of effectively controlling feral cats in the expansive topographically complex

landscapes across this region [28].
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There are few published reports on the efficacy of multi-year landscape-scale feral cat bait-

ing operations. Two exceptions are the Fortescue Marsh feral cat control program in the Pil-

bara, which has been ongoing since 2012 [28], and another in the Matuwa Kurrara Kurrara

Indigenous Protected Area (Matuwa) in central WA commencing in 2003 [20, 27]. The first of

these demonstrated a decline in site occupancy of cats in all five years of the study, although

repopulation by cats each year was relatively rapid. At Matuwa, the annual baiting strategy

provided sustained control of feral cats for over five years [27], but in the longer-term, cat

activity returned to near pre-bait levels and prompted the use of complementary control tech-

niques [20]. Neither study examined the response of native species to feral cat control. A fur-

ther study examining the efficacy of integrating landscape-scale feral cat control into an

existing predator control program on the south coast of WA reported varying success of feral

cat baiting on cat populations, though native species appeared to respond positively [35]. All

these studies were conducted in relatively low-relief landscapes.

In the Pilbara, recent research to assess the survivorship of northern quolls before and after a

trial aerial feral cat baiting program provided evidence that the application of Eradicat1 poses a

low poison risk to northern quolls [31]. The next step was to quantify the response of both cats

and northern quolls to landscape-scale feral cat baiting to demonstrate that this management

action will improve the conservation outlook for northern quoll populations. The Pilbara north-

ern quoll populations are an important stronghold for this species [36, 37], given that the invasion

of the poisonous cane toad (Rhinella marina) elsewhere in northern Australia has seen dramatic

declines in once locally abundant populations [11, 38]. Feral cats are also considered a threat to

northern quolls and reducing their impact on this species is a high conservation priority [39].

Here, we assessed the response of both feral cats and northern quolls to the annual aerial

application of the Eradicat1 bait in a heterogeneous rocky landscape in the Pilbara over a

four-year period by examining changes in activity patterns using camera traps, and GPS collars

fitted to cats, at a treatment (baited) and reference (non-baited) site. Our overarching hypothe-

sis was that landscape-scale baiting of feral cats would confer a benefit to northern quolls i.e.,

reduce predation pressure.

Methods and materials

This study was approved by the Department of Biodiversity, Conservation and Attractions

(DBCA) Animal Ethics Committee (AEC 2015/16 and 2018/04) and by annual DBCA 1080

baiting risk-assessment plans.

Study site

The study was conducted on two adjoining cattle stations (Yarraloola 160,000 ha and Red Hill

180,000 ha) in the west Pilbara of WA (Fig 1). Yarraloola was the baited treatment site and Red

Hill was the non-baited reference site. These stations were selected as they have similar topog-

raphies and land systems, and the same enterprise manages the cattle herds. Road access was

extensive due to pastoral and mining operations, including exploration tracks in the rocky

upland landscapes. The eastern boundaries of both stations lie along the western edge of the

rugged Hamersley Range. The adjacent sections of this range (Unallocated Crown Land) were

also part of the study area (Fig 1).

This area experiences a semi-arid climate typical of the Pilbara bioregion. Summers are

very hot and winters mild. Rainfall is characteristically extremely variable and follows a loose

bi-modal pattern with most of the rain falling during January, February and March in associa-

tion with tropical cyclone and heat-trough events. A second, smaller rainfall peak occurs in

May and June as a result of southern frontal systems. Average annual rainfall for Pannawonica
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(the nearest weather recording station, 25 km northeast of Yarraloola) and Red Hill are 407

and 363 mm, respectively [40]. Annual rainfall for Pannawonica and Red Hill were similar

over the study period with 2017 being the wettest year at both stations (538 and 366 mm,

respectively) followed by 2016 (391 and 346 mm) then 2018 (323 and 336 mm) and 2019 being

the driest year at both stations (238 and 174 mm). The only notable difference during the

study period was a tropical low that passed over Yarraloola in February 2017 delivering 319

mm to Pannawonica but only 159 mm to Red Hill [40].

Fig 1. Location of the treatment (Yarraloola) and reference (Red Hill) sites and camera trap locations in the Pilbara

region of Western Australia. The modified bait cell used for 2018 and 2019 trials is also shown.

https://doi.org/10.1371/journal.pone.0251304.g001
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The two stations have similar landforms and vegetation. The central lowland systems of the

study area commonly feature stony plains and spinifex hummock grasslands with scattered

low open woodlands of Acacia species [41]. These areas are interspersed by the Robe Pisolite

[42], which form flat-topped mesas and breakaways. There are also other substantial rocky

hills of various geologies, all supporting spinifex grasslands and sparse eucalypt woodlands

[41]. The western side of the study area is predominately lowland plains featuring rolling stony

plains and spinifex hummock grasslands, interspersed with isolated low rocky hills [41]. The

area of habitat suitable (rugged rocky uplands and complex riverine systems; [37]) for north-

ern quolls was similar at both stations, comprising 35–40% of the study sites. Given the home

range size of northern quolls determined in a previous study [31], the distance between the

two study locations was sufficient to ensure independence.

Prior to the commencement of this study, both stations were aerially baited each September

with dried meat baits containing 6 mg of 1080 to control wild dogs (dingoes and other free-

ranging dogs; Canis familiaris) as part of a coordinated Pilbara-wide operation. Thereafter, the

primary control method used to control wild dogs was ground shooting. In the precursor to

this study, a 20,000-ha area of Yarraloola was baited with Eradicat1 in July 2015 to investigate

the non-target risks on the survival of free-ranging northern quolls [31].

Aerial baiting

Aerial baiting occurred over two days in July over the four years (26–27 July 2016; 16–17 July

2017; 9–10 July 2018; 8–9 July 2019). This scheduling coincided with the coolest period of the

year in the Pilbara when the availability of alternative prey was predicted to be lowest, maxi-

mising bait uptake by feral cats [43]. Bait degradation from unseasonal rainfall, hot weather

and ant attack was also likely to be reduced at this time of the year. The baiting operations

were undertaken by the Western Australian Department of Biodiversity, Conservation and

Attraction’s (DBCA) Western Shield baiting team in accordance with Permit No. PER14758

Version 2 issued by the Australian Pesticides and Veterinary Medicines Authority.

The Eradicat1 bait is a moist ‘chipolata’ style sausage weighing ~17 g, which is injected

with 4.5 mg of 1080. The bait matrix consists of 70% moist kangaroo mince, 20% chicken fat,

and 10% digest and flavour enhancers [43]. Baits were trucked frozen to a nearby airstrip. On

the day of baiting, baits were thawed and then sweated on racks in direct sunlight. Coopex1 (a

residual insecticide) mixed at 12.5 g/L was sprayed on the baits to reduce the likelihood of ant

attack. Once ready, baits were loaded into a dedicated aircraft equipped with purpose-designed

bait delivery hardware. Fifty baits were deployed at each defined drop point along flight tran-

sects 1 km apart, resulting in an application rate of 50 baits km-2 across the entire bait cell [27].

The bait cell for 2016 and 2017 covered 144,100 ha. It was then modified in 2018 and 2019 to

incorporate potential corridors (three additional areas of favourable habitat adjacent to the for-

mer bait cell) that may have been used by feral cats to reinvade the treatment area (Fig 1). A

large inaccessible portion of the rugged Hamersley Range, which was non-preferred cat habitat

was excluded [44]. These changes decreased the treatment area slightly to 142,036 ha. Bait

exclusion areas were placed around mine sites, public roads and waterholes along the Robe

River and other major drainage lines. On average, approximately 71,500 baits were dropped in

1,430 bait clusters each year.

Camera trapping

Due to the nature of the terrain and to enable broad coverage of both the treatment and refer-

ence sites, we set camera traps using the existing road networks. GIS mapping tools in ArcGIS

were used to generate randomised camera trap sites that were within walking distance of roads
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(50 to 400 m either side) and�3 km apart. The 3 km distance was used to increase camera

trap independence by reducing the chance of individual feral cats appearing on multiple cam-

eras during the same sampling period [28]. For the treatment site at Yarraloola, camera traps

were located at least 2 km inside the bait cell boundary and there was a buffer of>3 km

between the bait cell boundary and the nearest camera trap on Red Hill. Sixty camera trap sites

were used at each site (Fig 1). Fifty-six of the camera traps in the reference site were>10 km

from the treatment site. Centroids of the two camera trap arrays (treatment and reference)

were approximately 60 km apart.

Each camera (Reconyx HyperFire™ PC900, Reconyx, Wisconsin; USA) was mounted 30 cm

above the ground on a 45 cm heavy duty plastic tent peg and positioned to face south. Cameras

were programmed to take five pictures up to two frames per second upon a trigger, using an

infra-red flash. To enhance the typically low detection rate of cats, visual and olfactory lures

were used [45]. A ‘lure pole’ was set 3 m in front of each camera trap. The olfactory lure con-

sisted of a plastic vial containing 15–20 ml of ‘Catastrophic’ scent lure in an oil suspension

(Outfoxed Pest Control, Victoria), attached to a stake approximately 30 cm from the ground.

Also attached to this stake, was a 1.5 m long metal curtain rod with three white turkey feathers

taped obliquely at its midpoint and a 30 cm length of silver tinsel secured to the top of the rod

[28]. The scent lure used to attract cats to camera traps was also found to attract northern

quolls and wild dogs. Detections of wild dogs were rare, and the data were too sparse to

analyse.

Vegetation was trimmed from the detection zone of the camera to minimise false triggers

caused by moving plants. Camera traps were set for a minimum of 25 nights prior to the July

baiting operation each year and then re-set three weeks afterwards for a further 25 nights.

Camera traps and lures were removed for the intervening period to prevent cats becoming

accustomed to them. All images from the camera traps were uploaded into the program ‘CPW

Photo Warehouse’ [46] for processing and all fauna species (excluding cattle) identified. Date

and time-stamp information from each image was captured ensuring an accurate recording of

time of day for each image. The program was also used to generate detection data for cats and

northern quolls for each camera trap.

Detection rate was used as an estimate of the relative activity of cats and northern quolls.

We considered detections as independent when separated by greater than 15 minutes [47].

Multiple detections of northern quolls on any given night at camera trap sites in their preferred

habitats were common. In contrast, it was rare for cats to be detected more than once on a

camera in a single night.

Trapping, radio-collaring and monitoring feral cats

Victor ‘Soft Catch’1No 1.5 padded leg-hold traps (Woodstream Corp., Lititz, Pa.; U.S.A.),

spaced 0.5 to 1 km apart, were used to capture feral cats during trapping sessions for approxi-

mately 10 nights each in April-May 2018 and May 2019. Open-ended trap sets were used con-

sisting of two traps positioned lengthwise and vegetation was used as a barrier along the sides

of the trap area [27]. Fresh faeces from desexed domestic cats were used as the attractant. Sev-

enty-six trap locations were set on the treatment site in 2018 and 2019. The reference site was

only trapped in 2018 with 78 trap locations used.

Trapped cats were sedated with an intramuscular injection of 4 mg/kg Zoletil 1001 (Vir-

bac, Milperra, Australia), sexed, weighed, coat colour noted, and DNA tissue samples taken.

Cats over 1700 g were fitted with an 80 g GPS-VHF collar (Advanced Telemetry Systems, Min-

nesota, USA). Collars were deployed at least two months prior to baiting and were pro-

grammed to take 24 GPS fixes per day (i.e., hourly intervals) between July–September over the
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baiting period, and four GPS fixes per day (i.e., 12 am, 6 am, 12 pm, 6 pm) for the remaining

months. The VHF signals changed to mortality mode following 12 hours of collar inactivity.

Monitoring of radio-collared cats was conducted by ground and aerial tracking. Helicopter

flights were conducted prior to and after baiting in 2018 and 2019 to locate radio-collared cats

(alive or dead) and to remotely download the GPS data from each collar (download distance

around 600 m). Collared cats found dead following baiting were too mummified to necropsy

(>six weeks old) but there were no gross signs that scavengers had interfered with the cat car-

casses. To determine if a cat was killed from bait consumption, positional data recovered from

the GPS collar was reviewed against the bait drop location data in QGIS [48]. The hourly

movements of the cat leading up to when the collar showed inactivity was used to determine

the likelihood of intersection with a cluster of baits. The time of death following the bait drop

was then estimated [28, 35].

Statistical analysis

Changes in both feral cat and northern quoll activity were modelled using a generalised linear

mixed model (GLMM) with a Poisson distribution. The response variable was the total number of

detections of each species recorded over each monitoring session (i.e., 25 nights pre- and post-

baiting). As some camera traps operated for less than 25 nights, we included the log of the number

of nights each camera trap operated, divided by 25 nights, as an offset to account for variable sam-

pling effort. Camera trap ID was modelled as a random intercept and fixed factors included year

of monitoring (2016–2019), site (Red Hill or Yarraloola) and treatment (pre- or post-baiting) and

the interaction terms. GLMMs were fitted using the ‘lme4’ package [49] in R 4.0.2 [50]. Post-hoc

tests were used to examine pairwise combinations of all variables in the R package ‘emmeans’

[51]. As an indicator of model performance, we compared the full model with the intercept-only

model using the second order Akaike Information Criterion (AICc) and the R package ‘MuMIn’

[52], as well as assessing model fit using the R package ‘performance’ [53].

To investigate potential range expansion of the northern quolls, we also examined the

cumulative number of new camera trap sites (corrected for uneven sampling effort) at which

quolls were detected with each successive 25-night monitoring session using the species accu-

mulation curve function (random and 100 permutations) in the R package ‘vegan’ [54].

Results

Camera trapping

Across the four years of camera trap monitoring, there were 230 (treatment: 87; reference:

143) independent cat and 633 (treatment: 527; reference: 136) independent northern quoll

detection events (S1 Table). While we use the terms pre- and post- baiting for the unbaited ref-

erence site, this is for temporal comparison only.

Feral cat detections

The GLMM analysis for feral cat detections showed no evidence of overdispersion in the full

model (Pearson Chi2 = 745.4; df = 941.0), the R-square of the fitted model was 0.41 and the inter-

cept-only model performed poorly in comparison (S2 Table). The full model showed there was

no significant effect of baiting on cat detections (site by treatment: z = 0.01, P = 0.998) with the

change in cat detections from pre- to post-baiting being similar at the treatment and reference

sites (Fig 2, S1 Fig) and this was consistent across years (S3 Table). Post hoc tests showed the

only significant change in cat detections was a post-baiting decline at the reference site in 2016 (z

ratio = 2.29, P = 0.02), and in 2018 (z-ratio = 2.3, P = 0.02) at the treatment site (S4 Table).
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Northern quoll detections

The GLMM analysis for northern quoll detections again showed no evidence of overdispersion

(Pearson Chi2 = 932.7; df = 941.0), the R-square of the fitted model was 0.68 and the intercept-

only model performed poorly in comparison (S2 Table). The full model showed that cat bait-

ing had a significant effect on northern quoll detections (site by treatment: z = 2.19, P = 0.029)

with the change in quoll detections from pre- to post-baiting differing between the treatment

and reference sites (Fig 2, S2 Fig), which was also consistent across years (S3 Table). Post hoc

tests showed a significant decline in northern quoll detections in all four years at the reference

site but only in 2019 at the treatment site (S4 Table).

The number of new camera trap sites on which northern quolls were detected continued to

rise over time at both sites (Fig 3). However, the divergence of the curves and 95% confidence

intervals indicates that the cumulative increase of quoll detections on new camera trap sites

was greater at the treatment site than the reference site from 2018 onwards. A spatial represen-

tation of this pattern is provided in Fig 4, which demonstrates an ongoing expansion of the

spatial distribution of camera trap detections at the treatment site over time.

Mortality of collared feral cats

Eighteen cats (11 males and seven females) were trapped and collared during the two trapping

sessions at the treatment site and three (two female and one male) at the reference site in 2018

(Table 1). Most of the collared cats were adults, except for two juveniles and two sub-adults in

the treatment site (S5 Table). Two cats (one sub-adult female from 2018 and one adult male

from 2019) could not be located after collaring at the treatment site. Plus, another sub-adult

male from 2018 died of natural causes prior to baiting in that year.

At the treatment site, 11 collared cats were present following bait deployment in 2018, of

which, two cats (one juvenile female and one adult male) were subsequently found dead with

both attributed to baiting. Of the 12 cats present following bait deployment in 2019, three

adult females and one adult male succumbed to baiting. There was no mortality amongst the

three adult cats collared on the reference site in 2018, with all confirmed alive in September

2019 (S5 Table).

Of the five adult females exposed to bait in 2019, two of the three cats collared in 2018 died

during this second exposure event and one of the two collared in 2019 died (60% mortality).

None of the five adult males that survived exposure to bait in 2018 were killed during the sub-

sequent baiting program in 2019.

Discussion

Adoption of a broadscale aerial application of poison baiting as an operational feral cat man-

agement strategy is contingent on demonstrating both its effectiveness at removing cats from

the landscape, as well as the conservation benefit it provides to native species susceptible to cat

predation. As found in other studies [35, 55], proving this unequivocally can be challenging.

Here, we examined the effectiveness of a landscape-scale Eradicat1 baiting program to con-

trol feral cats, and the benefits the program provided to the threatened northern quoll, using a

combination of camera traps and GPS collars fitted to cats, with mixed results.

Efficacy of the baiting program

Despite a consistent decline in cat detections post-baiting at the treatment site each year, a sim-

ilar decline was also observed at the reference site in all years except one. As such, we could

not attribute this decline in cat detections to baiting. However, the mortality (18–33%) of
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Fig 2. Mean detection rate (mean number of events per 100 camera trap nights per camera trap site) for feral cats (A & B) and northern quolls (C & D) at the treatment

site (A & C) and reference site (B & D) prior to (before_bait) and after (post_bait) the winter baiting program from 2016 to 2019. Error bars represent standard error.

Symbols courtesy of the NESP Northern Australia Hub, nespnorthern.edu.au.

https://doi.org/10.1371/journal.pone.0251304.g002
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collared cats at the treatment site after baiting indicated that the program was effective in

reducing cat numbers. In a similar study and region, Comer et al. [28] demonstrated a clear

effect of landscape-scale baiting using Eradicat1 in all but one of five years of monitoring. In

that year, a significant decline in site occupancy of cats was observed at both baited and

unbaited sites. They suggested that a delay in the baiting program shifted the subsequent post-

bait monitoring into a period when female cats were more sedentary due to nursing their

young (i.e., reduced activity meant less opportunity to be detected on cameras). In a recent

study in south-western Australia, Comer et al. [35] reported more variable results, with a

reduction in site occupancy of cats following baiting occurring only in some years and at some

sites. Their five-year study also reported variable mortality of collared cats after baiting, rang-

ing from 0–60%. Other studies have also failed to detect a consistent response of cats to baiting

[26, 43, 55–58]. Factors primarily influencing bait uptake by cats such as alternative prey avail-

ability, bait degradation/palatability, non-target bait uptake and bait shyness, were suggested

as the likely reasons for this variability [55, 56, 58, 59]. For example, should a cat receive a sub-

lethal dose of 1080, resulting in illness rather than death, this may lead to bait aversion and

compromise the baiting program [55].

There was evidence in our study that six individually identified adult male cats (five fitted

with radio-collars; one cat identified from camera trap images and then trapped and collared

the following year) survived multiple baiting events [60]. Surviving adult males may have

learnt to avoid baits from their previous encounters, or they had become proficient hunters of

preferred live-prey and were not interested in consuming baits [26]. The long-term feral cat

control program at Matuwa reported a decline in the efficacy of aerial baiting potentially as a

consequence of a change in the demographics of the feral cat population towards one

Fig 3. Cumulative number of camera traps on which northern quolls were detected before (b) and after (a) baiting at

the treatment site (red line) and reference site (black line) from 2016 to 2019. Shaded areas represent 95% confidence

intervals.

https://doi.org/10.1371/journal.pone.0251304.g003
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dominated by older and larger sized males that avoid taking baits [20]. The subsequent inclu-

sion of a leg-hold trapping program to complement aerial baiting reversed this result by effec-

tively re-setting the feral cat population to one that was largely bait naïve.

Fig 4. Cumulative camera trap detections of northern quolls with each successive year from 2016 to 2019 recorded

within the treatment (black boundary) and reference (red boundary) sites; also showing the year in which a northern

quoll was first detected at the camera trap site.

https://doi.org/10.1371/journal.pone.0251304.g004
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The average number of cat detections on camera traps at our two study sites was low (0.52–

1.53 per 100 camera trap nights (CTN)) compared to some other studies. For example, in

other rangeland areas of WA, Kreplins et al. [61] recorded 2.49 cat detections per 100 CTN

and Doherty and Algar [57] recorded up to 4.07 cat detections per 100 CTN. The low number

of cat detections for the duration of our study suggests that the density of cats within this area

was generally low. Some studies have suggested that rugged rocky topography similar to our

study area buffers prey populations from cat predation, as this is not the preferred habitat of

feral cats [36, 44, 62, 63]. Where density is low, the power to detect change can be compro-

mised [64]. For example, Stokeld et al. [65] reported that in tropical savanna ecosystems where

cat density was also assumed to be relatively low, the sampling effort required to reliably detect

cats was much higher than in temperate regions of Australia. In their study, multiple cameras

at the same site dramatically increased their ability to detect cats; something to consider in

future studies.

The use of attractants and various lures have been used to increase cat detection rates, with

variable success [26, 45, 59, 65, 66], as well as positioning cameras in areas where encounter

rates of cats are likely to be high, such as on road edges and riparian zones [58, 61, 66]. While

we used both olfactory and visual lures, the camera traps were randomly placed in the land-

scape at between 50–400 m from roads, which may have reduced our ability to detect cats. For

instance, no cats were detected at 41% of the camera trap sites used in our study. Nonetheless,

the magnitude and the consistency of the decline in cat detections after baiting at the reference

site was not anticipated, which highlights the importance of long-term monitoring to better

understand natural variation in cat abundance over time. Feral cat populations tend to exhibit

seasonal fluctuations, with summer peaks following breeding in spring, and then densities

decline into winter/early spring as nutritional stress presumably takes its toll on subadult ani-

mals [67]. We sampled at a time of the year when cat densities were likely to be lowest.

However, where behavioural shifts or seasonal differences influence activity patterns,

changes in activity may not reflect changes in abundance [55]. In our study, the decline in

detections following the baiting in 2016, may in part be explained by reduced activity of female

cats due to having dependent young [28]. The baiting operation in that year was delayed due

to rain and the post-baiting monitoring was delayed until August-September. Or the efficacy

of baiting could potentially be masked by survivors exploring now vacant territories left by

conspecifics killed by baits [20, 68]. These individuals may be more inclined to inspect the

lures at previously unvisited camera trap sites [20].

It may also be that curiosity to the lure diminishes over time and adult cats may lose interest

in, or even avoid camera traps [69]. There is some evidence that animals recognise the pres-

ence of a camera and can respond either positively or negatively [70]. In this study, camera

Table 1. Feral cats collared at the treatment and reference sites in 2018 and 2019 including the number of collared cats at each site that encountered baits and the

number that died from the baiting.

Site Year Number of cats

collared

Sex ratio (M:

F)

Collars active during

baiting (M:F)

Deaths attributed to baiting

(M:F)

Survived exposure to baiting

(M:F)

Mortality rate

(%)

Treatment 2018 13 trapped 8:5 11 (7:4) 2 (1:1) 9 (6:3) 18

2019 5 trapped 3:2 4 (2:2) 2 (1:1) 2 (1:1) 50

2019 8 survived from

2018

5:3 8 (5:3) 2 (0:2) 6 (5:1) 25

2019 13 total 8:5 12 (7:5) 4 (1:3) 8 (6:2) 33

Reference 2018 3 trapped 1:2 3 (1:2) N/A 3 (1:2) 0

2019 3 survived from

2018

1:2 3 (1:2) N/A 3 (1:2) 0

https://doi.org/10.1371/journal.pone.0251304.t001
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traps were likely to be easily recognisable to resident cats due to the use of tinsel as a visual lure

and the repeated setting of camera traps at the same sites. For example, an adult male (RM01;

S5 Table) fitted with a collar from May 2018-September 2019 at the reference site, was only

detected by a camera trap on a single occasion in August 2016 (prior to collar-fitting), despite

three camera trap sites being located within his home range [60]. Regular re-positioning of

camera traps, or changing lures, may improve the chance of detecting camera shy individual

cats.

Effect of feral cat baiting on northern quoll detections

A precursor study to ours in the same Pilbara location demonstrated that northern quolls were

unlikely to be susceptible to poison baiting using Eradicat1 [31]. They also provided evidence

of the impact of feral cats on this species with cats predating eight (20%) of the 41 radio-col-

lared northern quolls at Yarraloola and Red Hill over a period of approximately four months.

Our study supports Cowan et al. [31], by providing evidence of the positive effect of cat baiting

on northern quoll activity patterns. Detection rates of northern quolls significantly declined in

the post-bait monitoring session in all four years at the non-baited reference site, whereas

quolls only declined by a significant level in 2019 at the baited treatment site, and slightly

increased in 2016 and 2017. The significant decline in northern quoll detections at the refer-

ence site is likely to be explained by a combination of a higher level of predation by cats,

decreased mating activity in the second half of August and the onset of male die-off in north-

ern quoll populations. Monitoring prior to baiting coincided with the lead-up to mating when

male northern quolls were expected to be relatively active. Post-baiting monitoring corre-

sponded with the northern quoll’s short synchronous mating season, when males start to expe-

rience high mortality due to their poor condition [71]. The decline in northern quoll

detections at the treatment site in 2019 may have been related to the extremely dry conditions

experienced at this time.

According to Hernandez-Santin et al. [62], introduced predators influence the use of land-

scapes by northern quolls at both local and larger scales in the northern Pilbara, with quolls

avoiding the flat and open habitats more frequently used by feral cats. They suggested that

predator avoidance was a key reason for the contraction of the distribution of northern quolls

to rocky areas across northern Australia. In our study, there was evidence that northern quolls

were ranging more widely at the treatment site. This was particularly evident in the last two

years of the study, with new camera detections of quolls in more open lowland habitats typi-

cally frequented by cats [44, 62, 63]. We believe the increased roaming of northern quolls is

likely due to a reduction in cat predation at the treatment site. Relaxed predation pressure has

been shown to directly facilitate range expansion in other meso-predators [72, 73] and there is

evidence that some species utilise more open habitats when predation pressure is reduced [74,

75].

Few studies have examined the response of native prey species to landscape-scale cat baiting

programs, perhaps because the typically threatened species that these programs are designed

to protect are rare and cryptic and it is difficult to quantify population responses. Like our

study, Comer et al. [35] reported benefits to the threatened western ground parrot (Pezoporus
flaviventris) and chuditch (Dasyurus geoffroii) from a cat baiting program in southern WA,

despite also finding no consistent effect of cat baiting on cat detections or site occupancy.

These results suggest that the monitoring of prey populations in response to cat baiting is criti-

cal to clearly demonstrate the net benefit that landscape-scale control of feral cats provides.

Three primary issues that are difficult to address in cat baiting or control programs are: (1)

what proportion of the cat population needs to be removed to conserve and enhance target
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prey populations; (2) what are the threshold densities of cats that prey species can persist with;

and (3) how frequently does long-term baiting or control need to be conducted to maintain

low cat numbers in the face of reinvasion from surrounding areas? Monitoring the responses

of both native prey and cat populations in the long-term would enable these questions to be

addressed.

Future directions

The development of more advanced analytical techniques for camera-trap data suggests that it

is now feasible to derive robust population density estimates for cryptic and wide-ranging spe-

cies based on individual identification [76, 77]. Camera traps can be placed in grid formation

in a landscape to systematically sample areas of interest, then the resulting history of detections

can be used to estimate the abundance of a species using a spatially explicit capture-recapture

(SECR) framework. These models consider both the distribution and movement of individuals

across the landscape in relation to the placement of detection devices, and account for imper-

fect detection [78]. Some studies have already successfully applied this approach to estimating

density by individually identifying feral cats from unique coat markings [61, 63, 76, 77]. Pre-

liminary investigations using the camera trap data captured during this study have been prom-

ising, although there appeared to be very few repeat detections of individual cats, particularly

at the baited treatment site [60]. Habitat modelling based on movements of collared cats could

inform the placement of camera traps by identifying high cat-traffic areas [24, 79].

A more strategic adaptive management approach that accounts for the unpredictable

behaviour of feral cats may be is needed to enhance effectiveness [20, 35]. For example, a com-

bination of aerial and targeted ground-baiting by hand may be more cost effective in the natu-

rally fragmented rocky landscapes of the Pilbara than uniform aerial baiting across the entire

focus area. Aerial application could be used to deliver baits to the lowland plains favoured by

cats. Whereas ground baiting of exploration tracks in the rocky uplands may deliver more tar-

geted cat control in an area that tends to provide refugia for native species but is less preferred

by cats. Additionally, ground baiting in high density feral cat prey locations, such as along

waterways, may increase exposure of feral cats to the baits. Complementing baiting with leg-

hold trapping may help to remove bait-shy individuals [20]. A cost-saving option may also be

to avoid baiting altogether after high-rainfall periods as prey abundance will be high and feral

cats are less likely to take baits.

Conclusion

While our study indicated that landscape-scale baiting using Eradicat1 does not remove all

cats from the target area, there was evidence of a direct knockdown of cats, and evidence of a

positive effect on northern quoll populations. It is likely that the rugged rocky habitat preferred

by northern quolls in the Pilbara buffered them to some extent from cat predation [36, 62, 63].

Hence, the reduction in a relatively small proportion of cats in our study was sufficient to dem-

onstrate a benefit to northern quolls.

Our study also highlighted the importance of quantifying population responses of native

prey species to a baiting program to better understand the conservation benefits it provides,

and to justify the commitment of resources to the control program. Future research should

aim to determine the efficacy of Eradicat1 baiting across a range of topographies, climate

zones and habitats. A more strategic approach to feral cat control by considering additional,

complementary control methods, may be required to maximise the efficacy of feral cat control

programs and thereby improve the conservation outlook for susceptible threatened fauna.
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bait) and post baiting (post_bait) within each year at the treatment (Yarraloola) and refer-
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baited treatment and unbaited reference sites.
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S2 Table. Model selection results for estimating the change in camera detection rates of

feral cats and northern quolls at the treatment (baited) and reference (unbaited) sites
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model parameters (K), maximised log-likelihood values (logLik), AICc values (AICc), AICc

differences (ΔAICc) and Akaike weights are shown.
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and upper (UCL) and lower (LCL) 95% confidence intervals (CI) are also shown. Both models

included camera ID as a random intercept.
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S4 Table. Post-hoc Tukey tests of the difference between pre- and post-baiting detections
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53. Lüdecke D, Makowski D, Waggoner P, Patil I. Assessment of regression models performance. Version

0.5.1 [R package]. 2020 [cited 2020 Dec 1]. Available from: http://easystats.github.io/performance/

54. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara R, et al. Vegan: Community ecology

package. Version 2013:2.0–2. [R package]. 2017 [cited 2020 Dec 4]. Available from: http://cran.r-

project.org/package=vegan

55. Fancourt BA, Augusteyn J, Cremasco P, Nolan B, Richards S, Speed J, et al. Measuring, evaluating

and improving the effectiveness of invasive predator control programs: Feral cat baiting as a case

study. Journal of Environmental Management. 2020: 111691. https://doi.org/10.1016/j.jenvman.2020.

111691 PMID: 33272660

56. Moseby K, Hill B. The use of poison baits to control feral cats and red foxes in arid South Australia I.

Aerial baiting trials. Wildlife Research. 2011; 38(4): 338–349.

PLOS ONE Northern quolls benefit from feral cat baiting

PLOS ONE | https://doi.org/10.1371/journal.pone.0251304 May 7, 2021 18 / 19

https://doi.org/10.1111/cobi.12413
https://doi.org/10.1111/cobi.12413
http://www.ncbi.nlm.nih.gov/pubmed/25362843
http://bom.gov.au
http://asud.ga.gov.au/search-stratigraphic-units/results/16166
https://doi.org/10.1371/journal.pone.0152520
https://doi.org/10.1371/journal.pone.0152520
http://www.ncbi.nlm.nih.gov/pubmed/27655024
http://qgis.osgeo.org
http://www.r-project.org/
https://cran.r-project/org/package=emmeans
https://cran.r-project/org/package=emmeans
http://cran.r-project.org/web/packages/MuMIn/index.html
http://easystats.github.io/performance/
http://cran.r-project.org/package=vegan
http://cran.r-project.org/package=vegan
https://doi.org/10.1016/j.jenvman.2020.111691
https://doi.org/10.1016/j.jenvman.2020.111691
http://www.ncbi.nlm.nih.gov/pubmed/33272660
https://doi.org/10.1371/journal.pone.0251304


57. Doherty TS, Algar D. Response of feral cats to a track-based baiting programme using Eradicat® baits.

Ecological Management and Restoration. 2015; 16(2): 124–130.

58. Wysong ML, Iacona GD, Valentine LE, Morris K, Ritchie EG. On the right track: placement of camera

traps on roads improves detection of predators and shows non-target impacts of feral cat baiting. Wild-

life Research. 2020; 47(8): 557–569.

59. Moseby K, Read J, Galbraith B, Munro N, Newport J, Hill B. The use of poison baits to control feral cats

and red foxes in arid South Australia II. Bait type, placement, lures and non-target uptake. Wildlife

Research. 2011; 38(4): 350–358.

60. Johnson A. Caught out: Using camera traps to assess the effectiveness of feral cat baiting in north-

western Australia. M. Biol. Sc. Thesis, The University of Western Australia. 2020. Available from: http://

library.dbca.wa.gov.au

61. Kreplins T, Kennedy M, O’Leary R, Adams P, Dundas S, Fleming P. Fighting like cats and dogs? Din-

goes do not constrain spatial and temporal movements of feral cats. Food Webs. 2020: e00173.

62. Hernandez-Santin L, Goldizen AW, Fisher DO. Introduced predators and habitat structure influence

range contraction of an endangered native predator, the northern quoll. Biological Conservation. 2016;

203: 160–167.

63. McDonald PJ, Stewart A, Jensen MA, McGregor HW. Topographic complexity potentially mediates cat

predation risk for a critically endangered rodent. Wildlife Research. 2020; 47(8): 643–648.

64. MacKenzie D. Study design and analysis options for demographic and species occurrence dynamics.

Design and Analysis of Long-Term Ecological Monitoring Studies. Cambridge University Press, Cam-

bridge, United Kingdom. 2012.

65. Stokeld D, Frank AS, Hill B, Choy JL, Mahney T, Stevens A, et al. Multiple cameras required to reliably

detect feral cats in northern Australian tropical savanna: an evaluation of sampling design when using

camera traps. Wildlife Research. 2015; 42(8): 642–649.

66. Read J, Bengsen A, Meek P, Moseby K. How to snap your cat: optimum lures and their placement for

attracting mammalian predators in arid Australia. Wildlife Research. 2015; 42(1): 1–12.

67. Jones E, Coman B. Ecology of the feral cat, Felis catus (L.), in south-eastern Australia II.* Reproduc-

tion. Wildlife Research. 1982; 9(1): 111–119.

68. Bengsen A, Algar D, Ballard G, Buckmaster T, Comer S, Fleming PJ, et al. Feral cat home-range size

varies predictably with landscape productivity and population density. Journal of Zoology. 2016; 298(2):

112–120.

69. Meek PD, Ballard G-A, Fleming PJ. The pitfalls of wildlife camera trapping as a survey tool in Australia.

Australian Mammalogy. 2015; 37(1): 13–22.

70. Meek P, Ballard G, Fleming P, Falzon G. Are we getting the full picture? Animal responses to camera

traps and implications for predator studies. Ecology and Evolution. 2016; 6(10): 3216–3225. https://doi.

org/10.1002/ece3.2111 PMID: 27096080

71. Hernandez-Santin L, Dunlop JA, Goldizen AW, Fisher DO. Demography of the northern quoll (Dasyurus

hallucatus) in the most arid part of its range. Journal of Mammalogy. 2019; 100(4): 1191–1198.

72. Newsome TM, Ripple WJ. A continental scale trophic cascade from wolves through coyotes to foxes.

Journal of Animal Ecology. 2015; 84(1): 49–59. https://doi.org/10.1111/1365-2656.12258 PMID:

24930631

73. Prugh LR, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Laliberte AS, et al. The rise of the mesopredator.

Bioscience. 2009; 59(9): 779–791.
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