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The soft organisms in nature have always been a source of inspiration for the design of soft
arms and this paper draws inspiration from the octopus’s tentacle, aiming at a soft robot
for moving flexibly in three-dimensional space. In the paper, combined with the
characteristics of an octopus’s tentacle, a cable-driven soft arm is designed and
fabricated, which can motion flexibly in three-dimensional space. Based on the
TensorFlow framework, a data-driven model is established, and the data-driven model
is trained using deep reinforcement learning strategy to realize posture control of a single
soft arm. Finally, two trained soft arms are assembled into an octopus-inspired biped
walking robot, which can go forward and turn around. Experimental analysis shows that
the robot can achieve an average speed of 7.78 cm/s, and the maximum instantaneous
speed can reach 12.8 cm/s.

Keywords: Octopus’s tentacle, soft arm, cable drive, data-driven model, deep reinforcement learning, bipedal
coordinated walking

INTRODUCTION

With the development of ocean exploration and application, it is easy to cause damage to the
target object and the environment when performing interactive operations on the marine
environment, such as monitoring, biological sampling, seafloor landform and resource surveys,
fishing for marine organisms and valuables, and maintaining marine underwater devices
(Santina et al., 2018; Sinatra et al., 2019). Most autonomous robots with motion and
operation functions are rigid, light-weight manipulators or claws for underwater
transportation, and they are mainly operated for rough operations (Satja et al., 2018).
Existing technology cannot cope with the vast and harsh environments that need monitoring
and sampling the most. Compared with rigid and multi-joint robots, soft robots have continuous
flexible deformation and manipulation capabilities, which are closer to biological softness. Given
this, soft robots are used to aid in addressing the challenges posed by abyssal and wave-
dominated environments (Aracri et al., 2021).

The appearance and movement characteristics of soft organisms in nature have always been a
source of inspiration for the design of sophisticated soft arms (Nesher et al., 2020). When
scientists studied the octopus’s tentacle, it was found that their taper angles range from 3° to
13.5°. A soft arm with a smaller taper angle can be bent into a larger curved shape, which can
grasp lightweight items with a higher curvature more easily. A soft arm with a larger taper angle
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has a relatively smaller degree of bending and can grasp heavier
and larger items with a lower curvature more easily (Xie et al.,
2020).

The driving modes of soft manipulator are divided into cable
drive, fibre-reinforced actuator, fluid-elastic pneumatic drive,
variable stiffness pneumatic drive and intelligent biomimetic
materials (Lu et al., 2020). The method of cable driven is easy to
implement, easy to control and can transmit power over a long
distance, and the inertia is also small, so this method is used to
design the soft arm in this paper. There are two commonly used
cable-driven methods including 4-cable drive and 3-cable drive,
both of which can realize the three-dimensional drive of the soft
arm. The driving cables of the former are symmetrically
distributed in the soft arm at 90°, and the driving cables of
the latter are symmetrically distributed in the soft arm at 120°.
Because the 4-cable drive has an extra driving cable,
theoretically the bearing capacity is greater, and the control
will be more accurate. However, the 4-cable drive adds a
servomotor to the 3-cable drive, and an extra cable is needed
in the soft arm, which takes up more space.

The traditional modeling methods of the soft arm include
analytical modeling using the physical parameters of the soft arm.
The most used method is the piecewise constant curvature
method proposed by Ian Walker. This method is simple and
practical and has a wide range of applications (Lafmejani et al.,
2020). At the same time, to improve the accuracy of modeling,
many scholars have also proposed more complex modeling
methods, such as the variable curvature method and the
Cosserat rod method. A unified Cosserat-based formulation
derived by resorting to a coupled approach that comprises of a
model of the structural dynamics of the cephalopod-like elastic
bladder and a model of the pulsed-jet thrust production is
presented and tested by the robotics artefact developed by the
authors sucessfully (Renda et al., 2015; Renda et al., 2018). A
novel generation of macroscale underwater propellers is
designed, and a Cosserat-based model is presented, accurately
describing, and predicting the kinematic and the propulsive
capabilities of the proposed solution (Armanini et al., 2021).
However, due to the large amount of calculation and the number
of parameters that need to be identified, these methods have not
obtained significant performance improvement, so they are not
widely used (Kim et al., 2021). Traditional modeling methods are
difficult to build accurate models due to internal nonlinear
interference and lack robustness and portability between
different prototypes. Therefore, researchers turned their
attention to machine learning, trying to use machine learning
methods to build and control the soft arm model. As we all know,
machine learning algorithms will effectively solve nonlinear
problems in various fields. The neural network is first used in
learning the forward kinematic model to solve the control
problem of the cable-driven soft arm (Giorelli et al., 2013). A
model-free control method based on reinforcement learning is
proposed and this method is implemented on a multi-segment
soft arm on a two-dimensional plane (You et al., 2017; Jiang et al.,
2020). The prototype experiment verified the effectiveness and
robustness of the control strategy and designed a simulation
method to accelerate the training process. An octopus-inspired

robot combines swimming and 4-leg crawling locomotion is
designed and a Least Squares-based method coupled with a
Genetic Algorithm-based method is employed for two phases,
respectively (Giorgio-Serchi, et al., 2017). A systematic method
for soft robot underwater locomotion using a controller based on
deep reinforcement learning as a framework is developed and
verified to create control inputs. However, it still didn’t expand
the working space to three dimensions (Li et al., 2021).

In this paper, combined with the appearance and movement
characteristics of the octopus’s tentacle, a more streamlined 3-
cable cable-driven soft arm is designed and fabricated, and the
soft arm model is established through a data-driven modeling
method. At the same time, the control method of deep
reinforcement learning is extended to three-dimensional space,
to realize the straight walking, left turn and right turn of the
biped robot.

DESIGN AND FABRICATION OF THE
SOFT ARM

Imitating themovementmechanism and structural characteristics of
the octopus tentacles, a soft armwas designed as Figure 1A. Its distal
radius is 15 mm, proximal radius is 5 mm and length is 200 mm.
The taper angle of the soft arm is 5.71°. It can achieve a bending
situation similar to an octopus tentacle, with a small degree of
bending at the proximal end and a large degree of bending at the
distal end.

The mold of soft arm is designed as Figure 1B. The inner
diameter of the two ends and length of the mold are the
dimensions of the soft arm mentioned above. Lay the cables
respectively in two 3D-printed molds, pour silica gel, demold
after curing and assemble. As is shown in Figures 1A,C platform
to fix servomotors and soft arm is designed, and three
servomotors are symmetrically distributed at 120° with respect
to the center. The assembled soft arm is shown in Figure 1D, and
ten marking points are marked equidistantly on the central axis.

Three driving cables are respectively controlled by three
waterproof servomotors. By setting different pulse width x of
the input signal of the servomotor, it can be controlled to achieve
different rotation angles. The type of the servomotor is JX6621,
the pulse period is 20 ms, and its rotation range is 180°. The
corresponding relationship between the servomotor parameter x
(0.5ms − 2.5ms) and rotation angle of the servomotor θ
(0 − 180°) is as follows:

θ � −π
2
x + 5π

4
. (1)

According to Figure 1E, the relationship between the pulling
length of the cable ΔL and the rotation angle θ of the servomotor
can be obtained through the law of cosine:

ΔL � l1 − l0, (2)
l1 �

������������������������
r2 + (r + l0)2 − 2r(r + l0)cosθ

√
, (3)

where r � 16mm is the radius of the turntable driven by the
servomotor, l0 � 15mm is the distance from the fixed place of the
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servomotor of the cable to the hole of the distal end of the
corresponding soft arm for cable when not pulling, and l1 is that
distance when pulling the cable.

Combining the above three formulas, the parameters of the
servomotor x can be converted into the pulling length of the
cable ΔL (Figure 2). When the parameter of the servomotor
changes from 2.5ms to 0.5ms, the pulling length of the cable
ranges from 0mm to 32mm.

MODELING AND CONTROL OF THE
SOFT ARM
Modeling of the Single Soft Arm Based on
Data-Driven Model
The most important part of training the neural network is
collecting valid data. In this paper, we collect the data in the
real-world by using camera. The advantage of this method is that
it is easier to acquire high-quality position data (px, py, pz) of
the points in the soft arm. Aiming at the three-dimensional
modeling requirements of the soft arm, ordinary monocular
cameras can only obtain two-dimensional image information,
which cannot effectively meet the needs of obtaining position
depth. Therefore, a binocular camera is used. The data-collecting
system hardware consisted of a binocular camera, a calibration
board, a notebook computer, and a supporting structure. After
the calibration is completed, use the binocular camera to shoot
the soft arm, and then use the SGBM algorithm to perform
binocular matching to generate a depth map. At this time, the
three-dimensional coordinates of the marker points can be
extracted as Figure 3.

A data-driven model based on the Keras library of Python is
built. Because there are three cables, the parameters of the
servomotor 1, the servomotor 2 and the servomotor 3 are set
as the input x1, x2, x3 of the designed neural network. The
hyper-redundancy of the octopus and the lack of limitation by
the number of skeletal joints make the representation of
information in body coordinates unrealistic (Nesher et al.,
2020). Another method is needed to represent the posture
information of the soft arm. Because the soft arm does not

FIGURE 1 | Design and fabrication of the soft arm. (A) Structure design of a cable-driven soft arm (B) The mold of the soft arm (C) The mold for bracket (D) The
assembly of the soft arm (E) The link relationship of the driving cable.

FIGURE 2 | The relationship between the parameter of the servomotor
and the pulling length of the cable.
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have clear joints and the body deforms continuously during
moving, the movement of a point on the soft arm at a certain
time and the movement in a short interval near that point can be
regarded as approximately the same. Therefore, a series of
discrete points are selected as the control object on the soft
manipulator. The experimental results also prove that this
selection can meet the purpose of modeling. To facilitate the
calculation, when seeking the constant curvature kinematics
model, the manipulator is divided into n constant curvature
sections, and the feedback point is set at the cross section of
each constant curvature section (Ni et al., 2017). Therefore,
pushpins are used to mark five feature points on the vertical
center line of the soft arm at equal distances to feedback the
degree of bending. Based on the above preprocessing, the output
layer of the neural network is composed of 15 neurons
(px1, py1, pz1, . . . , px5, py5, pz5), which in turn are the
three-dimensional coordinates of five feature points.

To enable the network to fully learn the model features,
gradually increase the number of hidden layers and the
number of neurons. The accuracy of the network reaches a
performance bottleneck when there are seven layers and 64
neurons in each layer, and then it tends to be saturated.
Therefore, the hidden layer of the neural network is designed
(Figure 4).

In this paper, Tanh function is selected as the activation
function, the mean square error function is used as the
training loss function, and Adam is used as the optimizer to
train the above-mentioned deep neural network.

First, control the servomotor to traverse the reachable space of
the entire soft arm with the same interval, and use the binocular
camera to capture the bending shape of the soft arm each time,
and save the soft arm shape corresponding to each action. Then,
extract the morphological characteristics of the soft arm, and the
available image data are screened. Finally, the pulling length of
the cables are used as input, and the morphological feature data of
the soft arm are used as the output to train the data-driven model
of the soft arm, and the simulation environment of the soft arm is
obtained. When training the neural network through the random
gradient descent method (SGD), a data set of images of the soft
arm is constructed, and 85% of images are randomly selected as
the train set of the neural network, and 15% of images are used as
the test set. This method solves the problem of difficult modeling
of the soft arm and establishes the multi-layer perceptron model
of the soft arm through the data collected in the experiment.

To reduce the data dimension and speed up the training speed,
the data set here refers to the pose information of the soft arm when
a certain driving cable is pulled alone to exhibit different degrees of
bending. As shown in Figure 5, one driving cable is pulled

FIGURE 3 | Image processing of the posture of the soft arm.

FIGURE 4 | Structure design of the neural network of the soft arm. FIGURE 5 | Simplified description of the data set.
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individually to make it bend 120° to each other to form a motion
primitive.

As shown in Figure 6, the trajectory map (red) before training is
slightly disorganized, and it cannot be clearly seen that the bending

directions are 120° from each other when pulling one cable. The
trajectory map (blue) after training effectively eliminates abnormal
pose information, and more intuitively shows the movement
trajectory characteristics of the soft arm under the 3-cable drive.

FIGURE 6 | Comparison of the trajectory of the soft arm before and after training.

FIGURE 7 | Accuracy of train set and test set of the trajectory of the
soft arm.

FIGURE 8 | The training process of the soft arm in a certain round.

FIGURE 9 | The rate of success in the training process of the soft arm.
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As is shown in Figure 7, the experimental results of the space
soft arm (that is, the soft arm in the air) verify the validity of the
established inverse kinematics model and the rationality of the
soft arm positioning control method based on this model.

We also accomplish the same experiments under the water
for the movement of the space soft arm and the underwater soft
arm, we pulled the drive cable with the same step to complete
two sets of experiments. The experimental results show that the
data-driven model is also suitable for the underwater movement
of the soft arm, but the time that underwater soft arm completes
the bending action is longer than the time for the space soft arm
to complete the action. When the same servomotor control
parameters are executed at the same time, the static bending
degree of the underwater soft arm after the completion of the
action is greater than the static bending degree of the space soft
arm. When the drive cable is pulled with the same step, the data
distribution is dense at both ends and sparse in the middle,
which is synchronized with the change in the pulling length of
the cable.

The Single-Arm Control of
Three-Dimensional Deep Reinforcement
Learning
The idea of reinforcement learning (RL) comes from zoology
theory and conditioning theory. It is a kind of bionic algorithm
that people get through the study of animal learning. RL relies on
exploratory learning to give robots the ability to learn adaptively
and can solve the problems of complex design process, and lack of
robustness and autonomy in traditional control algorithms.

In this paper, Deep Q-Network (DQN) in RL is used as the soft
arm control algorithm. DQN is the combination of Q-Learning
and neural network, turning the Q table of Q-Learning into
Q-Network. The use of deep neural network to approximate the
Q table enables Q-Learning not only to process continuous state
spaces, but also to have a certain generalization ability, which
effectively enhances the application range of traditional
Q-Learning (Zhang et al., 2015). Q-learning is a dynamic
programming method based on value iteration. The function
follows the following update formula:

Qt(st , at) ← Qt(st , at) + α(rt + γmaxaQt+1(st+1, a) − Qt(st , at)),
(4)

whereQt(st, at) is the Q function, r is the reward, α is the learning
rate, and γ is the attenuation coefficient.

In this paper, the parameters of training are shown in
Supplementary Table S2. The posture control of the soft arm
is a process of continuous exploration. To improve the training
effect of deep reinforcement learning, it is necessary to design an
appropriate reward function (Supplementary Table S3) to adjust
the control strategy and an end sign of the current training
around. When the error of the posture of the soft arm is smaller
than the set threshold, or the number of steps exceeds the set
maximum running times, this round will be stopped.

The DQN training algorithm proposed is based on the greedy
strategy. When training the neural network each round, a set of

initial poses and a set of end poses are randomly selected from the
data set. At the beginning, random actions are selected with a
greater probability to enhance the DQN to explore the
surroundings. Late in training, the optimal control action is
selected with a greater probability. It is helpful to jump out of
the local optimum and find the global optimum. The training
process of a certain round is as follows, the line connected by
orange marking points is the target posture of the soft armmodel,
and the line connected by blue marking points is the current
posture of the soft arm model. The current posture keeps getting
closer to the target posture through training, as shown in
Figure 8.

The rate of success in the simulation training process is shown
in Figure 9. As the number of learning increases, the rate of
success fluctuates and eventually stabilizes at 71%. Therefore, the
effectiveness of this DQN-based reinforcement learning method
in controlling the posture of the soft arm has been verified in the
simulation environment.

MOTION COORDINATION AND GAIT
DESIGN OF A BIPEDAL WALKING SOFT
ROBOT BIO-INSPIRED BY OCTOPUS
The Design of the Octopus-Inspired Soft
Robot
Among different locomotion, friction-based gaits are among the
slowest forms of locomotion employed, whereas running,
jumping, and flying are among the fastest. Walking and
swimming are intermediate between these border categories
(Calisti et al., 2017). An underwater legged locomotion by
means of a robotic octopus-inspired prototype and its
associated model was studied (Calisti et al., 2015). And the
mass of the robot is 0.755 kg and the length of the legs is
0.3 m. Finally, the robot can achieve an average speed of
4.2 cm/s.

In this paper, a biped walking (or running) soft robot is
designed as Figure 10A. The height of the robot is 0.2 m and
the mass of that is 0.4 kg. The length of the legs is 0.15 m and
the taper angle of that is 7.63°. The taper angle of the soft arm
that composes the soft robot is larger than the single soft arm in
the previous experiment to support the robot platform better.
And two same balloons are equipped in a symmetrical position
on the robot platform to make the robot balance. When
conducting the robot underwater bipedal walking
experiment, the robot needs to be balanced in the vertical
direction. In the vertical direction, the robot is subject to its
own gravity and buoyancy by these balloons with a radius of
3.5 cm.

The bipedal walking method of an octopus is different from
the common crawling method. The bipedal walking process is
shown in Figure 11. RU means lifting the right leg, RD means
putting down the right leg, LUmeans lifting the left leg, LDmeans
putting down the left leg, SS means single support, and DS means
double support (Wu et al., 2021).

Inspired by the biped walking gait of Amphioctopus
marginatus Octopus (Figure 11), the walking gait of the
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biped robot is planned. The walking gait relies on the effective
control of the six drive cables in the two arms. The distribution
position of these cables is shown in Figure 10B. Three drive
cables labeled 1, 2 and 3 control one arm, and the other three
drive cables labeled 4, 5 and 6 control the other arm. The
pulling direction is all perpendicular to the outside, and the
arrow is the bending direction of the soft arm when the
corresponding drive cable is pulled. At the same time, the
bending direction of the No. 1 drive cable is designated as the
front side, that is, the forward direction.

Taking a single arm as an example (Figure 12), under the same
parameter conditions, the effect of pulling No. 2 and No. 3 at the
same time is the same as the effect of pulling No. 1 only.When the
drive cable is pulled 32mm, the bending angle is 25°, and the
direction difference is 180°.

In the same way, for biped robot, the effect of pulling No. 5 and
6 at the same time is the same as the effect of pulling No. 1 only,
and the direction is also the same.

The Gait Design of Straight Walking of the
Octopus-Inspired Soft Robot
The original state is that the robot’s legs are slightly bent forward,
and both legs are in contact with the bottom of the water tank.

Three individual actions of single arm are ordered as
following.

Action 1: Stretch No.1 drive cable and loose No.2 and No.3
drive cables to make one soft arm bend forward. Action 2: Loose
No.1 drive cable and keep No.2 and No.3 drive cables as last
action to make the soft arm contact with the ground. Action 3:
Stretch No.2 and No.3 drive cables and loose No.1 drive cable to
make one soft arm bend back.

According to the label of the six cables in Figure 10B, the
motion cycle of the robot’s straight walking is ordered into four
sequences as following.

Action 1: The soft arm controlled by No.1~3 drive cables (the
No.1 soft arm) bends forward and leaves the ground, and the soft
arm controlled by No.4~6 drive cables (the No.2 soft arm) relaxes
and keeps in contact with the ground. Action 2: The No.1 soft arm

FIGURE 10 | (A) The assembly of the octopus-inspired soft robot (B) Distribution of double-arm drive cables, tension direction and bending direction.

FIGURE 11 | Bipedal locomotion stride for Amphioctopus marginatus Octopus
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keeps the previous stage of bending, and the No.2 soft arm bends
backward and pushes the ground to generate and forward thrust,
which pushes the soft robot forward by half a step. Action 3: The

No.1 soft arm relaxes and returned to contact with the ground,
and the No.2 soft arm bends forward and leaves the ground.
Action 4: The No.1 soft arm bends backward and pushes the

FIGURE 12 | Bending comparison of single arm. (A) Pull the No. 1 drive cable by 32 mm (B) Pull the No. 2 and 3 drive cables by 32 mm respectively.

FIGURE 13 | Frame-by-frame analysis of the video of the straight walking on the flat ground.
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ground to generate forward thrust, which pushes the robot
forward to complete a step, and the No.2 soft arm keep the
state of the previous stage.

When the robot goes forward, the drive status of six cables is
shown in Supplementary Table S4 briefly to implement the
above actions. “F” represents stretching the cable to make one soft
arm bend forward, “B” represents stretching the cable to make
one soft arm bend back, and “O” represents the original state or
last state.

The robot was placed in a water tank with a length of 80 cm, a
width of 45 cm, and a depth of 45 cm, so that its body was
completely submerged in water, and its soft arms were kept in
contact with the flat ground under the water. According to the 6-
cable control commands corresponding to the robot’s straight
walking gait planned above, the underwater bipedal walking
experiment was carried out (Figure 13).

Using the 6-cable driving control commands corresponding to
the straight walking gait of the robot planned in Supplementary
Table S4, adjust the motion period every 0.1 s between 0.3 and
1 s, and complete ten walking experiments at each period. Record
the time and distance in turn to calculate the walking speed of the
robot under the corresponding motion period. And then, turn the
motion period into motion frequency to express it more formally.
According to the law of 3σ, the average speed after excluding the
abnormal value is obtained as the average walking speed at
different motion frequency (Supplementary Table S5). As is
shown in Figure 14, the motion velocity of the biped robot is
approximately positively proportional to the frequency.

Based on the image information captured by the camera, the
machine vision algorithm is used to extract the straight walking
trajectory of the center of mass of the robot in an underwater flat
environment, as shown in Figure 15. The forward direction of the
robot is the positive direction of the X-axis. Overall, the robot has
a good straight walking gait, and the movement is relatively

stable. In the water tank environment with a length of 0.8 m, the
center of mass of the robot has experienced a total of 11 up-and-
down motion links during the straight-line walking process, that
is, 5.5 motion cycles. Among them, the average peak-to-peak
value of the robot’s center of mass fluctuation is 0.65 cm, and the
average forward distance of each motion cycle is 14.5 cm.

The velocity changes in the horizontal and vertical directions
when straight walking on the underwater flat ground. The
movement speed fluctuates regularly in Figure 16.

In each motion cycle, the maximum instantaneous speed of
the robot in the x-axis is generated at the highest point of the
motion trajectory. The robot can achieve an average speed of
7.78 cm/s, and the maximum instantaneous speed can reach
12.8 cm/s.

To test the locomotion ability of the bionic octopus biped
walking robot in a complex environment, and to reflect the
robustness of its walking action underwater, and to be closer
to the real seabed environment, a thickness of 1~2 cm sand was
laid at the bottom of the original water tank. According to the 6-
cable drive control commands corresponding to the straight
walking gait of the robot planned in the previous section, and
the motion period of a single soft arm of the robot is set to 0.3 s,
the underwater bipedal walking experiment is carried out in a
sandy underwater environment. Figure 17 shows the running
state of one motion period of the robot. After many experiments,
the average speed of the robot in the underwater sand
environment is 5.3 cm/s.

According to the captured motion image information of the
robot, the straight walking trajectory of the center of mass of the
robot in the underwater sandy environment is extracted, as
shown in Figure 18. Although the sandy environment has a
certain impact on the robot’s bipedal straight walking, in general,
the fluctuation of the motion state is still relatively stable. In the
underwater sandy environment with a length of 0.8m, the center
of mass of the robot has experienced a total of 16 up-and-down

FIGURE 14 | The relationship between motion velocity and the
frequency.

FIGURE 15 | The straight walking trajectory of the center of mass of the
robot on the flat ground.
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motion during the straight walking process, that is, eight motion
cycles. Affected by the uneven height of the sandy ground, the
average peak-to-peak value of the robot’s center of mass
fluctuation increases to 0.95 cm. Affected by the resistance of

the sandy ground, the average forward distance of the robot in
each motion period is reduced to 10 cm compared to the flat
environment. Despite some resistance and slippage, the motion of
the robot is overall stable in the sandy ground. There is a

FIGURE 16 | The velocity of the robot in horizontal and vertical directions when straight walking on the underwater flat ground.

FIGURE 17 | Frame-by-frame analysis of the video of the straight walking on the sandy ground.
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fluctuation of the motion trajectory of the robot because of the
sand laying problem.

SUMMARY AND OUTLOOK

According to the motion characteristics of the octopus’s tentacle,
a data-driven model between its parameter control and the three-
dimensional posture of the soft arm is established based on the
TensorFlow framework. And DQN strategy in deep
reinforcement learning is used to train the model to control
the actual posture of the soft arm. This modeling and control
method are used in the octopus-inspired biped robot, and the
walking gait of the robot is designed. By observing and analyzing
multiple experiments of underwater biped walking experiments
in the water tank, the rationality of the gait design of the robot is
confirmed. The average speed of the bipedal octopus walking
robot can achieve an average speed of 7.86 cm/s when straight
walking, and the maximum instantaneous speed can reach
8.5 cm/s. At the same time, it can also be fast and stable when
turning around.

Compared with other underwater robot, the main advantages
of the robot in this paper are as follows:

1) The crawling mechanism, manipulating arm and swimming
mechanism of the POSEIDRONE robot (Calisti et al., 2015)
are independent and decoupled from each other, which
reduces the difficulty, but the complexity is high.

2) What’s more, another bipedal walking robot (Portilla et al.,
2019) is hydraulicly driven, and the SLIP model of land

bipedal walking is extended and applied to underwater
bipedal walking control.

3) The structure of SILVER and SILVER2 robots is a kind of
legged rigid structure which only have two degrees of freedom.

Compared with the above three kinds of legged robots, this
paper adopts the bionic octopus flexible arm to operate and
bipedal walking respectively. Compared with the rigid structure,
it fits more closely with the environment, has less impact on the
environment, and is more friendly.

In the future, cameras and IMUmodules could be added to the
platform to realize the underwater target recognition and
autonomous navigation functions of the bionic octopus robot.
Then, it could be applied in more work scenarios and achieve
greater value.What’s more, the robustness to impact disturbances
of the robot is needed to improve. We will learn from that a new
neural network enhanced control system that stabilizes a three-
dimensional simulated biped model of a human wearing an
exoskeleton is presented (Liu et al., 2021). Results show that it
stabilizes human/exoskeleton models and is robust to impact
disturbances.
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FIGURE 18 | The straight walking trajectory of the center of mass of the
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