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Molecular identification of spiders 
preying on Empoasca vitis in a tea 
plantation
Ting-bang Yang1, Jie Liu1, Long-yu Yuan1, Yang Zhang1, Dai-qin Li3, Ingi Agnarsson2 &  
Jian Chen1

Biological control using predators of key pest species is an attractive option in integrated pest 
management (IPM). Molecular gut analysis can provide an estimation of predator efficiency on a given 
prey. Here we use a combination of various experimental approaches, both in field and lab, to identify 
a potential biological control species of the common pest of commercially grown tea, Empoasca 
vitis (Göthe) (Hemiptera), in a Chinese plantation. We collected 2655 spiders from plantations and 
established relative abundances of spider species and their temporal overlap with the pest species in tea 
canopy. We analyzed DNA from 1363 individuals of the most common spider species using targeted RQ-
PCR to quantify the potential efficiency of spiders as a predator on E. vitis. The results showed that, in 
the field, the jumping spider Evarcha albaria was the most abundant, had the closest temporal overlap 
with the pest, and frequently fed on it. Therefore, this spider may play a key role in pest suppression. 
The present study demonstrates the potential of our experimental approach to study predator-prey 
relationships in taxa that do not lend themselves to morphological identification of gut contents, such 
as spiders.

Tea, as one of the world’s most popular beverages and is an important cash crop that is cultivated worldwide1–4, 
with China, as the largest current producer4. Its popularity, in part, stems from its richness in polyphenols that 
may have various health benefits such as reduce risk of cancer2, 5. The yield and quality of tea from plantations is 
negatively impacted by several tea pest species, putting a premium on effective means of control6. Direct applica-
tions of pesticides applied to tea is the most widely used and effective pest control6, however, this method has a 
series of negative side effects, including pesticide residues, pesticide resistance in important pest species, damage 
to natural pest enemies, and others7–9. Hence, emphasis on biological control is increasing, focusing on the pres-
ervation and introduction of natural enemies like predators, parasitoids and pathogens for suppression of pests 
to commercially tolerable levels6, 10.

Spiders are among the most abundant predators of insects in terrestrial ecosystems11. Nyffeler & Birkhofer12 
have estimated that the annual prey kill of the global spider community is in the range of 400–800 million metric 
tons. In tea plantations, spiders, ladybird beetles, assassin bugs, lacewings, and praying mantises, are the pre-
dominant predators on pest species13. Spiders, in particular, play key functional role. They are the most abundant 
predators with dominance ranging from 65.0% to 97.8% in Chinese tea plantations14. Spiders have been shown 
to play an important role in biological control through analyses of population dynamics between the spiders and 
pests in the field15–20. However, field evidence is often lacking for if, and how effectively, spiders prey on the pest 
of concern. Detailed studies of the actual prey-predator interactions between the spiders and the pests and efforts 
to quantify predator efficiency are thus important to better understand the roles spiders might play in biological 
pests control21, 22. The dominance of predators, temporal and spatial overlap between predators and pests, preda-
tion rates, and prey numbers consumed per predatory individual, are often used as indicators of which predators 
control pests23–28. One of the challenges here is to identify prey post-predation. Spiders liquefy their food exter-
nally before ingestion, ruling out morphological identification of gut contents. PCR methodology has been shown 
to be useful in detecting the presence prey species in spider guts29, however, this does not allow good estimation 
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of predator efficiency on a given prey. Real-time quantitative PCR (RQ-PCR) offers additional information on 
the abundance of target DNA of prey tissue digested in predators’ gut and thus can yield an estimate of relative 
importance of predators29.

As discussed in King et al.29, RQ-PCR can quantify single target prey species DNA copies in predator guts, 
using a single primer. The predation rates and prey numbers consumed per predatory individual are then esti-
mated by the positive rates and copy numbers of target fragment of prey remains in the gut of predators, respec-
tively, offers a qualitative assessment of predation in the field. To date, TaqMan RQ-PCR has already been used 
to amplify and quantify target DNA of the prey remains in predators’ gut25, 28, 30, 31. Using a pair of primers and a 
fluorogenic oligodeoxy-nucleotide probe, which is specific for the target prey, the target DNA of the prey remains 
in predators’ gut can be quantified. Short prey amplicons (usually <300 bp) are optimal to target the already 
fragmented DNA ‘post digestion’ in the predator32, 33. The mitochondrial cytochrome oxidase subunit I (mtCOI) 
has proven useful as a marker due to the abundance of copies of this gene, species specificity, and richness of data 
available in public databases29.

Empoasca vitis (Göthe) (Hemiptera) is one of the most damaging tea pests in China that can seriously decrease 
tea yield by sucking juices out of the tender tea-leaf directly34–36. Gao et al.37 studied the predation of Evarcha 
albaria (L. Koch) (Araneae) on E. vitis under laboratory conditions. The results showed that both male and female 
spiders preyed on the nymph and adult of E. vitis. However, the role of spiders as predator on E. vitis in the field 
is unknown. Spiders are highly variable in hunting strategies, habitat preferences, and activity periods, which 
combine to make the group potentially highly efficient in controlling certain groups of pests16. In tea plantations, 
many spider species hunt prey in the canopies of tea38, indicating relatively high spatial-sympatry with the tea 
pests. Here we aim to screen the main predators of E. vitis in the canopies of tea, testing the spider species as 
potential biological control agents of E. vitis. Therefore, the present study focus mainly on three aspects: (1) estab-
lishing the relative abundances of spider species; (2) determining the temporal overlap between dominant spider 
species and the pest species in tea canopy; (3) providing an approximately quantitative assessment of relative 
efficiency of spiders as a predator on E. vitis using RQ-PCR.

Results
The abundances, population fluctuations, and temporal overlap of dominant spider species 
and E. vitis in the field.  In total 2655 (including 885 adults and 1770 juveniles) individual spiders were col-
lected belonging to 50 species. Among them, Evarcha albaria (L. Koch) (Salticidae), Xysticus ephippiatus Simon 
(Thomisidae), Meotipa pulcherrima (Mello-Leitão) (Theridiidae) and Coleosoma octomaculatum (Bösenberg & 
Strand) (Theridiidae) (Fig. 1) were the most dominant in the canopies of tea with relative adult abundances of 
43.2%, 10.7%, 8.5% and 8.4%, respectively (Table S1). We focus on these four spider species in further analyses. 

Figure 1.  Four dominant spider species in the canopies of tea in the study area. (a) E. albaria (male); (b) X. 
ephippiatus (female); (c) M. pulcherrima (female); (d) C. octomaculatum (female). Photos taken by first author.

http://S1


www.nature.com/scientificreports/

3SCIENtIfIC Reports | 7: 7784  | DOI:10.1038/s41598-017-07668-w

Abundances of dominant spider species (E. albaria, X. ephippiatus, M. pulcherrima and C. octomaculatum) and 
the pest E. vitis are shown in Fig. 2 and Table S2. Abundances show seasonal fluctuation with E. vitis being 
most abundant from May to September, E. albaria from May to October, X. ephippiatus from June to October, 
M. pulcherrima from May to September and C. octomaculatum from March to May. The temporal overlap val-
ues between spider species and E. vitis was 1.28, 1.25, 1.23 and 1.02, respectively. The largest overlap values are 
between E. albaria and E. vitis.

Specificity of primers.  The primers (ZJ-F and ZJ-R), using TaqMan RQ-PCR, successfully amplified E. vitis 
DNA (146 bp), but did not amplify predators, 16 other potential prey species, or tea-leaf (Table 1).

Standard curve, sensitivity and reproducibility of TaqMan RQ-PCR.  The sensitivity of the assay 
was evaluated using 10-fold serial dilution of all stock plasmids ranging from 1.92 × 109 to 1.92 × 10° copies/
µL. The result showed that the test could detect as few as 192 copies of the target-fragment (Table 2) and there 
was a strong linear relationship between the Ct values and the log10 of the input number of copies (R2 = 0.9992). 
The slope and intercept of standard curve was −3.34 and 45.37, respectively. Amplification efficiency was 97.6% 
(Fig. S1). Evaluating reproducibility of the assay between three sub-samples, the coefficients of variation were 
<5% (0.20–1.39%), which indicated that the assay was highly reliable and reproducible (Table 2).

Efficiency of molecular marker in detecting E. vitis remains in spider guts.  TaqMan RQ-PCR 
was employed to qualitatively and quantitatively detect the genomic DNA of four adult spider species at vari-
ous time periods after consuming one adult E. vitis. The results show that all spiders that consumed prey were 
positive for E. vitis DNA at t = 0 h, decreasing to 60% (E. albaria), 0 (X. ephippiatus), 60% (M. pulcherrima) and 
40% (C. octomaculatum) after 60 h of digestion. After 72 h of digestion, the positive rate decreased to 0 (Table 3). 
The CNTF (copy numbers of target fragment) of 0 hour digestion was 1.23 × 107 ± 9.88 × 105 (E. albaria), 
9.77 × 106 ± 2.55 × 106 (X. ephippiatus), 1.49 × 107 ± 7.01 × 106 (M. pulcherrima) and 4.50 × 107 ± 3.07 × 106 (C. 
octomaculatum).

Qualitative and quantitative evaluation of predation in the field.  Genomic DNA of all spiders 
(including juvenile and adult) were detected by TaqMan RQ-PCR. The results show that the PRTF (positive rates 
of target fragment) in spiders gut was 54.2% (E. albaria, N = 943, male: 160, female: 222, juvenile: 561), 30.1%  

Figure 2.  Population dynamics of E. vitis and four dominant spider species in the canopies of tea. Values 
presented as mean ± SD (N = 3). Temporal overlap values (TOV) between spider species and E. vitis was 
estimated by following measure, developed by Hurlbert61: = ∑ =Lij S P Ph

S
ih jh1 ; where, Lij is the temporal and 

spatial overlap measure of species i on species j, S is the unit number of resource sequence, Pih is the proportion 
that resource h is of the total resource that species i utilizes and Pjh is the proportion that resource h is of the 
total resource that species j utilizes. E. vitis: EV; E. albaria: EA; X. ephippiatus: XE; M. pulcherrima: MP; C. 
octomaculatum: CO.
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(X. ephippiatus, N = 176, male: 25, female: 70, juvenile: 81), 17.5% (M. pulcherrima, N = 114, male: 24, female: 50, 
juvenile: 40) and 4.6% (C. octomaculatum, N = 130, male: 28, female: 47, juvenile: 55), and it showed significant 
differences between those of E. albaria and any other species (Table 4). Correspondingly, the average of residual 
minimum number of E. vitis in individual spider gut was 0.63 ± 0.05, 0.05 ± 0.02, 0.04 ± 0.02 and 0.02 ± 0.01, 
respectively, and it also showed significant differences between those of E. albaria and any other species (Table 4).

As shown in Figs 3 and 4, the PRTF in E. albaria guts was significantly greater than those of any other pred-
ators, during the months when E. vitis was most abundant in, May, June, July and September. The residual 

Order Family Species

Hemiptera

Aphididae Toxoptera aurantii

Coccidae Ceroplastes sp.

Aleyrodidae Aleurocanthus sp.

Miridae
Lygocoris sp.

Cyrtorrhinus sp.

Lepidoptera

Geometridae

Ectropis obliqua

Scopula sp.

Buzura sp.

Lymantriidae Euproctis pseudoconspersa

Gracillariidae Caloptilia sp.

Pieridae Pieris rapae

Coleoptera
Curculionidae Myllocerinus aurolineatus

Elateridae Agriotes sp.

Diptera Syrphidae Syrphus sp.

Orthoptera Tettigoniidae Holochlora nawae

Thysanoptera Thripidae Scirtothirips sp.

Table 1.  The species which was chosen for cross reactivity to the assay.

CNTF Ct CV (%)

1.92 × 109 14.20 ± 0.10 0.70

1.92 × 108 17.25 ± 0.24 1.39

1.92 × 107 20.51 ± 0.14 0.68

1.92 × 106 23.80 ± 0.12 0.50

1.92 × 105 27.40 ± 0.20 0.73

1.92 × 104 30.33 ± 0.06 0.20

1.92 × 103 33.39 ± 0.15 0.45

1.92 × 102 37.29 ± 0.09 0.24

1.92 × 101 — —

1.92 × 100 —

Table 2.  The sensitivity and reproducibility of TaqMan RQ-PCR. Values presented as mean ± SD (N = 3). The 
assay was evaluated using 10-fold serial dilution of all stock plasmids ranging from 1.92 × 109 to 1.92 × 100 
copies/µL. Ct stands for RQ-PCR cycle number where fluorescence curve crosses threshold line. CV stands for 
coefficients of variation.

Hours 
post-
feeding 
(h)

Number of 
samples

The PRTF (%)

E. albaria X. ephippiatus M. pulcherrima C. octomaculatum

0 5 100 100 100 100

12 5 100 100 100 100

24 5 100 100 100 100

36 5 100 100 100 100

48 5 100 60 100 100

60 5 60 0 60 40

72 5 0 0 0 0

Table 3.  Detection efficiency in adult spider individuals at various time after feeding on one adult E. vitis using 
TaqMan RQ-PCR.
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Species

Field-
collected 
number 
(juvenile and 
adult)

The 
PRTF 
(%)

The average 
of residual 
minimum 
number of E. 
vitis in individual 
spider guts

E. albaria 943 54.2a 0.63 ± 0.05a

X. ephippiatus 176 30.1b 0.05 ± 0.02b

M. pulcherrima 114 17.5c 0.04 ± 0.02b

C. octomaculatum 130 4.6 d 0.02 ± 0.01b

Table 4.  The PRTF (positive rates of target fragment) and residual minimum number of E. vitis in per 
dominant spider species. Values presented as mean ± SE. Residual minimum number of E. vitis in individual 
spider guts = N/M (N is the CNTF (copy numbers of target fragment) of field-collected individual spiders; M is 
the CNTF of individual spiders which feeding one adult E. vitis after 0 hour digestion). The different lowercase 
in same column indicate significant difference in P < 0.05 level.

Figure 3.  The PRTF (positive rates of target fragment) in spiders gut during the months when E. vitis was 
abundant. *In figure indicate significant difference in P < 0.05 level between E. albaria and any other species. 
The same below.

Figure 4.  The residual minimum number of E. vitis in individual spider gut during the months when E. vitis 
was abundant.
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minimum number of E. vitis in E. albaria guts was also greater than those of any other predator, significantly so 
in May, June, and July.

Discussion
Tea is an important commercial crop in China impacted by a variety of pest species, with one of the most com-
mon being the true bug E. vitis (Hemiptera). Effective control of this pest has long been achieved via chemical 
pest control6, 9. However, the negative side effects of chemical use put a premium on establishing viable alternative 
pest control approaches. Biological control using natural enemies of pest species is an attractive option but relies 
on identifying the interactions between the pest and the potential control agent. Previous studies have indicated 
a jumping spider (E. albaria, Salticidae) as a dominant spider in tea plantations of China39–42, and laboratory 
experiments have demonstrated that it feeds on E. vitis37. However, data on field predation efficiency are more 
challenging to obtain, not the least in predator species that predigest prey outside the body, such as spiders. Thus, 
we lack an understanding of these species interactions in the more complex food web in the field, and therefore 
the fundamental basis for establishing the potential of E. albaria as a biological control agent.

We performed analyses of gut contents from field-collected spiders using a combination of various experimen-
tal approaches both in field and lab based on 2655 spiders from plantations, and established relative abundances 
of spider species and their temporal overlap with the pest species. DNA analyzed from 1363 individuals of the 
most common spider species using targeted RQ-PCR clearly show that the jumping spider E. albaria—found 
to be the most abundant spider in the field and the one with the closest temporal overlap with the pest in tea 
canopy—was the most effective predator on E. vitis. Pest DNA was amplified from 54.2% of these spiders with a 
minimum of 0.63 ± 0.05 E. vitis individuals per E. albaria gut from the field, despite limits of detection success 
beyond 72 hrs after feeding. Relatively high feeding rates combined with high spider abundance, and temporal 
overlap and spatial-sympatry between the predatory natural enemies and the prey all are indicators of a poten-
tially effective biological control species27, 43, 44. Therefore, we conclude that E. albaria is a key predator of E. vitis 
and that it has potential as a biological control agent of E. vitis. To evaluate the potential effectiveness of E. albaria 
as a component in an IPM strategy, however, further experimental research is necessary. Most urgently needed 
are experiments with selective exclusion—or population enhancements—of the predator species.

To date, there are many methods (including direct observation45, gut dissection46, radioisotope labeling47, 
monoclonal antibodies48, 49 and molecular gut analysis29) that can be employed to identify the interactions 
between predators and prey in the field. Among them, molecular gut analysis and monoclonal antibodies are 
especially practical for studying predation of some relatively small arthropod predators in the field. Our approach 
can qualitatively assess predation in the field, however, like monoclonal antibodies, our method cannot accu-
rately estimate the number of the prey consumed by the predator per time unit29, 50, and is therefore not directly 
quantitative.

Our estimate of predator efficiency is limited by this difficulty of quantifying the number of prey consumed 
per predator, as well as by the decay of prey DNA in predator gut (0 detection rate after 72 hours). However, our 
approach allows at least a relative estimate of prey numbers per spider species. The more prey consumed, the 
more CNTF remains in the gut of the spiders25. We quantitatively detected the target fragment of E. vitis remains 
in the gut of four dominant spider species in tea plantation, and compared the residual minimum number of E. 
vitis in individual spider guts. We found that the average of residual minimum number of E. vitis in E. albaria gut 
(0.63 ± 0.05) was significantly greater than those of any other common spider species. The number of prey DNA 
copies in spider guts result from an interplay of ambient temperature, prey number, prey size, and time since 
ingestion51 and thus these estimates are approximate. However, while our methods do not establish the number 
of consumed prey, they do allow a meaningful comparison of the relative importance of various predators by 
comparing the residual minimum number of E. vitis in the guts of individual predators. We find clear statistical 
differences in the average of residual minimum number of E. vitis in individual spider guts, indicating differences 
in number of prey, and these numbers are highest for our targeted biological control species. Clearly then, the 
consumption of this prey is a frequent and likely important part of the E. albaria daily diet. In turn, frequent 
predation on the pest by majority of prey individuals suggests that the spider is a significant predator of E. vitis 
meriting further research of its potential as a part of an IPM52.

PCR is a sensitive method for gene amplification, even capable of amplification from a single target mol-
ecule53. It is, however, susceptible to many interference factors, such as PCR inhibitors, that can lead to 
amplification-failure29. Design of modern DNA extraction and purification kits have greatly reduced this problem 
and furthermore, simply diluting the concentration of the DNA template has proven to be an easy and effective 
approach to overcoming PCR inhibition29. Our experiments have also demonstrated that diluting the concen-
tration of the DNA template could effectively overcome the occurrence of the false-negatives (Fig. S2). Wang 
et al.28 had detected the effect of different background DNA of predators by using target prey DNA diluted in 
water and in the genomic DNA mixture of starved predator species. The result indicated that background DNA 
does not affect amplification. Our experiments have also demonstrated that different background DNA of four 
dominant spider species does not affect amplification of target fragment of E. vitis (Table S3). This suggests the 
current RQ-PCR protocol may be very effective in target identification of gut contents. Additionally, in order to 
ensure the fidelity and reliability of the assay, each DNA sample should assay in triplicate54, and a non-template 
control (without any nucleic acid), a negative control (without target DNA), and a positive control (including 
target DNA), should be contained in each PCR run. In this study, three sub-samples yielded the consistent results, 
indicating that the assay is highly reliable and reproducible.

Determining the relationship between predator and prey and the potential role a predator may play in 
pests control in the field is important55, 56. It is also significant studying the trophic niche of predators as they 
can be feeding on multiple types of prey. Molecular approaches provide useful tools for determining the die-
tary breadth of such predators. Petráková et al.57 has studied on the trophic niche of Ammoxenus amphalodes 
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(Araneae, Ammoxenidae) using Next Generation Sequencing (NGS), and revealing that A. amphalodes is a spe-
cialist termite-eating spider, only capturing Hodotermes mossambicus (Isoptera, Hodotermitidae) as its food. Such 
approaches using NGS would be the natural next step in determining the dietary breadth of the main predators 
identified in Chinese crop fields.

Methods
Collection of samples.  The study was carried out in Wang Dazhen tea plantation which is located near 
Xianning city, Hubei province, China (114.352°E, 29.953°N). E. vitis is a dominant species of tea pests, in this 
area. The total area of the studied tea plantation is about 6.5 ha. with parallel rows of tea plants about 100 m long 
and 1 m apart. During the sampling period, no insecticide was applied in the tea plantation.

The spiders and pest were collected on dry days, and each sampling period lasted at least seven days (three 
times a month), with the same person in tea plantation from September 2012 to August 2013. A total of 30 tran-
sects, separated by at least 10 m were sampled every time, with three sampling sites randomly chosen at each tran-
sect separated by at least 15 m. A total of 90 sites were randomly collected each sampling period using an insect 
net (diameter: 40 cm) under tea canopies, and beating the canopies ten times with a stick. The number of E. vitis 
was counted, and all spiders were individually put in 1.5 mL microcentrifuge tubes with 100% ethanol, kept on ice 
until returning to the laboratory and later stored at −80 °C.

Spiders were identified from the reference keys and catalogues provided by Yin et al.58 and World Spider 
Catalog59.

DNA extraction.  The genomic DNA of spiders was subsequently extracted and purified individually using 
an animal genomic DNA extraction kit (Beijing Dingguo Changsheng Biotechnology Co., Ltd., Beijing, China) 
according to the manufacturer’s instructions. Finally, The DNA was resuspended in 100 µL of manufacturer’s 
elution buffer and stored at −80 °C.

Design of primers and TaqMan minor groove binder (MGB) probe.  We followed the rules on 
species-specific primer design outlined by King et al.34. Ideal primers should be efficient at high annealing temper-
atures (if possible, Ta > 55 °C), thus reducing the risk of nonspecific amplification. In addition, shorter fragments 
<300 bp should be targeted wherever possible as the DNA molecules are broken into smaller fragments during 
digestion in the predator guts. We used a fragment of the COI gene of E. vitis from GeneBank (named ZJ5 isolate, 
773 bp, GeneBank Accession no. KC172507.1) to design the primer pair ZJ-F: 5′-AGGTGCTGTATTTGCTAT-3′ 
and ZJ-R: 5′-CTAAGAAATGTTGAGGGA-3′, which amplify a 146 bp fragments, using Gene tool software.

The TaqMan MGB probe for the E. vitis target DNA quantification was designed by using the Primer Express 
v3.0 software. The probe (5′-TTACCCCAAAGAATATCAC-3′), hybridized within the region amplified by the 
PCR primers from base 507 to base 525 of ZJ5 isolate, and synthesized by Shanghai Bioligo Biotechnology Ltd. 
(Shanghai, China), at the 5′-end there is a reporter [FAM (6-carboxy-fluorescein)] and at the 3′-end a minor 
groove binding (dehydrocyclopyrroindole tripetide, DPI3).

The specificity of primers.  Our goal was to detect the specific DNA fragments of E. vitis remains in the 
gut of generalist-predators spiders. Therefore, to confirm that the developed primers (ZJ-F and ZJ-R) can specif-
ically amplify DNA fragments of E. vitis remains in the gut of spiders, we performed cross-reactivity assays with 
the primers (ZJ-F and ZJ-R) using the various prey species. Species specificity of the primers was tested using 
genomic DNA from target prey, predator and potential prey species and tea leaf. The potential prey species of 
spiders and tea leaf were collected in tea plantation. The genomic DNA of individual target prey, predator and 
potential prey species and tea leaf (50 mg) were amplified simultaneously by the primers (ZJ-F and ZJ-R).

The standard curve, sensitivity and reproducibility of TaqMan RQ-PCR.  The purified 
target-fragment of E. vitis were ligated and cloned into PUC57 vector (Shanghai Bioligo Biotechnology Co., 
Ltd., Shanghai, China), propagated in DH5a competent cells (Beijing TransGen Biotechnology Co., Ltd., Beijing, 
China). The recombinant plasmids DNA were isolated from the obtained white colonies and inoculated in liquid 
medium (LB/Amp). The recombinant plasmids DNA were purified by using an AxyPrep Plasmid Miniprep Kit 
(Axygen Biosciences, USA) according to the manufacturer’s instructions. The DNA was eluted in 50 μL eluent and 
stored at −80 °C. To confirm whether the inserted DNA is consistent with the target DNA, the recombinant plas-
mids DNA was sequenced by Wuhan TsingKe Biological Technology Co., Ltd. (Wuhan, China). Its concentration 
(ng/µL) was determined by spectrophotometric measurement (NanoDrop 2000c, Thermo Fisher Scientific Inc, 
USA) and the copy numbers of target fragment (CNTF) were calculated using the expression: CNTF = [DNA 
mass (g)/recombinant plasmid molarmass] × 6.02 × 1023.

The recombinant plasmid was used as standards for calibration of copy number. The number of transcripts 
was calculated per 1 µL, which was the volume used as template in each TaqMan RQ-PCR assay. Tenfold serial 
dilutions of the transcripts were prepared from 1.92 × 109/µL–1.92 × 100/µL, aliquoted and stored at −80 °C until 
use. Dilutions from 1.92 × 106/µL–1.92 × 102/µL were employed to generate the standard curve and used for the 
TaqMan RQ-PCR assay. The sensitivity of RQ-PCR assay was determined by testing tenfold serial dilution from 
1.92 × 109/µL–1.92 × 100/µL of the recombinant plasmid25.

TaqMan RQ-PCR was carried out in Multiplate Low-Profile 96-Well Unskirted PCR Plates (Bio-Rad, USA), 
closed with Microseal ‘B’ Adhesive Seals (Bio-Rad, USA). Amplification and detection were performed using a 
CFX ConnectTM Real-Time PCR detection system (Bio-Rad, USA) and accompanying software (Bio-Rad CFX 
Manager 3.1) according to the manufacturer’s instructions. The TaqMan RQ-PCR protocol was performed in a 
final volume of 20 μL. Each tube contained: 1 μL forward primer (10 μM), 1 μL reverse primer (10 μM), 0.4 μL 
fluorogenic probe (10 μM), 10 μL TransStart® Probe qPCR SuperMix (Beijing TransGen Biotechnology Co., 
Ltd., Beijing, China), 1 μL sample DNA and 6.6 μL ultra-pure water. Each DNA sample was assayed in triplicate. 
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Three wells containing 1 μL ultra-pure water each were used for a nontemplate control, without any nucleic acid. 
Amplification and detection were performed by using the manufacturer’s standard protocols. The PCR protocol 
consisted of an initial step of 30 s at 94 °C, followed by 40 cycles of 5 s at 94 °C and 30 s at 55 °C. All standards 
(obtained from purified plasmid DNA), controls and unknown samples were run simultaneously. Data acqui-
sition and analysis were performed with the Bio-Rad CFX Manager 3.1 software. The CNTF were determined 
from the Ct value (real-time PCR cycle number where fluorescence signal curve crosses certain threshold line60). 
For generation of standard quantization curves, the Ct values were plotted proportionally against the log10 of 
the number of input copies. The Ct values were subsequently used to calculate the amount of DNA in unknown 
samples by the equations of standard curves.

Detection efficiency of molecular diagnostic marker in spiders feeding trials.  To determine 
whether the DNA of E. vitis could be detected in the gut of the predator, separate feeding trials were performed 
using adult E. albaria, X. ephippiatus, M. pulcherrima and C. octomaculatum that were collected in the tea plan-
tation. The spiders were reared individually in 20 × 100 mm glass tube with moistened sponge in the bottom to 
ensure high humidity. All the spiders (including males and females) for the experiment were starved for 5–7 d 
under greenhouse conditions at 25 ± 1 °C, 80–85% RH and L12: D12 h photoperiod prior to the start of the exper-
iment. After starvation, individual spiders were provided one adult E. vitis and allowed to feed for 1 h. Spiders that 
were not observed to feed were excluded from the experiment. After feeding, we tested the detection efficiency 
for four spider species at post-feeding intervals of 0, 12, 24, 36, 48, 60 and 72 h. Each post-feeding interval was 
provided five individual spiders. After each feeding interval, spiders were placed individually in 1.5 mL microcen-
trifuge tubes with 100% ethanol, and stored at −80 °C, and later submitted to the DNA extraction procedure as 
described above. After DNA extraction, the DNA samples from each feeding interval were amplified by TaqMan 
RQ-PCR using the primers (ZJ-F and ZJ-R). PCR conditions and thermocycling program as described above. 
Each run contained a nontemplate control (without any nucleic acid), a negative control (adult E. albaria, starved 
for 5–7 d) and a positive control (adult E. albaria fed on one adult E. vitis). Each sample was assayed in triplicate25.

Qualitative and quantitative evaluation of predation in the field.  We qualitatively and quantita-
tively detected the DNA samples from field-caught spiders using TaqMan RQ-PCR. PCR conditions and ther-
mocycling program as described above. Each run contained a nontemplate control (without any nucleic acid), a 
negative control (adult E. albaria, starved for 5–7 d) and a positive control (adult E. albaria fed on one adult E. 
vitis). Each sample was assayed in triplicate. The CNTF remain in the gut of spiders from field-collected samples 
were calculated by interpolation from the DNA standard curve amplified in the same PCR run. The positive rates 
of target fragment (PRTF) was calculated using the following equations: PRTF = (Number of positive spiders/
Total spiders tested) × 100%. Residual minimum number of E. vitis in individual spider guts was calculated by 
N/M (N is the CNTF of field-collected individual spiders; M is the CNTF of individual spiders which feeding one 
adult E. vitis after 0 hour digestion).

Data analysis.  The temporal overlap between predators and pests was estimated by following measure, devel-
oped by Hurlbert61: = ∑ =Lij S P Ph

S
ih jh1 ; where, Lij is the temporal and spatial overlap measure of species i on spe-

cies j, S is the unit number of resource sequence, Pih is the proportion that resource h is of the total resource that 
species i utilizes and Pjh is the proportion that resource h is of the total resource that species j utilizes. Difference 
test of percentage was used to compare the PRTF of E. vitis per dominant spider species. One-way ANOVA was 
used to compare the residual minimum number of E. vitis per dominant spider species.
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