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Abstract
Background Currently, the trajectory for insertion of an external ventricular drain (EVD) is mainly determined using anatomical
landmarks. However, non-assisted implantations frequently require multiple attempts and are associated with EVD
malpositioning and complications. The authors evaluated the feasibility and accuracy of a novel smartphone-guided, angle-
adjusted technique for assisted implantations of an EVD (sEVD) in both a human artificial head model and a cadaveric head.
Methods After computed tomography (CT), optimal insertion angles and lengths of intracranial trajectories of the EVDs were
determined. A smartphone was calibrated to the mid-cranial sagittal line. Twenty EVDs were placed using both the premeasured
data and smartphone-adjusted insertion angles, targeting the center of the ipsilateral ventricular frontal horn. The EVD positions
were verified with post-interventional CT.
Results All 20 sEVDs (head model, 8/20; cadaveric head, 12/20) showed accurate placement in the ipsilateral ventricle. The
sEVD tip locations showed a mean target deviation of 1.73° corresponding to 12 mm in the plastic head model, and 3.45°
corresponding to 33 mm in the cadaveric head. The mean duration of preoperative measurements on CT data was 3 min, whereas
sterile packing, smartphone calibration, drilling, and implantation required 9 min on average.
Conclusions By implementation of an innovative navigation technique, a conventional smartphone was used as a protractor for
the insertion of EVDs. Our ex vivo data suggest that smartphone-guided EVD placement offers a precise, rapidly applicable, and
patient-individualized freehand technique based on a standard procedure with a simple, cheap, and widely available multifunc-
tional device.
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Abbreviations
app Augmented-realty mobile device application
cm Centimeter
CT Computed tomography
DICOM Digital imaging and communications

in medicine
EVD External ventricular drain
Fig Figure
M Mean values
PACS Picture archiving and communicating system
SD Standard deviation
sEVD Smartphone-navigated placed

external ventricular drain

Introduction

Insertion of an external ventricular drain (EVD) is one of
the most commonly performed procedures in daily neuro-
surgical practice [6, 7]. The standard technique is still the
traditional non-navigation-assisted freehand placement
exclusively guided by anatomical landmarks [2, 7, 28].
By this method, an EVD is usually inserted at Kocher’s
point [9] and directed towards the nasion in the sagittal
plane, and the tragus or slightly anterior in the coronal
plane [13, 23]. However, imprecise EVD placement often
occurs [3].

The desire for greater precision of ventriculostomy has
led to various technical innovations and use of additional
gadgets such as neurosonography [24], frameless
stereotaxy [27], endoscopy [29], guiding protractors [8,
12], robotic [16] or electromagnetic neuronavigation
[17], and fluoroscopy [4] or CT guidance [7]. Even a
smartphone augmented-reality mobile device application
(app), with or without a ventricular catheter-guiding tool,
has already been developed [5, 25, 28].

Although all these techniques may lead to improved
insertion accuracy, they are also associated with various
disadvantages including additional time to perform the
procedures, the need for head fixation, higher costs of
materials, lack of ubiquitous availability of appropriate
equipment, as well as time and effort for training and
handling the systems. Moreover, neurosurgeons prefer
methods that are quick and easy to use and barely differ
from established clinical routine [24].

Taking these considerations into account and encour-
aged by results from an iPod-based navigation procedure
described previously [11, 18], we developed a novel
smartphone-guided, angle-adjusted technique for implan-
tation of an EVD (sEVD). We systematically assessed its
feasibility and accuracy in both a human artificial head
model and a cadaver head.

Methods and materials

CT-based trajectory planning

A total of 20 EVD trajectories in a human artificial gel-filled
head model with inserted ventricles (Classic Human Skull
Model; 3B Scientific GmbH, Hamburg, Germany) (8/20)
and a human formalin-fixed cadaveric head (Institute of
Anatomy, University of Bern, Bern, Switzerland) (12/20)
were determined on native multiplanar reformatted CT images
(Somatom Definition Edge; Siemens Healthcare, Forchheim,
Germany). A commercially available picture archiving and
communication system (PACS) workstation (IDS7, Sectra
AB, Linköping, Sweden) was used to analyze the images. In
the PACSworkstation, the native images of the cadaveric head
and the head model were displayed in 3 planes: sagittal, cor-
onal, and transversal. Each of 8 different insertion point was
measured as determined on the head model 2.5 cm lateral to
the midline and on a trajectory towards the upper edge of the
external acoustic meatus at 10, 11, 12, and 13 cm posterior to
the nasion. On the cadaveric head, 12 insertion points were
measured as determined 2 and 3.5 cm paramedially, and 10,
12, and 14 cm behind the nasion, respectively. For each de-
termined insertion point, the coronal image plain was adjusted
to include three external landmarks: the insertion point as well
as the upper edge of the tragi bilaterally. These three points
represented the coronal insertion plain. There, the center of the
ipsilateral frontal horn according to the sagittal and transversal
ventricle diameters represented the optimal target for the
sEVD tip. A trajectory was drawn from the insertion point
on the skin of the human’s head and surface of the headmodel,
respectively, to the center of the ipsilateral ventricle.

Finally, the angles between the sagittal midline and the
trajectory, and the distances between the cranial entry point
and the center of the ventricle, were measured as depicted in
Fig. 1. The angle and the distance between entry point and
target point in the center of the ipsilateral ventricle were noted
to be at hand for the EVD placement.

Preparations for EVD placement

A smartphone (iPhone 4S, iOS 7.1.2; Apple Inc., Cupertino,
CA, USA) was encased in a sterile cover (SteriPhone; Merete
Medical GmbH, Berlin, Germany). A commercially available
angle-measuring app (Clinometer; Plaincode App
Development, Stephanskirchen, Germany) was installed on
the smartphone as a protractor tool.

The heads (model and cadaver) were placed supine. The
mid-cranial sagittal line and the insertion points were marked
on the surface of both the model and the head. With a mea-
suring tape, the insertion points determined were marked on
the surface of both the model and cadaveric head.
Additionally, electrocardiographic adhesive patches were
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placed on the nasion, the midline, and the tragus serving as
palpable fiducials. To simulate clinical conditions, drapes
were taped around Kocher’s point. The anatomical reference
points were finally marked and a line between each insertion
point and the upper edge of the external acoustic meatus was
drawn on the drapes. This curvilinear line represented the
shortest distance from the insertion point to the tragus. This
line was adjusted at the CT-based trajectory planning in the
sagittal and coronal plane as described above (Fig. 1).

For sEVD placement, the surgeon’s viewing direction was
orientated on the coronal insertion plane including the curvi-
linear line, thereby the curvilinear line appeared straight. The
base of the smartphone was positioned on this line and the
surface of the smartphone-display was aligned to the coronal
insertion plane allowing the most accurate sEVD insertion.

EVD placement

The longitudinal smartphone axis was aligned with the
marked midline in the coronal insertion plane calibrated as
0° lateral deviation with the app (Fig. 2). The smartphone
could be set to announce the lateral angle verbally, obviating
visual control of the display. Especially because the angle-
measuring app is still investigational and not labeled for neu-
rosurgical use thus far, the accurate angle specification of the
app was additionally verified by tilting the iPhone along the
set-up triangle with specified angles.

Moreover, on the cadaveric head, a linear incision of 1 cm
was made at each insertion point. With a twist drill (Cranial
Access Kit; Integra NeuroSciences, Plainsboro, NJ, USA) a
burr hole trephination was carried out.

One surgeons hand held the smartphone whereas the other
hand attached the twist drill to it. The angulation of the drill
was measured and adjusted with the protractor app of the
smartphone orientated along the predefined coronal insertion

Fig. 2 Smartphone calibration. The 0° angle was calibrated according to
the sagittal midline. The smartphone was placed along the midline
parallel to the insertion plane defined by both the upper edge of the
external acoustic meatus and Kocher’s point

Fig. 1 Planning of sEVD insertion trajectories on multiplanar 3D
reformatted native CT. Coronal (left) and sagittal (right) images of a
human cadaveric head demonstrate determination of the sEVD insertion
point located 12 cm distally to the nasion and 2 cm paramedially. The

trajectory shown is tilted 12° laterally with a 5.22-cm insertion length.
Note post-mortem intracranial air inclusion after anatomical fixation and
loss of cerebrospinal fluid
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plane (Fig. 3). Thus, the smartphone could be tilted laterally,
but still remained in the same insertion plane, and the lateral
angle and the twist drill could be controlled and adjusted.

After trephination, the dura of the cadaveric head was per-
forated. The EVD (Bactiseal EVD Catheter system; Codman,
Raynham, MA, USA) was tightly attached to the longitudinal
axis of the smartphone and the planned lateral insertion angle
was adjusted.

Each sEVD was inserted along the predetermined distance
of the scaled catheter (Fig. 4). Durations of all procedures
from the time of skin incision to final sEVD insertion in the
head were measured.

Post-interventional assessment

To analyze the results in the model and head, pre- and
post-insertion CT images were used to assess accuracy
and precision of sEVD insertions in a digital imaging
and communications in medicine (DICOM) viewer. First,
the images were multiplanar 3D reformatted. Then, the
final position of each catheter insertion point, the planned
trajectory, and the intracranial positions of the tips were

marked. The insertion angle towards the planned trajecto-
ry and the lateral deviation in the coronal plane were
determined. In addition, the deviation of the catheter tip
from the target trajectory in the center of the ventricle was
measured. The position of the catheter tips was graded as
located either ipsi- or contra-lateral, and intra- or extra-
ventricular. Occurrence of kinking was also noted.
Additionally, the accuracy of each burr hole location be-
hind the nasion and lateral to the midline and the actual
intracranial insertion depth of the catheters was measured.

Data analysis

Results are provided as both mean values and standard
deviation (SD). The following parameters were calculat-
ed: planned pre-insertional lateral implantation angles,
inserted catheter lengths, locations of catheter tips and
burr holes, and their accuracy and deviations from the
optimal trajectories measured on CT. Statistical analyses
were performed using the commercially available soft-
ware SPSS Statistics, Version 22 (IBM Corp, Armonk,
NY, USA).

Fig. 4 Smartphone-navigated placement of the EVD. The drain was
angle-adjusted with the smartphone and inserted into the ventricle. The
midline is marked in the sagittal plane. The insertion plane is represented
by the curvilinear line that crosses the midline and the insertion point. The
axis of the catheter was always guided within the coronal insertion plane
under visual control. It was tilted laterally toward the planned angle with
the aid of the smartphone apps verbal angle specification

Fig. 3 Marking of midline in the sagittal plane, determination of the
coronal insertion plan and angle-adjusted trephination. The insertion
plane is represented by the curvilinear line that crosses the midline and
the insertion point. The axis of the drill was routinely guided within the
coronal insertion plane under visual control. It was tilted laterally toward
the planned angle with the aid of the smartphone apps verbal angle spec-
ification. Placement of the twist drill was followed by angle-adjusted
trephination
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Results

Head model

In the artificial head, the optimal lateral pre-insertional angles
planned in the coronal plane averaged 10.54° (SD ± 5.37,
range 4° to 19.6°), whereas the average angles measured on
post-interventional CT imaging were 11.34° (SD ± 4.34, range
0.69° to 19.4°). After insertion, the mean deviation from the
pre-insertional planned lateral angles was 1.73° (SD ± 1.12,
range 0.15° to 3.1°). The post-interventional CT imaging
showed that the catheter tips deviated on average 0.12 cm
(SD ± 0.08, range 0.01–0.22 cm) from the initially planned
optimal trajectory (Table 1).

All the sEVD burr holes were located on average 0.16 cm
(SD ± 0.1, range 0–0.24 cm) more anteriorly and 0.04 cm (SD
± 0.02, range 0.01–0.07 cm) more medially than planned pre-
interventionally. The planned mean optimal trajectory length
was 4.1 cm (SD ± 0.12, range 3.9–4.3 cm) and, on post-
insertional CT imaging, it averaged 4.03 cm (SD ± 0.13, range

3.8–4.23 cm). The mean deviation of the inserted catheter
lengths was 0.13 cm (SD ± 0.12, range 0.04–0.4 cm)
(Table 2). No instances of catheter kinking were observed
after sEVD placement in the head model.

Cadaveric head

In the human head, the optimal lateral pre-insertional angles
planned in the coronal plane averaged 26.8° (SD ± 14.87,
range 8° to 49.3°), whereas the post-interventional angles
measured on CT imaging were 26.58° (SD ± 13.88, range
9.3° to 45.9°). After insertion, the mean deviation from the
planned pre-insertional lateral angles was 3.45° (SD ± 2.04,
range 0.7° to 7.2°) (Table 1). The post-interventional CT im-
aging showed that the catheter tips deviated on average
0.33 cm (SD ± 0.21, range 0.06–0.81 cm) from the initially
planned optimal trajectory (Table 1).

All the sEVD burr holes were located on average 0.7 cm
(SD ± 0.09, range 0.6–0.81 cm) more anteriorly and 0.07 cm
(SD ± 0.05, range 0.01–0.19) moremedially than planned pre-

Table 1 Planned pre- and post-
interventional catheter positions
with mean values and standard
deviation

Planned angle
(degrees)

Post-interventional
angle (degrees)

Deviation
(degrees)

Deviation
(cm)

Intraventricular
position

Kinking

Head model

19.60 19.40 0.20 0.01 + −
16.95 16.80 0.15 0.01 + −
14.05 13.10 0.95 0.07 + −
10.35 7.90 2.45 0.16 + −
7.70 10.20 2.50 0.17 + −
5.35 8.50 3.15 0.22 + −
6.35 7.90 1.55 0.11 + −
4.00 6.90 2.90 0.21 + −

M 10.54 11.34 1.73 0.12
SD 5.37 4.34 1.12 0.08

Cadaveric head

18.70 16.50 2.20 0.21 + −
49.30 42.10 7.20 0.81 + +

13.00 13.90 0.90 0.09 + −
43.00 45.80 2.80 0.25 + −
10.00 9.30 0.70 0.06 + −
40.40 37.20 3.20 0.26 + +

12.00 18.10 6.10 0.60 + +

42.00 45.90 3.90 0.35 + +

13.20 10.80 2.40 0.21 + −
37.00 30.70 6.30 0.54 + +

8.00 12.00 4.00 0.39 + −
35.00 36.70 1.70 0.15 + −

M 26.8 26.58 3.45 0.33
SD 14.87 13.88 2.04 0.21

cm centimeter, M mean, SD standard deviation
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interventionally. The planned mean optimal trajectory length
was 5.34 cm (SD ± 0.5, range 4.7–6.45 cm) and, on post-
insertional CT imaging, it averaged 5.63 cm (SD ± 0.44, range
5.0–6.64 cm). The mean deviation of the catheter lengths was
0.4 cm (SD ± 0.23, range 0.09–0.76 cm) (Table 2).

On post-interventional CT imaging, we observed 5 sEVDs
with intracranial kinking (Table 1). These cases were excluded
from further analysis. In the remaining 7 cases, the planned
optimal lateral pre-insertional angles in the coronal plane av-
eraged 20.13° (SD ± 12.51, range 8–43°), whereas post-
interventional angles measured on CT imaging were 20.70°
(SD ± 13.38, range 9.3–45.8°). After insertion, the mean de-
viation from the planned pre-insertional lateral angles was
2.1° (SD ± 1.05, range 0.7–4°). The catheter tips deviated on
average 0.19 cm (SD ± 0.10, range 0.06–0.39 cm) from the
optimal trajectory planned (Table 3). The planned mean

optimal trajectory lengths were on average 5.37 cm (SD ±
0.34, range 5.01–6.05 cm) and on post-insertional imaging
controls averaged 5.54 cm (SD ± 0.34, range 5.0–6.2 cm).
The mean deviation of the catheter lengths was 0.35 cm (SD
± 0.19, range 0.09–0.6 cm) (Table 3).

Duration of procedure

The mean time taken for preoperative radiological measure-
ment of planned cranial insertion points, lateral angles in the
coronal plane, and optimal trajectory lengths was 3.23 min
(SD ± 0.57, range 2.8–5 min) in both the human head model
and the cadaveric head.

Only the human cadaveric head was used for determination
of drilling time due to its comparability with real clinical con-
ditions. The total time required for skin incisions, bone

Table 2 Pre-and post-interventional measurements of insertion points posterior to nasion, lateral to midline and insertion depth of the catheter, with
mean values and standard deviation for both the head model and human head

Pre-interventional
measurements
posterior to nasion
(cm)

Deviation of post-
interventional mea-
surements posterior to
nasion (cm)

Pre-interventional
planned position
lateral to midline
(cm)

Deviation of post-
interventional mea-
surements lateral to
midline (cm)

Pre-
interventional
planned
insertion depth
(cm)

Post-
interventional
measurement of
insertion depth
(cm)

Deviation of post-
interventional mea-
sured insertion
depth (cm)

Head model

10.00 0.00 2.50 0.06 3.90 3.94 0.04

11.00 0.20 2.50 0.05 4.30 4.03 0.27

12.00 0.20 2.50 0.03 4.20 4.14 0.06

13.00 0.24 2.50 0.04 4.20 3.80 0.40

10.00 0.00 2.50 0.02 4.00 3.92 0.08

11.00 0.20 2.50 0.03 4.03 3.99 0.04

12.00 0.20 2.50 0.01 4.10 4.15 0.05

13.00 0.24 2.50 0.07 4.10 4.23 0.13

M 11.50 0.16 2.50 0.04 4.10 4.03 0.13

SD 1.20 0.09 0 0.02 0.12 0.13 0.12

Cadaveric head

10.00 0.60 2.00 0.10 6.05 5.60 0.45

10.00 0.60 2.00 0.06 6.45 6.64 0.19

10.00 0.60 5.00 0.19 5.50 5.59 0.09

10.00 0.60 5.00 0.08 5.01 5.55 0.54

12.00 0.70 2.00 0.03 5.14 5.30 0.17

12.00 0.70 2.00 0.07 4.70 5.45 0.75

12.00 0.70 5.00 0.12 5.22 5.98 0.76

12.00 0.70 5.00 0.05 5.15 5.59 0.44

14.00 0.81 2.00 0.01 5.15 5.00 0.15

14.00 0.81 2.00 0.04 4.90 5.10 0.20

14.00 0.81 5.00 0.06 5.60 6.20 0.60

14.00 0.81 5.00 0.03 5.15 5.59 0.44

M 12.00 0.70 3.50 0.07 5.34 5.63 0.40

SD 1.71 0.09 1.50 0.05 0.50 0.44 0.23

cm centimeter, M mean, SD standard deviation
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drilling, dura perforation, and smartphone-assisted insertion
of the sEVDs was 108 min for 12 sEVDs, and 9 min on
average for each insertion (SD ± 1.11, range 8.3–12 min).

Discussion

In daily neurosurgical practice, especially in emergency set-
tings with critically ill patients, the patient’s outcome might
substantially depend on immediate, safe, and sufficient EVD
implantations [10]. Therefore, an accurate and rapid procedure
is essential to reduce the consequences of uncontrolled intra-
cranial pressure and associated morbidity or mortality [7, 14].

Ventricular diameter, angle, and target deviation
and duration of procedure

An average anatomical diameter of unilateral ventricular fron-
tal horns between 2.61 and 3.78 cm was determined in 150
healthy subjects [22]. In subgroups with pathological
narrowing, the unilateral ventricular diameters may range
from only 0.1 to 1.6 cm [16]. In contrast, in hydrocephalic
patients, the bifrontal distances could be longer, varying from
2.6 to 4.8 cm [12].

In the present study, we measured a mean sEVD tip devi-
ation from the target point of 0.33 cm in the human cadaveric
head, including cases with kinking (12/20). After exclusion of
catheters with kinking, the deviation of the remaining 7/20
sEVDs target was even less (0.19 cm).

Earlier studies on conventional, non-assisted freehand
techniques have reported a mean deviation from the target
of 0.97 cm [19], 1.43 cm [7], and 1.6 cm [10]. In studies
on freehand ventriculostomy, a lateral angular variation of
up to 5° in 51% and up to 15° in 90% of cases was
documented by Abdoh et al. [1] Using CT-guided

insertion, Gautschi et al. reported a deviation from the
target of 0.96 cm [7]. O’Leary and colleagues documented
0.37-cm deviation with the Ghajar-Guide [19], whereas
Reinertsen et al. reported a deviation from the target of
less than 0.3 cm with a 3D-ultrasound-guidance for EVD
insertions [24]. An average deviation of 0.16 cm of the
EVD tip from the planned target in a study of
smartphone-supported navigation planning, and use of a
ventricular catheter-guiding tool was reported by Thomale
and co-workers [28]. Finally, both Lollis et al. and
Stieglitz and co-workers reported a mean distance of the
catheter tip from the target of 0.15 cm after frameless
navigated catheter insertion [16, 27]. Regarding the as-
signment of the determined entry point between CT and
head, the plausibility of surface-matching using anatomi-
cal landmarks was expressed with a mean error of 0.35 to
0.5 cm [20, 21, 30]. The inaccuracy of angle measurement
was correspondingly lower.

Duration of procedure

In the present study, measurements of the optimal insertion
angle and intracranial length of catheters lasted on average
3.23 min. Gautschi et al. reported an average time of
3.8 min for planning of a neuronavigation-assisted EVD
placement in a cadaver study [7].

Our average EVD insertion time-including drilling,
durotomy, and smartphone-assisted insertion-was 9 min.
Mahan et al. reported a total of 17 min on average, whereas
Krötz and his colleagues reported a duration of 17 to 20 min
for conventional EVD insertion [15, 17]. Furthermore, opti-
mal placement of the catheter in a single pass compensates for
the time for trajectory planning and decreases procedure-
related complications [7, 14, 26, 31].

Table 3 Planned pre- and post-interventional catheter positions after exclusion of catheters with kinking, with mean values and standard deviation in
the cadaveric head

Planned angle
(degrees)

Post-interventional
angle (degrees)

Deviation
(degrees)

Deviation
(cm)

Pre-interventional
planned insertion
depth (cm)

Post-interventional
measurement of
insertion depth (cm)

Deviation of post-
interventional measured
insertion depth (cm)

18.70 16.50 2.20 0.21 6.05 5.60 0.45

13.00 13.90 0.90 0.09 5.50 5.59 0.09

43.00 45.80 2.80 0.24 5.01 5.55 0.54

10.00 9.30 0.70 0.06 5.13 5.30 0.17

13.20 10.80 2.40 0.21 5.15 5.00 0.15

8.00 12.00 4.00 0.39 5.60 6.20 0.60

35.00 36.70 1.70 0.15 5.15 5.59 0.44

M 20.13 20.70 2.10 0.19 5.37 5.54 0.35

SD 12.51 13.38 1.05 0.10 0.34 0.34 0.19

cm centimeter, M mean, SD standard deviation

Acta Neurochir (2020) 162:513–521 519



Advantages

Young neurosurgeons especially junior residents with limited
experience very often perform insertions of an EVD while a
successful implantation preferably at first attempt is impera-
tive to reduce patient’s morbidity. An adequate preparation
can essentially help to achieve this aim. The main advantage
of the simple method described here is that it increases the
probability of accurate one-time EVD insertion, especially if
the ventricles are narrow, dislocated, or deformed.
Furthermore, the technique applied is easy to learn, not time-
consuming, corresponds well to previous conventional EVD
implantation methods, and requires barely additional equip-
ment and costs. Basically, the EVDmay be inserted as usually,
but the aligned and sterile-packed smartphone provides the
possibility to display the optimal lateral insertion angle and
this increases accuracy and patient safety.

Limitations

There are several important study limitations and caveats.
First, the technique described has been evaluated exclusively
in an ex vivo artificial human head model and formalin-fixed
human cadaveric head. Although, in principle, we would ex-
pect our method to be transferable to clinical application, be-
cause smartphone-guided angle-control merely adds a sterile
smartphone to conventional freehand insertions, its accuracy
would need to be tested in a real clinical setting. Second,
although our preliminary results are promising and suggest
that the proposed method can offer a supplementary or alter-
native option to freehand ventricular catheterization, our
values might be subject to bias. Both artificial head models
and formalin-fixed human heads have a higher consistency
than in a living human, contain no cerebrospinal fluid, but
rather intraventricular air, increased atrophies, indurated sulci,
and carry a higher risk of catheter kinking. The problem of
kinking has already been reported as being associated with a
significantly increased target deviation risk when compared
with non-kinked catheters [7]. Furthermore, the small experi-
mental sample size and number of EVD insertions decreases
the statistical power of our study and decisive conclusions
cannot be reached. Finally, for definite validation of its viabil-
ity, testing of the method versus other and well-established
techniques is of utmost importance.

Conclusions

The idea of useful medical apps uploaded on conventional
mobile phones as portable and convenient operating tools
for neurosurgeons led us to evaluate a smartphone device as
a clinical guiding instrument for EVD insertions. Our data

520 Acta Neurochir (2020) 162:513–521

suggests that smartphone-assisted adjustment of the lateral
insertion angle allows reliable EVD placement tailored to
the individual patient.
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