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Abstract

People have better metacognitive sensitivity for decisions about the presence compared to the absence of objects. However,
it is not only objects themselves that can be present or absent, but also parts of objects and other visual features.
Asymmetries in visual search indicate that a disadvantage for representing absence may operate at these levels as well.
Furthermore, a processing advantage for surprising signals suggests that a presence/absence asymmetry may be explained
by absence being passively represented as a default state, and presence as a default-violating surprise. It is unknown
whether the metacognitive asymmetry for judgments about presence and absence extends to these different levels of repre-
sentation (object, feature, and default violation). To address this question and test for a link between the representation of
absence and default reasoning more generally, here we measure metacognitive sensitivity for discrimination judgments be-
tween stimuli that are identical except for the presence or absence of a distinguishing feature, and for stimuli that differ in
their compliance with an expected default state.
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Introduction

At any given moment, there are many more things that are not
there than things that are there. As a result, and in order to effi-
ciently represent the environment, perceptual and cognitive
systems have evolved to represent presences, and absence is
implicitly represented as a default state (Oaksford and Chater
2001; Oaksford 2002). One corollary of this is that presence can
be inferred from bottom-up sensory signals, but absence is
never explicitly represented in sensory channels and must
instead be inferred based on top-down expectations about the
likelihood of detecting a hypothetical signal, had it been
present. Experiments on human subjects accordingly suggest
that representing absence is more cognitively demanding than
representing presence, even in simple perceptual tasks, as is ev-
ident in slower reactions to stimulus absence than stimulus
presence in near-threshold visual detection (Mazor et al. 2020),
in a general difficulty to form associations with absence
(Newman et al. 1980), and in the late acquisition of explicit

representations of absence in development (e.g., Sainsbury
1971; Coldren and Haaf 2000; for a review on the representation
of nothing see Hearst 1991).

An overarching difficulty in representing absence may
reflect the metacognitive nature of absence representations; to
represent something as absent, one must assume that they
would have detected it had it been present. In philosophical
writings, this form of higher order, metacognitive inference-
about-absence is known as argument from epistemic closure, or ar-
gument from self-knowledge ( If it was true, I would have known it; De
Cornulier 1988; Walton 1992). Strikingly, quantitative measures
of metacognitive insight are consistently found to be lower for
decisions about absence than for decisions about presence.
When asked to rate their subjective confidence following near-
threshold detection decisions, subjective confidence ratings
following “target absent” judgments are commonly lower, and
less aligned with objective accuracy, than following “target pre-
sent” judgments ( Fig. 1; Kanai et al. 2010; Meuwese et al. 2014;
Kellij et al. 2018; Mazor et al. 2020).
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Metacognitive asymmetries have not only been observed for
judgments about the presence or absence of whole physical
objects and stimuli, but also for the presence or absence of cog-
nitive variables such as memory traces. For instance, in recogni-
tion memory, subjects typically show poor metacognitive
sensitivity for judgments about the absence of memories (such
as when judging that they have not seen a study item before;
Higham et al. 2009). Unlike the absence of a visual stimulus, the
absence of a memory is not localized in space and does not cor-
respond with a specific representation of “nothing”.

One way of conceptualizing these findings is that absence
asymmetries emerge as a function of default reasoning—absen-
ces are considered the “default”, and information about percep-
tual or mnemonic presence is accumulated and tested against
this default. For instance, an asymmetry may emerge in recog-
nition memory because the presence of memories is actively
represented, and the absence of memories is assumed as the
default unless evidence is available for the contrary. In the
same way, other visual features that are not typically treated as

presences or absences may still be coded relative to a default—
assuming one state unless evidence is available for the contrary
(e.g., assuming that a cookie is sweet rather than salty).
However, whether a metacognitive asymmetry in processing
presence and absence generalizes to these more abstract viola-
tions of default expectations remains unknown. Here we set out
to map out the structure of absence representations by testing
for metacognitive asymmetries in the presence and absence of
attributes at different levels of representation—from concrete
objects, to visual features, to violations of default expectations.

Our choice of stimuli draws inspiration from visual search—
a field where asymmetries are observed for a variety of stimulus
types and features. In visual search, participants typically take
longer to search for a target that is marked by the presence of a
distinguishing feature, as compared to searching for a target
that is marked by the absence of a feature relative to distractors
(Treisman and Souther 1985; Treisman and Gormican 1988).
Interestingly, search asymmetries have been demonstrated not
only for the absence or presence of concrete physical features,

Figure 1. In visual detection, subjective confidence ratings following judgments about target absence are typically lower, and less correlated
with objective accuracy than following judgments about target presence. Top panel: a typical detection experiment. The participant reports
whether a visual grating was present or absent, and then rates their subjective decision confidence. Bottom left: typically, mean confidence in
“yes” responses (blue) is higher than in “no” responses (red). This effect is much more pronounced in correct trials. Bottom right: the interac-
tion between accuracy and response type on confidence (metacognitive asymmetry) manifests as a lower area under the response-conditional
ROC curve for “no” responses compared with “yes” responses. Plots do not directly correspond to a specific dataset, but portray typical results
in visual detection.
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but also for the presence or absence of deviations from a more
abstract default state, which can be based on experience, cul-
ture, and contextual expectations (see Methods; Frith 1974; Von
Grünau and Dubé 1994; Wang et al. 1994; Gandolfo and Downing
2020). Of special interest for our study are these latter asymme-
tries due to expectation violations, and their relation with
asymmetries induced by the presence or absence of local and
global features. Observing a metacognitive asymmetry for ex-
pectation violations as well as for the presence and absence of
objects features would support a strong link between the repre-
sentation of absence and default reasoning, where differences
in metacognitive sensitivity reflect differences in the processing
of information that agrees or contrasts with the expected
default state.

While traditional accounts interpreted visual search asym-
metries as reflecting a qualitative advantage for the cognitive
representation of presence (affording a parallel search in the
case of feature-present search only; Treisman and Gormican
1988), other models attribute the asymmetry to differences in
the distributions of perceptual signals already at the sensory
level (Dosher et al. 2004; Vincent 2011). Similarly, in the case of
metacognitive asymmetries, the idea that decisions about ab-
sence are qualitatively different from decisions about presence
has been challenged by an excellent fit of simple models that
assume unequal variance for the signal-present and signal-
absent sensory distributions, a model that does not assume any
qualitative difference between the two decisions (Kellij et al.
2018). Deciding between these model families is beyond the
scope of this project. However, identifying metacognitive asym-
metries for abstract cognitive variables such as familiarity could
help refine these models, for instance by revealing that
representing deviations from a default state is an overarching
principle of cognitive organization, one that goes beyond spe-
cific features of visual perception.

Materials and Methods

We report how we determined our sample size, all data exclu-
sions (if any), all manipulations, and all measures in the study.

We will run six experiments, that will be identical except for
the identity of the two stimuli S1 and S2. Our choice of stimuli
for this study is based on the visual search literature. For some
stimulus pairs S1 and S2, searching for one S1 among multiple
S2s is more efficient than searching for one S2 among multiple
S1s. Such search asymmetries have been reported for stimulus
pairs that are identical except for the presence and absence of a
distinguishing feature. Importantly, distinguishing features
vary in their level of abstraction, from concrete local features
(finding a Q among Os is easier than the inverse search;
Treisman and Souther 1985), through global features (finding a
curved line among straight lines is easier than the inverse
search; Treisman and Gormican 1988), and up to the presence
or absence of abstract expectation violations (searching for an
upward-tilted cube among downward-tilted cubes is easier than
the inverse search, in line with a general expectation to see
objects on the ground rather than floating in space; Von Grünau
and Dubé 1994). We treat these three types of asymmetries as
reflecting a default-reasoning mode of representation, where
the absence of features and/or the adherence of objects to prior
expectations is tentatively accepted as a default by the visual
system, unless evidence is available for the contrary (Treisman
and Souther 1985; Treisman and Gormican 1988). In this study,
we will test for metacognitive asymmetries for two stimulus
features in each category, in six separate experiments with dif-
ferent participants (Fig. 2). For each of the following stimulus
pairs, searching for S1 among multiple instances of S2 has been
found to be more efficient than the inverse search:

1. Local feature: Addition of a stimulus part. Q and O will be
used as S1 and S2, respectively (Treisman and Souther 1985).

Figure 2. Response conditional ROC curves for the two discrimination responses. The area under the curve is a measure of metacognitive sensi-
tivity. Bottom right inset: distributions of the area under the curve for the two responses, across participants. Overall, participants had lower
metacognitive insight into the accuracy of their ‘O’ responses.
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2. Local feature: Open ends. C and O will be used as S1 and S2,
respectively (Treisman and Souther 1985; Treisman and
Gormican 1988; Takeda and Yagi 2000).

3. Global feature: Curvature. Curved and straight lines will be
used as S1 and S2, respectively (Treisman and Gormican
1988).

4. Global feature: Orientation. Tilted and vertical lines will be
used S1 and S2, respectively (Treisman and Gormican 1988).

5. Expectation violation: Letter inversion. Reversed and normal
Ns will be used as S1 and S2, respectively (Frith 1974; Wang
et al. 1994).

6. Expectation violation: Viewing angle. Upward and
Downward tilted cubes will be used as S1 and S2, respectively
(Von Grünau and Dubé 1994).

The experiments will quantify participants’ metacognitive
sensitivity for discrimination judgments between S1 and S2.

Participants

The research complies with all relevant ethical regulations, and
was approved by the Research Ethics Committee of University
College London (study ID number 1260/003). Participants will be
recruited via prolific, and will give informed consent prior to
their participation. They will be selected based on their accep-
tance rate (>95%) and for being native English speakers. For
each of the six experiments, we will collect data until we reach
106 included participants (after applying our pre-registered ex-
clusion criteria). The entire experiment will take 15 min to com-
plete. Participants will be paid £2 for their participation,
equivalent to an hourly wage of £8.

Procedure

Experiments were programmed using the jsPsych and P5
JavaScript packages (De Leeuw 2015; McCarthy 2015), and will be
hosted on a JATOS server (Lange et al. 2015).

After instructions, a practice phase and a multiple-choice
comprehension check, the main part of the experiment will
start. It will comprise 96 trials separated into 6 blocks. Only the
last five blocks will be analyzed.

On each trial, participants will make discrimination
judgments on masked stimuli, and rate their subjective decision
confidence on a continuous scale. After a fixation cross
(500 ms), the target stimulus (S1 or S2) will be presented in the
center of the screen for 50 ms, followed by a mask (100 ms).
Stimulus onset asynchrony will be calibrated online in a 1-up-2-
down procedure (Levitt 1971), with a multiplicative step factor
of 0.9, and starting at 30 ms. Participants will then use their key-
board to make a discrimination judgment. Stimulus-key map-
ping will be counterbalanced between participants. Following
response, subjective confidence ratings will be given on an ana-
log scale by controlling the size of a colored circle with the com-
puter mouse. High confidence will be mapped to a big, blue
circle, and low confidence to a small, red circle. We chose a con-
tinuous (rather than a more typical discrete) confidence scale in
order to ensure sufficient variation in confidence ratings within
the dynamic range of individual participants. This variation is
useful for the extraction of response conditional ROC curves.
The confidence rating phase will terminate once participants
click their mouse, but not before 2000 ms. No trial-specific feed-
back will be delivered about accuracy. In order to keep partici-
pants motivated and engaged, block-wise feedback will be
delivered between experimental blocks about overall accuracy,

mean confidence in correct responses, and mean confidence in
incorrect responses.

Randomization

The order and timing of experimental events will be determined
pseudo-randomly by the Mersenne Twister pseudorandom
number generator, initialized in a way that ensures registration
time-locking (Mazor et al. 2019).

Data Analysis

We will use R (Version 3.6.0; R Core Team 2019) and the R-pack-
ages BayesFactor (Version 0.9.12.4.2; Morey and Rouder 2018),
broom (Version 0.5.6; Robinson and Hayes 2020), cowplot (Version
1.0.0; Wilke 2019), dplyr (Version 1.0.0; Wickham et al. 2020),
ggplot2 (Version 3.3.1; Wickham 2016), lsr (Version 0.5; Navarro
2015), MESS (Version 0.5.6; Ekstrøm 2019), papaja (Version
0.1.0.9942; Aust and Barth 2020), pracma (Version 2.2.9; Borchers
2019), pwr (Version 1.3.0; Champely 2020), and tidyr (Version
1.1.0; Wickham and Henry 2020) for all our analyses.

For each of the six stimulus pairs [S1, S2], we will test the fol-
lowing hypotheses:

1. Hypothesis 1: Subjective confidence is higher for S1

responses than for S2 responses.
For each of the six stimulus pairs, we will test the null hy-
pothesis that subjective confidence for S1 responses is equal
to or lower than subjective confidence for the feature-absent
stimulus (Ho : confS1 � ConfS2 ).

2. Hypothesis 2: Metacognitive sensitivity, measured as the
area under the response conditional ROC curves, is higher
for S1 responses than for S2 responses.
For each of the six stimulus pairs, we will test the null hy-
pothesis that metacognitive sensitivity for S1 responses is
equal to or lower than metacognitive sensitivity for S2

responses (Ho : auROCS1 � auROCS2 ).
3. Hypothesis 3: Metacognitive sensitivity, measured as the

area under the response conditional ROC curves, is higher
for S1 responses than for S2 responses, to a greater extent
than expected from an equivalent equal-variance SDT
model.
For each of the six stimulus pairs, we will test the null hy-
pothesis that difference between metacognitive sensitivities
for S1 and S2 responses is lower than the difference expected
from an equal-variance SDT model with matched confide-
nec distributions, response bias, and sensitivity (Ho :

ðauROCS1 �auROCS2 Þ � ð dauROCS1 � dauROCS2 Þ).
4. Hypothesis 4: S1 responses are faster on average than S2

responses.
For each of the six stimulus pairs, we will test the null hy-
pothesis that log-transformed response times for S1

responses are equal to or higher than log-transformed re-
sponse times for S2 responses (Ho : logðRTS1 Þ � logðRTS2 Þ).

Hypotheses 1 and 2 correspond to the effects of stimulus
type on metacognitive bias and metacognitive sensitivity,
respectively. Although these two measures are theoretically in-
dependent, both bias and sensitivity are found to vary between
detection “yes” and “no” responses.

Based on pilot data and previous experiments examining
near-threshold perceptual detection and discrimination, we do
not expect a response bias (such that the probability of respond-
ing S1 is significantly different from 0.5 across participants).
However, such a response bias, if found, may bias our
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metacognitive asymmetry estimates as measured with
response-conditional ROC curves. Hypothesis 3 is designed to
confirm that metacognitive asymmetry is higher than that
expected from an equivalent equal-variance SDT model with
the same response bias, sensitivity, and distribution of confi-
dence ratings in incorrect responses as in the actual data. We
will interpret conflicting results for Hypotheses 2 and 3 as evi-
dence for a metacognitive asymmetry that is driven or masked
by a response bias.

Hypothesis 4 is motivated by two observations from previ-
ous studies. First, detection “yes” responses are faster than
detection “no” responses (Mazor et al. 2020). And second, when
participants are not under strict time pressure, reaction time in-
versely scales with confidence (Henmon 1911; Pleskac and
Busemeyer 2010; Calder-Travis et al. 2020). Based on these
findings, if S1 and S2 responses are similar to detection “yes”
and “no” responses not only in explicit confidence judgments,
but also in response times, we should also expect a response
time difference for these stimulus pairs.

Dependent variables and analysis plan

Response conditional ROC curves will be extracted by plotting
the empirical cumulative distribution of confidence ratings for
correct responses against the same cumulative distribution for
incorrect responses. This will be done separately for the two
responses S1 and S2, resulting in two curves. The area under the
response-conditional ROC curve is a measure of metacognitive
sensitivity (Fleming and Lau 2014). The difference between the

areas for the two responses is a measure of metacognitive
asymmetry (Meuwese et al. 2014). This difference will be used to
test Hypothesis 2.

In order to test hypothesis 3, SDT-derived response-condi-
tional ROC curves will be plotted in the following way. For each
response, we will plot the empirical cumulative distribution
for incorrect responses on the x axis against the cumulative dis-
tribution for correct responses that would be expected in an
equal-variance SDT model with matching sensitivity and
response bias on the y axis. The difference between the areas
of these theoretically derived response-conditional ROC curves
will be compared against the difference between the true
response-conditional ROC curves.

For visualization purposes only, confidence ratings will be
divided into 20 bins, tailored for each participant to cover their
dynamic range of confidence ratings.

For each of the six experiments, Hypotheses 1–4 will be
tested using a one tailed t-test at the group level with a ¼ 0:05.
The summary statistic at the single subject level will be differ-
ence in mean confidence between S1 and S2 responses for
Hypothesis 1, difference in area under the response-conditional
ROC curve between S1 and S2 responses (DAUC) for Hypothesis
2, difference in DAUC between true confidence distributions and
SDT-derived confidence distributions for hypothesis 3, and dif-
ference in mean log response time between S1 and S2 responses
for Hypothesis 4.

In addition, a Bayes factor will be computed using the
BayesFactor R package (Morey et al. 2015) and using a Jeffrey-
Zellner-Siow (Cauchy) Prior with an rscale parameter of 0.65,
representative of the similar standardized effect sizes we ob-
serve for Hypotheses 1–4 in our pilot data.

We will base our inference on the resulting Bayes Factors.

Statistical power

Statistical power calculations were performed using the R-pwr
packages pwr (Champely 2020).

1. Hypothesis 1 (MEAN CONFIDENCE): With 106 participants,
we will have a statistical power of 95% to detect effects of
size 0.32, which is less than the standardized effect size we
observed for confidence in our pilot sample (d ¼ 0:66).

2. Hypothesis 2 (METACOGNITIVE ASYMMETRY): With 106 par-
ticipants, we will have a statistical power of 95% to detect
effects of size 0.32, which is less than the standardized effect
size we observed for metacognitive sensitivity in our pilot
sample (d ¼ 0:73).

3. Hypothesis 3 (METACOGNITIVE ASYMMETRY: CONTROL):
With 106 participants, we will have a statistical power of
95% to detect effects of size 0.32, which is less than the stan-
dardized effect size we observed for metacognitive sensitiv-
ity, controlling for response bias, in our pilot sample
(d ¼ 0:81).

4. Hypothesis 4 (RESPONSE TIME): With 106 participants, we
will have a statistical power of 95% to detect effects of size
0.32, which is less than the standardized effect size we
observed for response time in our pilot sample (d ¼ 0:61).

Finally, in case that the true effect size equals 0, a Bayes
Factor with our chosen prior for the alternative hypothesis will
support the null in 95 out of 100 repetitions, and will support
the null with a BF01 higher than 3 in 79 out of 100 repetitions. In
a case where the true effect size is sampled from a Cauchy
distribution with a scale factor of 0.65, a Bayes Factor with our
chosen prior for the alternative hypothesis will support the al-
ternative hypothesis in 76 out of 100 repetitions, support the
alternative hypothesis with a BF10 higher than 3 in 70 out of 100
repetitions, and support the null hypothesis with a BF01 higher
than 3 in 15 out of 100 hypotheses (based on an adaptation of
simulation code from Lakens 2016).

Rejection criteria

Participants will be excluded for performing below 60% accu-
racy, for having extremely fast or slow reaction times (below
250 ms or above 5 s in more than 25% of the trials), and for
failing the comprehension check. Finally, for type-2 ROC curves
to be generated, some responses must be incorrect. Thus, only
participants who committed at least two errors of each error
type (e.g., mistaking a Q of O and mistaking an O for Q), will be
included.

Trials with response time below 250 ms or above 5 s will be
excluded.

Supplementary data

Supplementary data is available at NCONSC Journal online.

Data Availability

All raw data will be made fully available on OSF and on the
study’s GitHub respository: https://github.com/matanmazor/
asymmetry. Pilot data is available at: https://github.com/mata
nmazor/asymmetry/blob/master/Experiments/Q_in_O/results/
pilot/jatos_results_batch3.csv
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Code Availability

All analysis code will be openly shared on the study’s GitHub re-
pository: https://github.com/matanmazor/asymmetry. For com-
plete reproducibility, the RMarkdown file used to generate the
final version of the manuscript, including the generation of all
figures and extraction of all test statistics, will be available on
our GitHub repository.
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