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Fractal geometry (FG) is a branch of mathematics that instructively charac-
terizes structural complexity. Branched structures are ubiquitous in both
the physical and the biological realms. Fractility has therefore been termed
nature’s design. The fractal properties of the bronchial (airway) system,
the pulmonary artery and the pulmonary vein of the human lung generates
large respiratory surface area that is crammed in the lung. Also, it permits
the inhaled air to intimately approximate the pulmonary capillary blood
across a very thin blood–gas barrier through which gas exchange to occur
by diffusion. Here, the bronchial (airway) and vascular systems were simul-
taneously cast with latex rubber. After corrosion, the bronchial and vascular
system casts were physically separated and cleared to expose the branches.
The morphogenetic (Weibel’s) ordering method was used to categorize the
branches on which the diameters and the lengths, as well as the angles of
bifurcation, were measured. The fractal dimensions (DF) were determined
by plotting the total branch measurements against the mean branch diam-
eters on double logarithmic coordinates (axes). The diameter-determined
DF values were 2.714 for the bronchial system, 2.882 for the pulmonary
artery and 2.334 for the pulmonary vein while the respective values from
lengths were 3.098, 3.916 and 4.041. The diameters yielded DF values that
were consistent with the properties of fractal structures (i.e. self-
similarity and space-filling). The data obtained here compellingly suggest
that the design of the bronchial system, the pulmonary artery and the
pulmonary vein of the human lung functionally comply with the
Hess–Murray law or ‘the principle of minimum work’.
1. Introduction

Fractals are everywhere [1]
Branched or dendritic structures abound in nature [1–9]. The design is not a for-
tuitous evolutionary outcome [8] but is pretty much an adaptive architecture
fashioned by the universal laws of physics and tweaked by the pressures of
natural selection [10–20]. From the remarkable similarity between the bronchial
system of the human lung and that of an inverted botanical tree, the airway
system of the human lung is commonly called the ‘respiratory tree’ [2,5,21].
Fractal geometry (FG) is a branch of mathematics that characterizes the
structure of complex structures [2,5,22–24]. Utilizing FG based algorithms,
Kitaoka & Suki [25] and Kitaoka et al. [26] prepared three-dimensional (3D)
computational models that resembled the structure of the human lung. Histori-
cally, branched structures have aroused human curiosity for a long time. Later
corroborated by (among others) Richter [27], Leonardo da Vinci (1452–1519)
determined that within each generation, the cross-sectional area of a tree
trunk is equal to the sum of the cross-sectional areas of the branches. The
advancement of FG from applied mathematics to life sciences [28,29]
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transformed the hitherto speculative and in some cases teleo-
logical interpretation of form and function. The etymology of
the word ‘fractal’ is from Latin ‘frāctus’, which corresponds
with the English words of ‘broken’, ‘fractured’ and ‘fraction’.
A fractal dimension (DF) states the structural complexity of
an assemblage [2,5,30,31]. Typically, it is a fraction or a non-
integer number [2,5,32,33]. In the conventional Euclidean
geometry, the topological dimensions are finite numbers (i.e.
they are integers), with a point having 0 dimension, a line 1
dimension, a plane 2 dimensions and a cube, a sphere and a
cylinder 3 dimensions. Whole numbers (i.e. integers) cannot
sufficiently detail the design of a complex natural structure
[1,2,5,34–37].Michael [37] termed FG as ‘the geometry between
dimensions’. It allows the non-topological properties of form
and shape to be more well-captured [5]. While the so-called
absolute or mathematical fractals are space-filling and self-
similar over an infinite range of magnification [2], among
others, Weibel [5], Captur et al. [24], Florio et al. [38], Avnir
et al. [39] and Fernández et al. [40] have argued that biological
structures are quasi-fractal structures (i.e. they are space-filling
only to an extent and may display fractility only in some
parts of their assembly or over a finite range of magnification).
The complex branched architecture of structures such as the
bronchial- and the vascular systems of the mammalian lung,
the river drainage basins, the root systems of plants, the brain
folds, the vascular systems of organs like the kidney and the
neural networks of the brain is fractal [2,5,8,23,34,41–46].
Weibel [5] stated that ‘fracticality could explain life’s design
principles’, while Mandelbrot [2] espoused that ‘the lung can
be self-similar and it is’. In complex multicellular organisms,
life is sustained by an efficient networked infrastructure by
which vital materials and substances such as nutrients and
oxygen are delivered to all parts and information transmitted
by electrical signals in the form of nerve impulses for coordi-
nation of physiological processes. Mostly developed about a
century ago, the Hess–Murray law (H-ML) [10–12,47] is an
elemental physical principle that expresses the relationship
between the morphologies of the branched and the energetic
cost of transporting fluids through tubular structures [48–57].
The H-ML has been mathematically and empirically substan-
tiated by among others Cohn [13,14], Uylings [15] and
LaBarbera [17]. It states that in natural transporting systems
such as blood vessels, laminar flow occurs with minimum
energy loss [17,49,51,58–60]. Considerably based on the found-
ing paradigm of the H-ML, the more inclusive ‘constructal law
of design and evolution’ was more recently posited [8,60–62].

The branched airways and blood vessels of the human lung
have been quantitatively well investigated [42,63–70], but their
DF values have been determined only in few studies [30,71–76].
Replicas, images and models have been prepared using differ-
ent materials and methods and measurements made [70,77–
83]. The DF values have been calculated using among other
methods box counting [2,22,24,28,29,33,84–89], grey level co-
occurrence matrix [90] and perimeter-to-area measurement
[37]. Called the ‘new approach’, recently, a mathematical
approach that was based on one of the variants of the Von
Koch curve [91] was used to calculate the DF of the human
lung from data reported by other investigators. DF values
have also been determined by double logarithmic plots of the
diameters and the lengths of the branches of structures such
as the bronchial and vascular systems of the human lung
[5,30,92,93]. Although the DF values convey the same general
detail (i.e. structural complexity), those values obtained by
digitized computational methods are not exactly the same as
those obtained from measurements of diameters and lengths
of the branches. Designated as ‘the geometry of life’ [5] and
‘the fourth dimension of life’ [94], FG is a heuristic understand-
ing of the basis of the designs of complex biological structures
[5,30,73,74,95,96]. It has found important applications in differ-
ent areas ofmedicine such as tissue and organ engineering [97],
and quantitative differentiation of normal from diseased and
pathological tissues [33,36,98–105]. Hughes [20] noted that dis-
ease is a consequence of change from optimal design; in fatal
asthma cases, Boser et al. [106] observed a significant decrease
of the DF which they ascribed to a decrease in the extent of
space-filling of the branches of the airways; Mauroy et al.
[107] pointed out that during asthmatic attacks, bronchial mal-
function stems from the unoptimized structure of the
pulmonary bronchial tree; Liew et al. [108] and Gould et al.
[109] reported that suboptimal space-filling architecture
causes organs to perform poorly and the best performance of
a space-filling structure emanates from a balance between
under-exploitation and over-exploitation of the blood–gas
barrier by the oxygen molecules; and King et al. [110] stated
that in cases of Alzheimer’s disease, DF (which is a measure
of the functional connectivity of the neurons in the brain)
decreases as the condition progresses clinically. Also, fractility
has been employed to identify and quantitatively diagnose
conditions such as pulmonary hypertension [33,111–113];
heart rate has been noted to become more regular before
heart attacks [114,115]; non-optimal branching geometry of a
structure constitutes an undesirable risk factor during the
early stages of life [20]; pathological conditions such as athero-
sclerosis and calcification derive from departure from
optimality (i.e. non-compliance with the H-ML) [116–118];
and functional efficiency stems from the fractility [119]. Here,
the diameters and the lengths of the branches of the different
generations and the angles of bifurcation of the bronchial-
and vascular systems (pulmonary artery and pulmonary
vein) of the human lung were measured on latex rubber
cast preparations and the DF values determined by double
logarithmic plots of the measurements.
2. Results
2.1. Morphologies of the bronchial and vascular

systems
The casts of the bronchial (airway) and vascular (pulmonary
artery and pulmonary vein) systems displayed dichotomous
asymmetrical branching with irregular branch diametric and
length sizes and angles of bifurcation (figures 1–3). While
most of the angles of bifurcation were oriented perpendicular
to the direction of gravity in an erect (normal) standing position,
a few of them were inclined to the perpendicular direction at
various angles.

The casts of the bronchial system, the pulmonary artery
and the pulmonary vein presented normal morphological
features of the human lung (figure 4a–d). The terminal com-
ponents of the airway (i.e. the alveoli) and the vascular
systems (i.e. the blood capillaries) displayed normal shapes
and sizes. The interface between alveoli and the blood capil-
laries, where gas exchange occurs, was clearly observed
(figure 4d ).



10 000

1000

100

10
0.1 1 10

DF = 2.714

1 cm

y = 2069.7x–1.714

100
mean branch diameter (mm)

to
ta

l b
ra

nc
h 

di
am

et
er

 (
m

m
)

Figure 1. Double logarithmic plot of the total branch diameter against the mean branch diameter of the bronchial (airway) system of the cast human lung. The
fractal dimension (DF) was 2.714. The insert shows the cleared cast of the bronchial system on which measurements were made. The dashed lines are the 95%
confidence interval lines of the plotted data.
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Figure 2. Double logarithmic plot of the total branch diameter against the mean branch diameter of the pulmonary vein of the human lung. The fractal dimension
(DF) was 2.334. The insert shows the cleared cast of the pulmonary vein on which measurements were made. The dashed lines are the 95% confidence interval lines
of the plotted data.
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2.2. Measurements of the bronchial and vascular
systems

The branches of the three main parts of the lung (i.e. the bron-
chial, the pulmonary artery and the pulmonary vein systems)
were categorized using the ‘morphogenetic’ or ‘regular
dichotomy’ or ‘Weibel’s’ ordering method [1,5,40,41,95].
The mean diameters and the mean lengths of the branches
that comprise the different generations of the main systems
and the angles of bifurcation of the branches are shown in
tables 1–3; the values of DF which were determined here
and those that have been reported by other investigators on
the human lung are shown in table 4; and comparison of
the DF values of the lungs of the non-human vertebrates
and other natural structures that have been investigated are
given on table 5. For the bronchial system, the pulmonary



10 000

1000

100

10

1
0.1 1 10

DF = 2.882

1 cm

y = 3077.8x–1.882

100
mean branch diameter (mm)

to
ta

l b
ra

nc
h 

di
am

et
er

 (
m

m
)

Figure 3. Double logarithmic plot of the total branch diameter against the mean branch diameter of the pulmonary artery of the human lung. The fractal dimen-
sion (DF) was 2.882. The insert shows the cleared cast of the pulmonary artery on which measurements were made. The dashed lines are the 95% confidence
interval lines of the plotted data.

(a) (b)

(d)(c)

Figure 4. Scanning electron micrographs of the terminal parts of the casts of the bronchial and vascular systems of the human lung. (a) The normal morphologies
of the alveoli (stars) and blood capillaries shows that the casting material was suitable and casting method was proper. RB, respiratory bronchioles. (b) The res-
piratory bronchioles seen giving rise to alveoli (stars) which are interconnected by the interalveolar pores or the eponymous pores of Kohn (arrows). (c) A cluster of
alveoli (stars) that are supplied with blood by an arteriole (At) and drained by a venule (Vn). Arrows, interalveolar pores. (d ) Interfacing between the alveoli (stars)
and the blood capillaries (BC) at the gas exchange level. Arrows, interalveolar pores.
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artery and the pulmonary vein, respectively, 15, 14 and 14
generations that comprised 8663, 7531 and 7355 branches
were measured. The mean diameters of the branches (mm)
of these systems were respectively 3.48 ± 3.54, 3.66 ± 3.11
and 4.46 ± 5.38. The coefficients of variation (CV) (%) of the
mean diameter and length measurements for the bronchial,
pulmonary artery and pulmonary vein systems were respect-
ively 29.78 ± 11.47 and 28.40 ± 13.76, 28.25 ± 7.15 and 35.23 ±
13.30, and 103.81 ± 73.82 and 40.85 ± 13.37; the mean ratio of
the change in the mean generation diameters and the mean
generation lengths were respectively 1.24 ± 0.23 and 0.86 ±
1.30, 1.13 ± 0.43 and 1.16 ± 0.35, and 1.28 ± 0.27 and 1.12 ±
0.22. Regarding the mean length-to-diameter ratio of the
branches that formed the generations, for the bronchial
system, the pulmonary artery and the pulmonary vein, the
values were respectively 3.86 ± 1.27, 3.82 ± 1.71 and 3.55 ±
1.29, while the mean ratios of the change in the number of
branches with the generations were respectively 1.55 ± 0.72,
1.68 ± 0.67 and 1.66 ± 0.68. The total diameters (mm), which
were calculated by multiplying the number of branches of a
generation with the mean diameter for that generation,
were respectively 750.40 ± 598.79, 743.22 ± 657.23 and
744.73 ± 683.37 for the bronchial system, the pulmonary
artery and the pulmonary vein. Respectively, for the bron-
chial system, the pulmonary artery and the pulmonary
vein, the mean bifurcation angles (in degrees) were 34.23 ±
6.20, 33.83 ± 6.03 and 32.06 ± 1.69, while the mean ratios of
the change in the mean angles of bifurcation were 1.04 ±
0.18, 1.05 ± 0.23 and 1.05 ± 0.18, values which were very
close to each other.

2.3. DF values of the bronchial system, the pulmonary
artery and the pulmonary vein

From the measurements of the diameters and the lengths of
the branches, respectively, the DF values of the bronchial
system, the pulmonary artery and the pulmonary vein were
2.714 and 3.098, 2.882 and 3.916, and 2.334 and 4.041.

This is the first study where the three main systems of the
human lung have been cast together, analysed and the data
modelled to determine DF. Since the lung largely comprises
air, blood and compliant tissue, casting of single systems, as
has been done by some investigators [73,92], is accompanied
by certain technical difficulties that include possible over-dis-
tension of the branches during casting, a process that is
constrained during simultaneous casting. Although it has yet
to be proven, the replicas prepared here may turn out to be
some of the most representative that have been investigated
in comparison with similar studies. Furthermore, the quality
of the casts may have been greatly improved by the fact that
despite the many necessary stages that have to be followed
after death before a human body is released for dissection
and/or research, here, conscious effort was made to acquire
the cadaver in as short a time as possible, and the whole time
it was kept and cast in a cold room. This should have
minimized autolytic changes of the pulmonary tissues.
3. Discussion
Casting with various materials has been and continues to
be a meaningful technique of studying biological structures
[70,78–80,124,125]. Latex rubber was used here because of
the following reasons: (i) it is nontoxic and is thus safe to
handle; (ii) it is water-soluble and therefore its viscosity can
be easily varied to suit the organ cast; (iii) it can be easily
coloured differently for parts of the structure to be cast and
easily differentiated; (iv) depending on the level of dilution,
it sets rapidly and hence results can acquired faster; and (v)
it shrinks little, if at all, and consequently few, if any, distor-
tions form [70,79,80]. The casts of the bronchial system, the
pulmonary artery and the pulmonary vein which were pre-
pared here displayed the normal morphologies of the
human lung [63,64,75,95,106,119,124] (figure 4a–d) which cor-
responded with those reported by other investigators
[42,43,95,124,126]. It showed that the casting material used
and the method applied for casting was appropriate.

Structurally, the human lung comprises three main parts,
namely the bronchial system, the pulmonary artery and the
pulmonary vein. Topographically, the bronchial system and
the pulmonary artery closely track each other while the pul-
monary vein and its branches occupy an intermediate
position between the broncho-arterial units [95]. By any cri-
terion, the human lung is a structurally complex organ
[2,42,43,63,64,95,107]. The fractal properties of its parts have
been investigated to understand its structure and function
in health and disease states [2,5,89,95,101,127]. Various
DF values have been determined for the bronchial and the
vascular systems of the human lung [5,30,88,89,91,92,106]
(table 4). The morphogenic (Weibel’s) ordering method
[2,30,65,95, 126,128,129] (figure 5a,b) has been used to categor-
ize the branches that form the various generations of the lung
[63,64], while the ‘older’ ordering method of Strahler [73,130–
132] (figure 6a), which was initially developed to study geo-
morphological (landscape) features such as river drainage
systems, has also been applied on some biological structures.
Modifications of Strahler’s ordering method such as
Horsfield’s ordering method [133] (figure 6b) and the diam-
eter-defined Strahler’s ordering method [67,73,92,134,135]
were developed to improve the erstwhile (Strahler’s) model.
For the morphogenetic ordering method, the branches are
classified according to the succession they formed during the
development of the organ [63–65,95,126,129]. The model
assumes that regular dichotomy and that the branches are
equal in size [63,64,95]. By considering the irregularity of the
bifurcation pattern, Strahler’s ordering method may reduce
the variation of the measurements made on the branches
[95,130–132]. The ordering starts from the periphery and
advances inwards (i.e. towards the trachea; figure 6a). When
two branches of identical order meet, the convergent branch
number increases by one, while if two branches belonging to
different orders meet, the resulting branch is allocated the
order of the highest-ordered branch of the pair [31,73,92]. In
Horsfield’s ordering method [68,69,136–138] (figure 6b), the
lowest order is assigned to the smallest branch (i.e. the ordering
of a parent branch depends on the orders of its daughter
branches and the parent branch is given an order value that
is one higher than the highest order assigned to one of its
daughter branches). With the exception of a condition where
the symmetrical hierarchical arrangement of branches exists
[129], generally, Strahler’s orderingmethod yields fewer gener-
ations compared with Horsfield’s [95,138]. Although the
application of Strahler’s [130–132] and Horsfield’s ordering
methods [68,69,138,139] could have reduced the variability
between the measurements which were made on the branches
in this study, for the reasons given below, the morphogenetic
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orderingmethodwas preferred.We subscribed to the consider-
ation ofWeibel [95] andHsia et al. [129] that for the human lung,
the morphogenetic ordering method provides more instructive
data for understanding physiological processes such as flow
dynamics [95,138,140,141] and particle deposition [142,143],
while Strahler’s ordering method yields more meaningful
data for the pathologists [129,138]. Furthermore, Horsfield
[138] cautioned that a great deal of information is lost in the sim-
plification inherent in Strahler’s ordering method, especially
with regard to the connectivity of the branches. It is important
to note that the two main ordering models (Weibel’s and
Strahler’s) are not at total variance. Weibel [95] remarked that
although the morphogenetic and Strahler’s ordering methods
are ‘conceptually different’, ‘both approaches lead to the same
conclusions’, while Horsfield [138] observed that the morpho-
genetic and Strahler’s ordering methods ‘are not in conflict
with each other but are simply looking at different aspects of
the same thing’. Together with the considerations above, the
morphogenetic ordering method was applied in this study for
the following reasons: (i) the primary aim of this study was to
acquire data which informed the structure and function of the
human lung; (ii) the model emulates the development of the
airway- and the vascular systems of the lung and may, there-
fore, yield most explicatory data [144,145]; and (iii) nature’s
accommodation of the pressures of natural selection generates
the best possible solutions to the challenges of life
[8,48,60,146–152]. Molecular biology studies have shown that
the vertebrate lung develops by a well-orchestrated spatio-
temporal expression of an assortment of morphogenetic cues
(molecular factors) which by an iterative process assembles a
branched design [153–160].

Complex biological entities possess various DF values
[106] which may be determined by factors such as the stage
of development, lifestyle and whether the structure is healthy
or diseased [161]. Chau [162] advised that in order to absol-
utely capture the fractility of a structure, different analytical
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techniques should be used to obtain data at various magnifi-
cations; Captur et al. [24], Avnir et al. [39] and Boser et al. [106]
contended that branched structures do not display self-
similarity over infinite scales of magnification as argued by
Mandelbrot [2] but are only space-filling structures; and
Nelson & Manchester [30], Falconer [35] and Lennon et al.
[36] stated that although the structural systems of the lung
may not display self-similarity over an infinite range of mag-
nification and only some parts may be fractal [30,35,36].
Regarding the human lung, different DF values have been
reported by various investigators on the bronchial and vascu-
lar systems [5,30,64,73,75,91,106,120] (table 4). For the
bronchial system, which has been investigated to a greater
extent compared with the vascular system, the DF values
range from 1.75 to 3.098. Also, differences exist between the
DF values of the human lung and those of the lungs of
non-human vertebrates and other branched natural structures
[88–90,92,102,119, 122,123] (table 5). Morphological differ-
ences, variations of the methods of the preparation of the
formations on which measurements are made, the ordering
method employed to classify the branches and the mathemat-
ical models used to determine/calculate DF may account for
the variations. Here, the diametric measurements gave DF

values of 2.714 for the bronchial system and 2.882 for the pul-
monary artery (table 4), values particularly close that of 3,
which is expected for a space-filling tree-like structure
[1,2,5,95]. The DF determined in this study for the bronchial
system (2.714) was very close the value of 2.760 reported by
Nelson & Manchester [30] from measurements of the lengths
of the branches of the airways of the human lung, which were
categorized by the morphogenetic ordering method [65].
Nelson & Manchester [30] dismissed a DF of 4.10, which
they calculated from data reported by Weibel [63] and
Weibel & Gomez [64] on the human lung, as having no ‘phys-
ical significance’. Where length and diameter measurements
have been used to determine DF values by double logarith-
mic plotting, regarding the dog’s pulmonary venous
system, Gan et al. [92] reported a higher DF (2.99) from
lengths and a smaller one (2.489) from diameters. Here,
lengths gave higher DF values compared with diameters
(table 4). In a rigid tube, during laminar flow, the diameter
has a greater effect on the flow dynamics compared to
length [163–165]. In accordance with the Hagen–Poiseuille
law of fluid flow, which is expressed as ΔP = 8l µV/μr4 [165]
(where ΔP is the pressure difference between the ends of the
tube; l is the length of the tube; μ is the fluid dynamic vis-
cosity; V is the volumetric flow rate; and r is the radius of
the tube), resistance is inversely proportional to the radius
and directly proportional to length. Decreasing the radius
of the tube by one-half increases resistance 16-fold (i.e. by a
factor of 24), while doubling length increases resistance
two-fold. The closeness of the values of DF that were deter-
mined in this study from diameter measurements,
especially for the bronchial system and the pulmonary
artery, to the expected value of 3 of an absolutely space-filling
structure [1,2,28,29] may, to an extent, be ascribed to the great
significance of diameter as a structural parameter in deter-
mining fluid flow. For the human lung, Huang et al. [73]
noted that the diameters of the branches of the pulmonary
artery and vein were constant, while Phillips & Kaye [166]
observed that to a greater extent air flow in the lung is deter-
mined by the diameters of the airways, a feature well-
evidenced during asthmatic attacks [163]. Consistency of
the diameters and lengths of the branches was observed in
this study: for the bronchial system, the pulmonary artery
and the pulmonary vein, the mean diametric and length
changes were respectively 1.24 and 1.25, 1.13 and 1.16, and
1.28 and 1.12, values which were both close to each
other and close to the value of approximately 1 reported by
Phillips & Kaye [166] on the bronchial system of the human
lung and said to display optimal air flow.

Optimization is quantitatively defined as maximization
of output or performance for a certain input or cost
[48,148,150,151,167]. It is an adaptive process that occurs in
accord with the universal laws of physics and is tweaked
by the pressures of natural selection [2,5,76,94,95,146–
152,168]. The ‘principle of minimum work’ or the H-ML
[10–12,47,169] is one such law. The subject matter has been
reviewed by among others LaBarbera [17,58], Hughes [20],
Sherman [49], Sciubba [56], LaBarbera & Vogel [170] and
Xu et al. [171]. While it has been challenged by some investi-
gators [149,172], the branching angles of fluid transporting
structures are an important structural feature that permits
compliance with the H-ML [12,15,173–177]. Originally devel-
oped for the specific case of the cardiovascular system in
which blood is transported through a single branching tube
[11,12,47,152], the H-ML defines the cost of laminar flow
through passageways. In the animal kingdom, structures
that obeyed the H-ML are reported to have developed as
long ago as approximately 375 Ma and may have since
evolved independently at least three times [51,59]. In dendri-
tic transporting structures, optimality exists where the cube of
the parent (i.e. upstream) channel radius is equal to the sum
of the cubes of the daughter (i.e. downstream) conduits’ radii.
Mathematically, the relationship is expressed as follows:
rx0 ¼ rx1 þ rx2 þ . . . rxz , where the subscripts denote the parent
(0) and the daughter branches (1, 2,…, z) and the superscripts
(x) are the junctional- or branching exponents [47,56,130–
132]. For certain vascular morphologies, Takahashi [31]
determined that the DF values and the branching exponents
(x) were equal (see Hughes [20] for succinct re-verification
of the relation). The H-ML is obeyed in many branched bio-
logical structures [8,15–17,20,49,53,58,121,130–132,174,178–
185]. The data acquired here compellingly show that the
bronchial and vascular systems of the human lung comply
with the H-ML. The branching ratio of the bronchial system
of the human lung (i.e. the total number of branches in one
order to that in the next one), which was reported by
Weibel [95] to indicate optimal structure, was approximately
1.4, a value close to that of 1.55 for the same system found in
this study. The mean branching angles of the bronchial
system (34.23°), the pulmonary artery (33.83°) and the pul-
monary vein (32.06°) obtained here fell within the range of
the values of 27–40° for blood vessels and airways expressed
to be optimal angles of bifurcation by several investigators
[11,15,56,140,186,187]. Regarding the carotid artery, which
had a branching angle ratio of 1.2, blood flow was reported
to obey the H-ML [140]. Here, the mean ratios of the angles
bifurcation for the bronchial, pulmonary artery and pulmon-
ary vein systems were respectively 1.04, 1.05 and 1.05, values
that are close to each other and also to the value (1.2) for the
carotid artery [140]. Showing morphological similarities, the
mean ratios of the change of the number of branches of the
bronchial system, the pulmonary artery and the pulmonary
vein, which were respectively 1.55 ± 0.72, 1.68 ± 0.67 and
1.66 ± 0.68, were not statistically significantly different ( p >
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0.5). For optimal blood flow in branched blood vessels,
Lorthois & Cassot [188] reported that the DF values should
range between approximately 2 and 3. Mandelbrot [2] deter-
mined that the diameter exponents of a space-filling tree-like
structure was 3 and Weibel [95] showed that the diameters of
the passageways decrease by the cube root of the branching
ratio 2 (2−1/3 = 1.26), a feature which in terms of hydrodyn-
amics instructs optimal flow. The internal carotid artery,
which had a DF of 2.9, complied with the H-ML [140].
Here, the DF values of the bronchial system, the pulmonary
artery and pulmonary vein, which were respectively 2.71,
2.88 and 2.334, were within the range of approximately 2–3
for the branched structures, which are reported to present
optimal flow [2]. The DF values of the bronchial system and
the pulmonary artery that were determined here were close
to the value of the carotid artery of 2.9, which obeyed the
H-ML [140], and also close to the value of 3 of a space-filling
structure [2]. In two human brains where the branching expo-
nents ranged from 2.67 to 2.79 for arteries having diameters
of less than 0.1 mm, blood flow complied with the H-ML
[189]. After plotting the branch measurements of the bron-
chial system of the human lung against the generations on
double logarithmic axes, Nelson et al. [71] and West et al.
[76] found that lengths regressed with a slope of approxi-
mately −1.4 and diameters with that of −1.26, while Weibel
[5] determined a slope of −1.35 for measurements of the
same structure. Here the diameters of the bronchial system,
the pulmonary artery and pulmonary vein respectively
regressed by slopes of −1.71, −1.88 and −1.33. In the
human lung, optimization of air flow occurs when the aver-
age length-to-diameter ratio of the branches is 3.25, and the
diameters of the branches decrease by a factor of −0.86 and
for the length by that of −0.62 [5]. In the open circulation of
the blue crab (Callinectes sapidus), where the H-ML was
reported to be obeyed, the mean segment (branch) length-
to-diameter ratio was 3.98 [51]. Here, the corresponding
values for the bronchial, pulmonary artery and pulmonary
vein systems were respectively 3.86, 3.82 and 3.55, values
close to that of 3.98 reported on the circulatory system of
the blue crab [51]. The mean ratios of the decrease in the
diameters and the lengths of the branches of the bronchial
system, the pulmonary artery and the pulmonary vein that
were determined here, which were respectively 1.24 and
1.25, 1.13 and 1.16, and 1.28 and 1.12, were close to the gen-
eration diameter decrease ratio of 1.26 (2⅓) of the bronchial
system of the human lung, which has been reported to pro-
vide optimal air flow [5,63,64,95]. A branched structure, like
the carotid artery, with a diameter decrease ratio of 1.26,
obeys the H-ML [2,5,41,148]. In biological structures, there
is lack of unanimity on what constitutes optimization
[150,151,165,
171,172,190,191] andwhether the state/condition is achievable
or even desirable [121,173–177]. Regarding the H-ML, some of
the views of concern that have been expressed are the follow-
ing: ‘perhaps Murray’s law should be viewed as more of
what you would call “guidelines” than actual rules’ [20]; ‘opti-
mum models are abstractions of biological systems and they
are not expected to fit these systems with absolute accuracy’
[140]; and ‘there is a large spread between different parts of
the circulation and possibly between different subjects in
regard to the principal of minimum work’ [141]. In complete
departure from the orthodox thinking that optimization is an
adaptive (i.e. beneficial or favourable) state for the bronchial
system of the human lung, Mouroy et al. [107] reported that it
may not be desirable and may even be ‘dangerous’! To main-
tain the integrities of biological structures, optimization
compels existence of safety factors [146,178,179,192] because
the process renders the assemblages more susceptible to the
stochastic events of nature. Complex trade-offs and compro-
mises may be involved in the process of optimization
[146,159,192]; transactions may not necessarily result in
optimal outcomes.

While the CV of the means of the diameter and length
measurements of the branches that comprised the generations
of the pulmonary artery and bronchial systems, which were
respectively 28.25% and 35.23%, and 29.78% and 28.40%
(tables 1 and 2), were within a statistically acceptable range
[193,194], the much greater CVs for the pulmonary vein
(103.81 and 40.85%) (table 3) warrant comment. The greater
heterogeneity of the sizes of the branches of the pulmonary
veinmay explain the higher CVs of themeasurements. Aspects
such as the ordering of the branches and the taking of the
measurements would not be a factor because the procedures
applied were the same for the three main parts of the lung.
For the pulmonary vein, the mean diameter ratio change of
the branches of 1.28 ± 0.27 was significantly greater (0.01 >
p > 0.05) than that of the pulmonary artery (1.13 ± 0.43). For
branched structures, Nelson & Manchester [30] observed that
‘the heterogeneity in branch size and number has led to several
ordering schemes that give slightly different results’. Another
property that may be thought to affect the measurements
made on the pulmonary vein is that the blood vessel could
be more compliant, a property which could cause enlargement
of the branches with the application of casting pressure. While
this might be the case for the systematic circulation, this is unli-
kely to occur in the pulmonary circulation, which is a low-
pressure, high-flow system [5,95,195,196]. The pressure of the
pulmonary artery that receives the entire output of the right
heart is astonishingly only 15 mmHg (approx. 2 kPa)
[95,194,195] compared with that of approximately 100 mmHg
(13.33 kPa) in the systematic circulation [5,196]. Furthermore,
from possible recruitment of blood capillaries that take up
the increased vascular load, pulmonary vascular resistance
drops when arterial or venous pressure increases [95,193].
The low pressure in the pulmonary circuit explains why the
thicknesses of the walls of the branches of the pulmonary
artery and vein are relatively much thinner compared with
those of the blood vessels of the systemic circulation of similar
luminal diameters [5,95,196]. Essentially, on histological sec-
tions, the pulmonary arteries and veins cannot be
differentiated from the thicknesses of their walls [197–199].
There are no structural and functional differences between
the pulmonary artery and vein that could cause variations in
their compliance. Here, it was also found that for the pulmon-
ary vein, variations in the diameters and the lengths of the
branches along individual (single) paths were not significant.

In conclusion, to study the FG of branched structures, the
branch-ordering method used should be rationalized. There
is, however, some comfort in that although the methods may
conceptually differ, they yield similar results. For studying
the FG of the branched biological structures and especially
the determination of their DF values, various methods have
been and continue to be used for preparation, analysis and
modelling the data. These differences may in part explain
the disparities in the published data. A model that integrates
most, if not all, of the relevant structural parameters of
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Figure 7. Preparation of the triple latex cast of the human lung on which measurements of diameters, lengths and angles of bifurcation were made. (a) Dorsal
(i) and ventral (ii) views of the corroded cast of the human lung. BS (coloured grey), bronchial system; PA (coloured cyan), pulmonary artery; PV (coloured red),
pulmonary vein. Au, auricle. (b) Separated bronchia and vascular systems. (i) Bronchial system which transports air; (ii) pulmonary vein system, which returns
oxygenated blood from the lung to the heart; (iii) pulmonary artery sysem, which transports deoxygenated blood from the heart to the lung. (c) Pruned (cleared)
casts of the bronchial and the vascular systems of the human lung. (i) Bronchial system; (ii) pulmonary vein; (iii) pulmonary artery.
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branched structures is currently lacking. For example, the
double logarithmic plot model of the diameters and lengths
that was applied here entirely omits the bifurcation angles
that are important structural properties associatedwith contri-
buting to optimal flow across passageways. A simplified
model may not adequately capture the complexity of a
branched structure to give instructive DF values. We echo
the view expressed by Lamrini-Uahabi & Atounti [91] that
‘it would be ideal and very wise to find a unified value of
the fractal dimension of lungs’. For the human lung, such a
value would be of great importance in the diagnosis and treat-
ment of pulmonary diseases and conditions such as asthma,
emphysema, respiratory failure, pulmonary hypertension
and pneumonectomy, and evaluation of pulmonary function
in sports medicine.
4. Material and methods
4.1. Preparation of the casts
As part of the programme of procuring human cadavers for
teaching, a body of a 49-year-old male donor was obtained
as soon as possible after death, which occurred from severe
head injuries. On receiving it, the body was placed in a cold
room for 1 h in ventral recumbency on a table inclined at an
angle of 45°, with the head in the lower position for fluids
and discharges in the airways to drain from the lungs by grav-
ity. Any remaining materials were physically aspirated. To
expose and examine the heart and the lungs to check for any
damages and pathologies, after identifying the relevant ana-
tomical landmarks, a median longitudinal incision was made
with a bone cutter from the xiphoid process of the sternum,
through its body to the jugular (suprasternal) notch of the
manubrium. Using surgical retractors, the incision was
expanded and the lungs and the heart examined after clearing
any obstructing connecting tissues. While the general health
and lifestyle habits (e.g. smoking) of the individual were
unknown, except for small diffuse black spots that are
characteristic of lungs of urban dwellers, no abnormalities,
pathologies and physical injuries to the lungs and the heart
were observed. The neck was extended at the atlanto-axial
joint and an anteromedian incisionmade on the neck terminat-
ing on the suprasternal notch. The trachea was exposed and
cannulated after making a transverse incision between the
cricoid cartilage of the larynx and the first tracheal cartilage.
The casts of the bronchial system, the pulmonary artery and
the pulmonary vein were prepared with the lung in situ (i.e.
intact in the thoracic cavity). A modification of the methods
of Nelson & Manchester [30], Maina & van Gils [70], Huang
et al. [73], König et al. [200] and Phalen et al. [201] was used
to cast the human lung, which was gently inflated with air to
completely fill the thoracic cavity and the pressure held at a
constant pressure of 10 mbar. The pulmonary artery and vein
were then identified and cannulated, and to establish vascular
continuity across the pulmonary vasculature the lung was per-
fused at a pressure of 30 mbar above the highest point of the
chest with degassed physiological saline into which heparin
solution was added to promote dispersion of any blood clots
in the blood vessels. The process was continued until the
fluid running out of the lung (through pulmonary vein) and
emptying into the left atrium of the heart run out clear. Stock
solution of latex rubber, which is white in colour, was dyed
dark brown for injection into the airways (figures 1 and 7),
red for the pulmonary vein (figures 2 and 7) and cyan for the
pulmonary artery (figures 3 and 7). The solution was well stir-
red for the dye to disperse evenly and then left to stand for the
air bubbles to break up and/or float to the top. To hasten the



Figure 8. Measurement of the diameters, the lengths and the angles of bifurcation of the branches of casts of the bronchial system, the pulmonary artery and the
pulmonary vein of a human lung. For the diameters (short double-sided arrows in the lumen) and the lengths (long double-sided arrows outside the lumen)
measurements were made with a digital vernier calliper and the angles of bifurcation (arcs) determined by a protractor. Three measurements of the diameters
(as shown) and the lengths were made and the mean value calculated. Also, for the angles, in each case, three measurements were made. Insert: View of a
branched structure, with the dashed crossing arrows indicating the assumption that the cross-sectional profiles of the branches were circular (round).
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process, the large bubbles were physically broken with a glass
stirrer. Syringes (50 cm3) were filled up with the latex rubber
and connected to cannulas that were attached to manometers
at a T-junction. For the blood vessel, the injections were
made slowly and simultaneously at a pressure of 30 mbar
until the surface of the lung tensed. The blood vessels were
then ligated ahead of the cannulae to keep the latex in place
(i.e. inside of the particular system of the lung). Injection of
latex rubber into the airways followed that of the blood vessels.
The injection was done at a pressure of 10 mbar and was con-
tinued until the organs completely filled the thoracic cavity.
On completion, the trachea was ligated to keep the latex in
the airways. With the cast lungs in the thoracic cavity, the
body was placed in a cold room for 2 days for the latex to
set. Next, the heart and lungs were carefully removed from
the thoracic cavity and the organs separated. The lungs were
then immersed in a 10% concentration solution of potassium
hydroxide (KOH) in a large plastic container and turned
twice every day for one week. Thereafter, the cast was trans-
ferred into fresh 15% KOH and turned several times per day
for 3 days. The extent of maceration was constantly assessed
and any large adhering tissues manually removed. When the
cast was well corroded, it was rinsed in running water for 1
day and then suspended in air at room temperature to dry.
The quality of the cast was assessed by examining the terminal
parts of the bronchial and the vascular systems, most of which
detached from the cast during the physical separation and
clearing the parts to expose the branches for measurements
to be made. A zoom stereo light microscope and a scanning
electron microscope (figure 4a–d) were used to examine the
structures. Here, the bronchial circulation was not cast, nor
was it physically isolated from the rest of the pulmonary
vasculature during casting. The structural parts that formed
the bronchial circulation should have been corroded away
during the preparation of the cast.

4.2. Ordering and measuring of the branches
The bronchial, pulmonary artery and pulmonary vein systems
of the cast lungs were carefully manually separated into the
different parts, which were painstakingly cleared using soft
plastic tweezers to expose the branches (figures 1–3 and 7).
The morphogenetic, dichotomy or Weibel’s ordering methods
[42,63–65,73,93,95] were used to classify the branches from the
trachea outwards (figure 6a,b). To ensure that the branches
were not measured twice, they were numbered according to
a binary system suggested byWeibel & Gomez [64] and modi-
fied by Phalen et al. [201]: a code was allocated to each branch,
beginning with a designated letter i1 (figure 5b). The codes
were based on those assigned to the parent branch, with the
daughter branches being labelled in numerical order from
left to right.

4.3. Measurement of the lengths, diameters and angles
of bifurcation

The diameters and the lengths were measured by a digital
vernier calliper, and the branching angles, which comprised
those angles normal to the direction of gravity in a human
being standing erect and those inclined at an angle to it,
were measured using a protractor. Where the angles were
too small and difficult to measure directly on the casts,
mostly those of the terminal branches, the angles were
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traced on paper and measurements made of the traces with a
protractor. On assumption that the cross-sectional profiles of
the branches of the cast airways and the blood vessels were
round and straight, for the diameters, three equally spaced
measurements were made at the middle, proximal and
distal bifurcation points, the length measurements were
made between the bifurcation points, and the angles of
bifurcation were determined at the points where branches
converged (figure 8). The measurements taken in this study
and used for calculation of the DF values of the bronchial
and vascular systems of the lung were made the same way.

The considerable amount of work involved in the analysis
of the casts was made over a period of approximately 6 years
mainly by three individuals, all of whom were knowledgeable
about the structure (anatomy) of the human lung. Tomake cer-
tain that the measurements were accurate and reproducible,
they were taken independently (by the investigators) and
where discrepancies of more than 5% occurred, the measure-
ments were rechecked and reconciled. The mean values were
calculated from those determined and decided on by
the three individuals. The lowest branches of the cleared bron-
chial and vascular systems were as follows: approximately
1 mm in diameter for the terminal bronchioles, and
0.5–0.8 mm in diameter for the arterioles and the venules.
4.4. Determination of the fractal dimensions (DF)
The mean diameters and lengths falling into a generation were
averaged out and the values used to calculate the DF values
after plotting the data on double logarithmic axes (figures 1–3).
). The DF values were determined as 1 minus the slopes of the
regression lines [1,28,30,73,92], which were expressed in the
format y = aXω, where a is the y intercept and ω is the slope of
the regression line. The 95% confidence intervals were added
to regression lines to show the dispersion of the data points.
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