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Little is known about the relative importance of spatial and environmental factors
to structuring aquatic and sedimentary microbial biogeography in lakes. Here, we
investigated the microbial community composition (MCC) of the water (n = 35) and
sediment (n = 35) samples from 16 lakes in western China (salinity: freshwater to
salt saturation; pairwise geographical distance: 9–2027 km) using high-throughput
sequencing and evaluated the relative importance of spatial and environmental factors
to microbial (including total, abundant, and rare) distributions. Our results showed
that spatial factors were more important than environmental factors in shaping the
biogeography of aquatic and sedimentary microbial communities in the studied lakes,
and spatial factors on abundant microbial community was stronger than that on
the total/rare microbial communities. Moreover, sedimentary rare MCC might be
more sensitive to environmental factors than its aquatic counterpart. Such different
biogeography responses of total, abundant, and rare communities to environmental and
spatial factors could be ascribed to different physiochemical properties between water
and sediment. Collectively, this study expands our understanding of factors shaping
microbial biogeography of total, abundant, and rare communities between waters and
sediments of lakes.

Keywords: lakes, biogeography, aquatic microbial community, sedimentary microbial community, environmental
factors, spatial factors

INTRODUCTION

Microbes play central roles in regulating elemental cycles of carbon, nitrogen, and sulfur within
lakes (Newton et al., 2011; Sorokin et al., 2014). Microbial functions involved in carbon, nitrogen,
and sulfur cycling are commonly related to microbial community composition (MCC; Graham
et al., 2014, 2016). MCC varies among lakes with different environmental variables. Thus, studies
on MCC of lakes and their biogeographical patterns are of great importance to understanding of
microbial functions in lacustrine ecosystems (Van der Gucht et al., 2007).

Lake water and sediment are different habitats, each with unique intrinsic environmental
conditions (e.g., redox potential; Jiang et al., 2006; Feng et al., 2009) and MCCs (DeLong et al.,
1993; Jiang et al., 2006; Mesbah et al., 2007; Yang et al., 2013). Such difference may account for
different microbial biogeography in lakes (Lindström and Langenheder, 2012). Up to now, a great
number of studies have investigated the relative influence of environmental and spatial factors on
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microbial biogeography in lakes (Beisner et al., 2006;
Langenheder and Ragnarsson, 2007; Van der Gucht et al.,
2007; Pagaling et al., 2009; Schiaffino et al., 2011; Xiong et al.,
2012; Logares et al., 2013; Souffreau et al., 2015). Most previous
studies found that environmental factors were more important
than spatial factors in influencing aquatic and sedimentary
MCCs (Van der Gucht et al., 2007; Xiong et al., 2012; Logares
et al., 2013; Souffreau et al., 2015); while others showed that
spatial factors (e.g., geographic distance) also impacted aquatic
and sedimentary MCCs (Beisner et al., 2006; Langenheder and
Ragnarsson, 2007; Pagaling et al., 2009; Schiaffino et al., 2011;
Xiong et al., 2012). However, most of these previous studies
separately investigated either aquatic or sedimentary MCC
among multiple lakes. Thus little is known about the difference
of the relative importance of environmental and spatial factors to
the distributions of aquatic and sedimentary microbial MCCs in
lakes at large spatial scales (e.g., tens to thousands of kilometers).

In addition, in natural environments, microbial communities
within one ecosystem could be classified into abundant and
rare taxa with respect to their biomass and biodiversity
contributions, with the former contributing major biomass
but minor biodiversity while the latter contributing minor
biomass but major biodiversity to ecosystems (Pedrós-Alió,,
2012; Logares et al., 2014). Previous studies show that rare
taxa may conduct more crucial ecosystem functions than their
abundant counterparts (Pester et al., 2010; Lawson et al., 2015).
Considering different contributions of abundant and rare taxa
to biomass and biodiversity, different factors may account for
their distinct biogeography (Pedrós-Alió,, 2012; Liu et al., 2015).
However, such knowledge is limited. So it is essential to discern
the distinct distribution patterns of abundant and rare taxa and
their respective influencing factors in natural environments.

The biogeography of microbial abundant and rare taxa
in waters of freshwater lakes have been investigated. For
example, one study indicated that the distribution of rare
taxa was mostly influenced by local environmental factors
(e.g., electrical conductivity), whereas that of abundant taxa
was predominately affected by spatial factors (Liu et al.,
2015). Another study suggested that local environmental
factors (e.g., salinity) influenced the distribution of both
abundant and rare microbial taxa in waters of a number of
coastal lakes with a range of salinity (0–100 g/L; Logares
et al., 2013). Such inconsistency could be caused by different
environmental factors (e.g., salinity) among those investigated
lakes. However, it is still unclear how differently environmental
and spatial factors influence the distribution of abundant
and rare microbial taxa in water and sediment of lakes as
a function of salinity (e.g., from freshwater to up to salt
saturation).

The objective of this study was to examine the relative
importance of environmental and spatial factors to structuring
the distribution of microbial communities (including total,
abundant, and rare communities) in water and sediment of
lakes with a wide range of salinity from freshwater to up to
salt saturation. In this study, the water (n = 35) and sediment
(n= 35) samples from a total of 16 lakes in Tibet (n= 7), Qinghai
(n = 6), and Xinjiang (n = 3) Provinces, western China were

investigated by using high-throughput sequencing of 16S rRNA
gene amplicons.

MATERIALS AND METHODS

Sample Collection
In 2014 summer, surface (∼0–5 cm) water and surface (∼0–
5 cm) sediment samples were collected from inshore sites with
water depth of ∼1.0 meters in 16 lakes of western China
(Supplementary Table S1). The data of mean annual temperature
(MAT) and mean annual precipitation (MAP) was obtained
from local weather stations where the lakes are situated. The
pH of these lakes was measured with a portable pH meter
(PT-10, Sartorius, Germany) in the field. Surface waters were
collected using 2-L autoclaved polycarbonate bottles (Nalgene,
USA). Aquatic biomass in surface water was collected by filtering
∼500 mL water through 0.2-µm Isopore filters (Whatman, UK).
The filtrate (∼40 mL) of lake water was collected into 50-mL
sterilized Teflon tubes for subsequent major ions concentration
analyses in laboratory. Water samples for dissolved organic
carbon (DOC) analysis were collected by filtrating surface water
through 0.7-µm Whatman GF/F filters followed by acidification
with concentrated phosphoric acid. The resulted DOC samples
were stored in ice in the field and during transportation and
were stored at 4◦C in laboratory. Surface sediments were collected
with a grab-bucket collection sampler and then put into 15-mL
sterilized tubes using sterile spoons for DNA extractions and total
organic carbon (TOC) measurements. All water and sediment
samples for DNA extractions were stored on dry ice in the
field and during transportation, and were stored at −80◦C in
laboratory until further analyses.

Laboratory Geochemical Analyses
Cation and anion concentrations (e.g., K+, Na+, Ca2+, Mg2+,
SO2−

4 , Cl−, NO−2 , NO−3 ) of the lake waters and sediment
pore waters were measured by using ion chromatography
(Dionex DX-600, USA). Salinity was obtained by summing the
concentration of six major ions including K+, Na+, Ca2+, Mg2+,
SO2−

4 , and Cl−. Water DOC and sediment TOC concentrations
were measured on a multi N/C 2100S analyzer (Analytik
Jena, Germany). Before sediment TOC analysis, samples were
firstly acidified with 1 N HCl overnight to remove carbonates,
subsequently washed to neutral pH, dried in an oven and ground
into fine powder.

DNA Extraction and Sequencing
DNA was extracted from biomass-containing filters and
0.5 g sediment samples using the Fast DNA SPIN Kit for
Soil (MP Biomedical, Solon, OH, USA). The extracted DNA
was amplified with a universal 16S rRNA gene primer set
of 515F (5′-GTGYCAGCMGCCGCGGTA-3′)/909R (5′-CC
CCGYCAATTCMTTTRAGT-3′), and the detailed PCR
conditions were described in a previous study (Tamaki et al.,
2011). Briefly, a unique 12 bp barcode sequence was added
between the sequencing adapter and forward primer to
differentiate among samples. Triplicate PCRs for each sample
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were conducted and purified using a DNA Gel Extraction Kit
(Axygen, Union City, CA, USA). The bar-coded amplicons
from each sample were pooled with equimolar concentrations
and then were sequenced by using an Illumina Miseq platform
(Caporaso et al., 2012).

Data Processing and Statistical Analyses
The raw data were processed using the QIIME v1.8.0 (Caporaso
et al., 2010). The paired reads were joined with FLASH (fast
length adjustment of short reads) using default setting (Magoè
and Salzberg, 2011). Chimera checking was performed using
the UCHIME module of the USEARCH program (Edgar et al.,
2011). Operational taxonomic units (OTUs) were defined at the
97% cutoff by using the UCLUST algorithm (Edgar, 2010). OTU
representative sequences were selected and their taxonomy were
assigned using the ribosomal database project (RDP) classifier
algorithm at the 80% threshold (Wang et al., 2007). The OTUs
each comprising only one sequence were removed prior to
further analysis to minimize sequencing artifacts. The OTU table
was rarefied to equal sequence number (n = 1691) for each
sample with 1000 times, and then alpha diversity (i.e., Simpson,
Shannon, Equitability, and Chao1) was calculated by QIIME at
the 97% identity level. The rarefied OTU table was used for
downstream analysis, unless otherwise specified. In addition to
analysis of different fractions of a community and their response
to environmental factors, we separately classified abundant and
rare taxa based on OTU relative abundance within each sample.
Specifically, abundant and rare OTUs were arbitrarily defined
as the OTUs with relative abundance of >1 and <0.1% within
one sample, respectively (Pedrós-Alió,, 2012). The rare taxa were
defined by the criteria of <0.1% in this study, because the
minimum number of sequences among our samples was 1691 and
the 0.1% threshold can give the almost lowest frequency OTUs
that were represented by only several (<2) reads in our samples.

All statistical analyses were carried out in the R program1

implemented with various packages unless otherwise indicated.
In order to assess the difference of MCC among sample groups of
different locations (i.e., Tibet, Qinghai, and Xinjiang Provinces)
and sample types (i.e., water vs. sediment), analysis of similarities
(ANOSIM) was performed based on Bray–Curtis dissimilarity
with 9999 permutations using R package “vegan.” SIMPER
(similarity percentage) analysis was conducted to rank the
taxa that contributed to the differences among sample groups
described above using the PAST software2. The mean abundances
of those top ranked taxa in each group were also calculated in the
SIMPER analysis.

The normality of the environmental variables was checked
using Shapiro–Wilk test and all variables in this study were
normalized to values ranged between 1 and 100 as described
previously (Liu et al., 2014). In order to accurately predict
and explain the relationships between ecological data and
environmental variables, aggregated boosted tree (ABT) analysis
(with 5000 trees used for the boosting, 10-folds cross-validation,
and three-way interactions) was performed to quantitatively

1http://cran.r-project.org/
2http://folk.uio.no/ohammer/past/

evaluate the relative influence of individual environmental
factors and geographic distance on the distribution of microbial
community based on Bray–Curtis dissimilarity using R package
“gbm” (De’ath, 2007). The ABT analysis can give relative
influence of individual environmental parameters on MCC,
but it is limited to quantitatively assess how much MCC
variations can be separately explained by environmental factors
and spatial factors. In order to quantify the relative importance
of environmental and spatial factors in shaping microbial
community, a canonical correspondence analysis (CCA)-based
variation partitioning analysis (VPA) was carried out according
to the methods described previously (Jiang et al., 2014). Briefly,
a set of spatial variables were firstly produced through the
method of principal coordinates of neighbor matrices (PCNM)
analysis according to the longitude and latitude coordinates
of sampling sites (Borcard and Legendre, 2002). Subsequently,
variance inflation factors (VIFs) were computed to check the
presence of collinearities among environmental variables using
the function vif.cca in the “vegan” package. If the maximum
VIF was more than 10, the environmental variables which had
the smallest relative influence (results from ABT analysis) were
removed until all VIFs of variables were stay <10. Finally, only
significant (P < 0.05) environmental and spatial variables that
were tested by CCA with 1,000 permutations were kept for
variance partition analysis (VPA) using the “vegan” package.

Nucleotide Sequence Accession
Numbers
The original sequences were deposited at the Sequence Read
Archive (SRA) in the National Center for Biotechnology
Information (NCBI) under the BioProject accession no.
SRP056907.

RESULTS

Environmental Parameters of the
Sampled Lakes
The geographic locations and environmental parameters of the
studied lakes were summarized in Supplementary Figure S1 and
Supplementary Table S1. Briefly, the salinity of the sampled
lakes ranged from 0.1 to 354.1 g/L, and pH varied from 6.9
to 9.8. MAT and MAP of the lake regions were −1.2–9.1◦C
and 70.0–456.8 mm, respectively. Pairwise distances between the
sampled lakes ranged from 9 to 2027 km.

Composition and Diversity of Lake
Microbial Communities
In total, 390,052, and 352,672 quality sequence reads were
obtained from water (n = 35) and sediment (n = 35) samples
with an average of 11,444 and 10,076 sequence reads per
sample, respectively. Alpha diversity indices of water and
sediment samples were summarized in Supplementary Tables
S2A,B. Briefly, the observed OTUs were 240.6–584.3 and
326.5–701.5 for water and sediment samples, respectively;
the Shannon indices were 4.3–8.0 and 6.1–8.6 for water and
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sediment samples, respectively; the Chao 1 indices were 440.2–
1481.0 and 846.0–1790.7 for water and sediment samples,
respectively (Supplementary Tables S2A,B). Across all the
studied lake water samples, the dominant phyla (average
relative abundances >1%) were Actinobacteria, Bacteroidetes,
Cyanobacteria, Euryarchaeota, Planctomycetes, Proteobacteria,
and Verrucomicrobia; whereas the dominant phyla of the studied
lake sediment samples were Acidobacteria, Actinobacteria,
Bacteroidetes, Chloroflexi, Crenarchaeota, Cyanobacteria,
Euryarchaeota, Firmicutes, Planctomycetes, Proteobacteria,
Spirochaetes, and Thermi. Furthermore, ANOSIM also indicated
that MCCs between lake water and sediment samples were
significantly (R= 0.403, P < 0.001) distinct.

Among the water samples, a total of 10–20 OTUs were
classified as abundant OTUs. These abundant OTUs accounted
for 2.4–8.6% of total OTUs and represented 33.6–78.5% relative
abundance within each corresponding sample; a total of 106–396
rare OTUs were identified and they accounted for 48.4–80.9%
of total OTUs and 6.3–23.4% relative abundance within each
corresponding sample (Supplementary Table S3A). In addition,
among the sediment samples a total of 6–23 OTUs were classified
as abundant OTUs, which accounted for 0.7–5.7% of total
OTUs and represented 15.7–67.6% of relative abundance in each
corresponding sample; whereas a total of 206–564 rare OTUs
were identified and they accounted for 61.2–73.7% of total OTUs
and 12.2–33.4% of relative abundance in each corresponding
sample (Supplementary Table S3B).

Geographical Patterns of Microbial
Community
Geographical distribution patterns were observed for the
total microbial communities of lake water and sediment
samples in this study. ANOSIM indicated that significant
(P < 0.05) total MCC dissimilarities were found among
the sampling locations (Tibet, Qinghai, and Xinjiang
Provinces; Table 1). SIMPER analyses showed that the
overall average dissimilarities were 53.6 and 51.3% for the

TABLE 1 | Relative influence of individual environmental parameters and
geographic distance on MCCs in the waters and sediments of the
sampled lakes from Tibet, Qinghai and Xinjiang Provinces, western China.

Water Sediment

All Abundant Rare All Abundant Rare

SAL 34.0 20.0 32.5 45.2 19.0 39.3

GD 46.0 55.4 14.8 33.2 43.3 18.6

pH 1.3 1.2 3.9 1.4 2.0 3.3

DOC/TOC 1.0 1.4 23.4 1.5 3.1 4.8

MAP 7.6 9.9 4.1 2.6 15.2 7.1

MAT 5.8 6.7 10.2 11.0 6.9 10.5

NO2 0.6 0.9 7.2 2.6 3.3 13.2

NO3 3.7 4.5 3.9 2.5 7.2 3.1

SAL, salinity; GD, geographic distance; MAT, mean annual temperature; MAP,
mean annual precipitation; DOC, dissolved organic carbon in lake water; TOC, total
organic carbon in lake sediment.

aquatic and sedimentary microbial communities across
different locations, respectively. Moreover, a total of 15
and 22 major classes contributed (with each contributing
>1%) to the observed dissimilarities between aquatic
and sedimentary microbial communities across the three
sampling areas, and the composition of those classes were
distinct between waters and sediments in the studied lakes
(Supplementary Table S4), among which the Actinobacteria
and Betaproteobacteria showed the most contribution
(12.1 and 14.7%) to the aquatic and sedimentary microbial
community dissimilarities in the studied samples, respectively
(Supplementary Table S4). In addition, ANOSIM further
indicated that abundant MCCs significantly (P < 0.05) differed
among the three sampling locations (Tibet, Qinghai and,
Xinjiang Provinces), whereas rare taxa compositions did not
show significant difference among locations (Supplementary
Table S5).

Relative Influence of Individual
Environmental Parameters and
Geographic Distance on Microbial
Distribution
The ABT analysis showed that salinity and geographic distance
had highest relative influence (45.2 and 46.0%) on the total
sedimentary and aquatic MCCs, respectively. However,
geographic distance possessed highest relative influence
(55.4 and 43.3%) on the aquatic and sedimentary abundant
MCCs, which is much higher than that (14.8 and 18.6%,
respectively) on the aquatic and sedimentary rare MCCs
(Table 1).

Relative Importance of Environmental
and Spatial Factors on Microbial
Distribution
The VPA results showed that spatial factors exhibited higher
contribution to the MCC variations than environmental factors
although the relative contributions of spatial and environmental
factors to the MCC variations differed with respect to total,
abundant, and rare microbial communities (Figure 1). For
total microbial community, spatial factors alone gave much
higher (28.1% vs. 15.6% for waters and 23.7% vs. 19.2% for
sediments, respectively) explanation on the MCC variation
than the environmental factors alone in the studied lakes.
For the abundant sub-community, spatial factors alone also
had much higher explaining power on the variation of
both aquatic and sedimentary microbial communities than
the environmental factors. For the rare sub-communities,
spatial factors alone presented much higher (12.9% vs. 5.9%)
explanation on the variation of aquatic microbial community
than the environmental factors alone, while the environmental
and spatial factors alone did not exhibited much different
(12.2% vs. 12.3%) explanation on the variation of sedimentary
microbial community. Interestingly, the explaining power of
spatial factors on the variation of the aquatic microbial
community (including total, abundant, and rare community)
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FIGURE 1 | Variance partition analysis showing relative importance of environmental and spatial factors in shaping microbial community
compositions (MCCs) in the lake waters and sediments of the studied lakes (The significances were tested by canonical correspondence analysis
(CCA) with 1000 permutations). ∗P < 0.05.

were also higher than that of the sedimentary microbial
community.

DISCUSSION

Relative Importance of Environmental
and Spatial Factors in Influencing Total
Aquatic and Sedimentary MCCs
Between the two types of influencing factors (spatial vs.
environmental), spatial factors might be more important than
environmental factors in shaping the biogeography of the
aquatic and sedimentary total microbial communities in the
studied lakes. This finding was inconsistent with previous
reports in that environmental rather than spatial factors strongly
affect microbial biogeography in lakes at a large distance

scale (>2000 km; Van der Gucht et al., 2007; Schiaffino
et al., 2011; Souffreau et al., 2015). This inconsistency may
be ascribed to two possible reasons: one is that different
fingerprinting methods were employed: the high-throughput
sequencing technique (Illumina Miseq) in the present study
vs. denaturing gradient gel electrophoresis (DGGE) in those
previous studies. The DGGE technique has intrinsic limitations
regarding its low resolution: it tends to detect microbial species
with relative abundance of >0.1% but fails for rare microbes
(Galand et al., 2009; Van Elsas and Boersma, 2011; Zhi et al.,
2014). Therefore, DGGE may be limited for understanding the
diversity (especially rare taxa) and biogeography of the whole
microbial community in natural environments. In contrast, high-
throughput sequencing (e.g., Illumina Miseq) can provide more
sequence reads and higher sequencing depth than traditional
methods (e.g., DGGE, cloning library-based sequencing), and
thus it is more suitable for understanding microbial biogeography
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(Pedrós-Alió,, 2012; Logares et al., 2014; Liu et al., 2015).
So it is not surprising to observe the different relative
importance of spatial and environmental factors on shaping
microbial biogeography between this and those studies; the
other possible reason is that other unmeasured environmental
variables (e.g., total nitrogen, total phosphorus, chlorophyll-a,
bacterial predators) might contribute to the different MCCs
among the studied lakes. Some of the unmeasured variables
have shown great effect on the distribution of lake microbial
communities in previous studies. For example, Souffreau et al.
(2015) found that bacterial predators (e.g., cladocerans), total
phosphorus, and nitric nitrogen significantly influenced MCCs
of lakes. In addition, VPA further validated that a large
proportion of the observed MCC variations could not be
explained by the measured environmental and spatial variables
(Figure 1). Therefore, the relative importance of spatial and
environmental variables on microbial distribution awaits further
investigation.

It is notable that spatial factors have stronger influence on the
variation of the aquatic microbial community (including total,
abundant, and rare community) than that of its sedimentary
counterpart. Such different influence of spatial factors on
aquatic and sedimentary microbial communities may be due
to the different physicochemical conditions between water
and sediment. Microbes can be easily spread from place to
place (even thousands of kilometers away) by attaching to
dusts, aerosols, animals, and other solid particles (Hughes
et al., 2004; Green and Bohannan, 2006; Crump et al., 2012;
Wilkinson et al., 2012; Barberán et al., 2015). Therefore,
it is highly possible for microbes to immigrate among
lakes. The environmental selection may influence microbial
biogeography between water and sediment among the lakes:
lake waters are the first habitat for exotic microbes to
adapt, and the arriving microbes are firstly selected by
water physicochemical conditions. Some of the surviving
exotic microbes would reach lake sediments, and were then
subjected to another selection by sedimentary physicochemical
conditions. Thus the effect of spatial factors (e.g., geographic
distance) on sedimentary MCC was weaken by the double
environmental selections. So it is reasonable to observe that
the spatial effect on the aquatic microbial community was
much stronger than that on its sedimentary counterpart
(Figure 1)

Relative Importance of Environmental
and Spatial Factors on the Distributions
of Abundant and Rare Microbes
It is remarkable that spatial factors were more important than
environmental factors in shaping the biogeography of aquatic
and sedimentary abundant microbial communities, and the
spatial effect on the variation of abundant microbial community
was stronger than that of its total and rare counterparts
in both water and sediment of the lakes. This observation
was consistent with a previous study in freshwater lakes of
eastern China (Liu et al., 2015), but was not in agreement
with another study (Logares et al., 2013) in coastal lakes

with a large salinity gradient (0–100 g/L) that is similar to
this study (0.1–354.1 g/L). Logares et al. (2013) suggested
abundant MCC was mainly affected by environmental factors
when environmental filtering (e.g., salinity) was strong. This
discrepancy may be ascribed to the spatial distance differences
among the studied lakes and/or to the methodology between
the present and that studies (Logares et al., 2013). For example,
our sampled lakes are all inland lakes with a distance range
of up to 2000 km, much larger than that (∼20 km) for
coastal lakes in that study (Logares et al., 2013). Moreover, the
abundant OTUs in the present study were defined as those
with >1% relative abundance within one sample, in contrast
with those containing >100 reads per sample in that study
(Logares et al., 2013). The definition of abundant taxa in this
study has been widely employed in many previous studies
(Galand et al., 2009; Pedrós-Alió,, 2012; Logares et al., 2014;
Liu et al., 2015), and thus it may be more comparable than
that in Logares et al. (2013). In addition, it may be reasonable
to observe that spatial factors influenced the distribution of
abundant microbes more significantly than that of total and rare
counterparts in lake waters and sediments. Because abundant
microbes can utilize a wide spectrum of substrates and easily
reach high abundance when they arrive in a new habitat
(Hambright et al., 2015), and thus they may have high probability
of dispersal and strong immigrating capability (Liu et al.,
2015).

It is also noticeable that environmental and spatial factors
were of different importance in shaping the biogeography
of the rare microbial communities between waters and
sediments of the lakes. Our results showed that the variation
of the aquatic rare MCC was significantly explained by
spatial rather than environmental factors, which was not
in accordance with previous studies (Logares et al., 2013;
Liu et al., 2015). In contrast, the sedimentary rare MCC
was significantly explained by both environmental and
spatial factors with each showing almost equal explaining
power, suggesting that sedimentary rare MCC might be
more sensitive to environmental factors than their aquatic
counterparts. Such inconsistency for the biogeography between
aquatic and sedimentary rare microbial communities may
be ascribed to reasons similar to that for total microbial
community in that physicochemical difference between
water and sediment resulted in the distinct microbial
biogeography.

CONCLUSION

Spatial factors were more important than environmental factors
in affecting the distributions of aquatic and sedimentary MCCs
in the studied lakes, and the spatial effect on abundant
microbial community was stronger than that on its total and
rare counterparts in both waters and sediments of the lakes.
Furthermore, sedimentary rare MCC might be more sensitive
to environmental factors than its aquatic counterpart. Such
differences in spatial and environmental effects on microbial
biogeography to could be ascribed to different physicochemical
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properties between water and sediment of the lakes. In addition,
some unmeasured variables may also influence the microbial
biogeography in lakes, which awaits further investigation.
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