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Abstract: Regulating the structure of macrocyclic host molecules and supramolecular assemblies
is crucial because the structure–activity relationship often plays a role in governing the properties
of these systems. Herein, we propose and develop an approach to the synthesis of the family of
sulfobetaine functionalized thiacalix[4]arenes with regulation of the self-assembly and cytotoxic
effect against cancer cell lines. The dynamic light scattering method showed that the synthesized
macrocycles in cone, partial cone and 1,3-alternate conformations form submicron-sized particles with
Ag+ in water, but the particle size and polydispersity of the systems studied depend on the macrocycle
conformation. Based on the results obtained by 1H and 1H-1H NOESY NMR spectroscopy and
transmission electron microscopy for the macrocycles and their aggregates with Ag+, a coordination
scheme for the Ag+ and different conformations of p-tert-butylthiacalix[4]arene functionalized with
sulfobetaine fragments was proposed. The type of coordination determines the different shapes
of the associates. Cytotoxic properties are shown to be controlled by the shape of associates, with
the highest activity demonstrated by thiacalix[4]arenes in partial cone conformation. This complex
partial cone/Ag+ is two times higher than the reference drug imatinib mesylate. High selectivity
against cervical carcinoma cell line indicates the prospect of their using as components of new
anticancer system.

Keywords: sulfobetaines; thiacalixarene; self-assembly; silver ions; cytotoxicity; cancer cell lines

1. Introduction

Multiple drug resistance (MDR) is a growing public health concern worldwide [1–5].
The main challenge faced by many researchers is the resistance to cancer and various
bacterial and viral infections. It leads to the ineffectiveness of therapy. It is now well
established that inappropriate use of antimicrobial, antiviral, anticancer agents or use of
ineffective dosage forms [6], as well as premature termination of treatment can lead to
the development of drug resistances [7]. MDR is not limited to bacterial infections; this
phenomenon is also characteristic of mycoses. Interestingly, cancer cells are drug resistant
too [8,9]. Moreover, cancer cells can be compared to superbugs since almost 50% of cancer
cells do not respond to any anticancer drugs [10]. Existing research recognizes that any
drug effects both on cancer and on healthy cells [11].

The clinical development portfolio of new antimicrobial drugs is extremely small. In
2019, the World Health Organization (WHO) identified 32 antibiotics that are in clinical
development and are intended to treat pathogens included in the WHO list of priority
pathogens. Only six antibiotics are classified as innovative [12]. In addition, the lack of
availability of quality antimicrobial drugs remains a major problem.
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Several approaches to solving the problem of MRD have been proposed. One of
the most widely used approaches is the use of innovative delivery systems (liposomes,
nanofibers, lipid particles, etc.) for the encapsulation (solubilization) of drugs existing on
the world market. The bac/virus resistance issue will be solved by developing new methods
for the delivery of existing drugs rather than by synthesizing new medicines. Thus, the
effect of several antibiotics, encapsulated directly in nanofibers, was tested on laboratory
cultures of various microbes [13]. Antibiotics have proven extremely effective against
a variety of pathogenic bacteria and fungi, including Escherichia coli and Pseudomonas
aeruginosa, two of the most drug-resistant organisms. The packaging of antibacterial
substances in dosage forms makes the action of drugs more targeted. New dosage forms
remain effective for a longer period than with the usual method of their delivery.

The second approach is the development of nanostructures without the participation
of a drug through the laws and approaches of supramolecular chemistry [14]. This direction
can become the basis for the creation of a new class of anticancer systems (“nano anticancer
drug”) with controlled activity, selectivity, and biological compatibility. Among inorganic
nanoparticles, both Ag nanoparticles [15] and Ag+ [16,17] cations are the most widely used,
for which a pronounced ability to inactivate viruses, smallpox and influenza A-1, B has
been shown [18,19]. They are active against some enteroviruses, adenoviruses and human
immunodeficiency virus. Moreover, it has been shown that the toxicity of both Ag+ ions
and Ag nanoparticles is quite high [20]. Ag nanoparticles can be toxic due to their small
size; on the other hand, Ag nanoparticles can be toxic because they release Ag+, which
are well known for their antibacterial and destructive effects on cell membranes [21,22].
Therefore, the regulation of the cytotoxic effect of Ag+ on normal and tumor cell cultures is
undoubtedly a non-trivial task.

In this regard, the development of new approaches of supramolecular chemistry and
the identification of the structure–activity relationship is an important and promising
problem [23,24]. Macrocyclic platforms—thiacalix[4]arenes, can be used for the synthesis
of compounds with a regulated ability to self-assembly [25–27]. Due to the ability to fix
the macrocyclic ring in several conformations and the relative ease of its functionalization,
functional groups can be arranged in a predetermined manner in space. It determines the
tendency to self-assembly into nanostructures under the influence of the substrate (ions,
molecules) [28–30].

In this work, we synthesize sulfobetaine derivatives of thiacalix[4]arene in three
conformations using the “template” synthesis method (with alkali metal ions as a template)
to create multivalent structures. In the presence of Ag+, these derivatives are capable to
self-assemble into associates with different architectures (shapes) and, as a consequence,
with cytotoxic selectivity for the cervical carcinoma cell line.

2. Results and Discussion
2.1. Synthesis of Compounds 3–5

In our previous work, we synthesized derivatives of p-tert-butylthiacalix[4]arene with
sulfobetaine moieties on the lower rim in cone conformation and studied their capability
of self-assembling in the presence of Ag (I) [31]. Due to the presence of sulfide bridges in
the thiacalix[4]arene, the conformational mobility of the macrocyclic ring increases, which
facilitates the preparation of two additional conformers (partial cone and 1,3-alternate) [32].
In this case, the arrangement of substituents at phenolic oxygen in space is different for all
stereoisomers, which makes it possible to organize an orientation of the binding sites that
is individual for each conformer, and this will undoubtedly lead to selectivity of interaction
with the substrate. In this regard, in order to evaluate the effect of the conformation of
the macrocyclic platform on self-assembly with Ag (I) cations, we synthesized three con-
formers (cone, partial cone and 1,3-alternate) of thiacalix[4]arene containing four sulfobetaine
fragments (3–5) (Scheme 1). Aminolysis of p-tert-butylthiacalix[4]arenes tetrasubstituted
at the lower rim by ester fragments in cone (1-cone), partial cone (1-paco) and 1,3-alternate
(1-alt) conformation by N,N-dimethylpropane-1,3-diamine give the tetrasubstituted thia-
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calix[4]arene derivatives containing tertiary amino groups (2-cone, 2-paco, 2-alt) [33]—the
precursors for the synthesis of sulfobetaine macrocyclic compounds.
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Scheme 1. Reagents and conditions: i—N,N-dimethylpropane-1,3-diamine, C6H5CH3/CH3OH,
reflux; ii—1,3-propanesultone, CH3CN, reflux.

Next, the reactions of compounds 2 in cone, partial cone and 1,3-alternate conformations
in acetonitrile with 1,3-propanesultone were attempted for 72 h. The reactions with 1,3-
propanesultone gave products 3–5 in a yields of 79, 95 and 91%. The complete set of 1H,
13C NMR and IR spectroscopy and ESI mass spectrometry data confirm the formation of
the tetrasubstituted products 3–5 (Figures S1–S12, see details in Supplementary Materials).

2.2. Self-Assembly of Water-Soluble Sulfobetaines 3–5

With the sulfobetaine macrocycles 3–5 in hand, we investigated their aggregation in
water (Figures S13–S42, ESI). Colloidal solutions of macrocycles 3–5 were characterized by
a high value of dispersity (PDI = 0.31–0.91) and particle size from 317 to 421 nm (Tables
S1–S3). In the range of concentrations studied for sulfobetaine 3 in cone conformation,
the aggregate size decreases (from 421 to 317 nm) with a lowering concentration (1 ×
10−4 − 1 × 10−6 M), while the dispersity also decreases (Table S1). After the addition of
AgNO3 at a 1:1 molar ratio (3:Ag+), nanosized particles with a hydrodynamic diameter
of about 168 nm and a low dispersity (PDI = 0.17) were formed. At the same time, with a
decrease in the concentration of 3, an opposite tendency is observed (Table S1). Obviously,
with a higher macrocycle concentration, some charge compensation occurs, which causes
higher monodispersity.

Sulfobetaine 5 in 1,3-alternate conformation in all systems, at various concentrations
of Ag (I), was not capable of forming stable monodisperse systems (Table S3). In the
concentration range studied (1 × 10−4 – 1 × 10−6 M), there is no definite trend in the size
change, while the dispersity increases (from 0.38 to 0.91) with a lowering concentration
(Table S3). The addition of Ag (I) to the solution of 5 in stoichiometric ratios 1:1, 1:4, 1:10
did not lead to the formation of a system with a monomodal distribution. Therefore,
both the aggregate size formed by macrocycle 5 and their dispersity weakly depend on
the concentration.

A more complicated picture was observed for sulfobetaine 4 in partial cone confor-
mation. In the concentration studied (1 × 10−4 M), macrocycle 4 forms monodisperse
systems at all the ratios studied with Ag (I) with a size of 123–187 nm (Table S2). Dilution
of the system to 1 × 10−5 M led to a violation of the stability of the system and, as a
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consequence, to an increase in the polydispersity and size of the resulting aggregates. At a
lower concentration (1 × 10−6 M), no associates were found.

Note that Ag (I), rather than the reduced form of Ag (0), participates in the formation
of aggregates with macrocycles 3–5. This is confirmed by the UV spectra of the studied
systems, which were recorded after 1 day, 3 days, and 7 days. The spectra lack the
absorption band of reduced silver at 430 nm (Figures S43–S45).

The formation of associates in the presence of Ag+ was also recorded in the solid phase
by TEM (Figure 1). The shape of the associates formed by macrocycles 3 and 4 is different.
In the case of associates 3/Ag+, spherical particles are formed, while the association of
macrocycle 4 with Ag+ gives associates of an extended shape.
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Figure 1. TEM images of (a) 3, (b) 3/Ag+, (c) 4 and (d) 4/Ag+ associates (1:4 molar ratio) in water
(1 × 10−4 M).

Obviously, such a difference in the shape of associates is due to the structure of the
macrocycle, namely, to the different arrangement of substituents relative to the macrocyclic
cavity (cone, partial cone and 1,3-alternate). To confirm our assumption, we studied the sys-
tems of macrocycles 3–5 and their associates with Ag+ by 1H NMR spectroscopy (Figure 2,
Figures S46 and S47).

Unfortunately, no significant changes in the 1H NMR spectrum for the 3/Ag+ system
were found (Figure S46). We used the 2D 1H,1H-nuclear Overhauser effect spectroscopy
(NOESY) NMR method (Figures S48 and S49) to confirm the formation and structure of
associates. There are observed cross-peak between the methylene protons of CH2SO3

−

and the methyl protons of Me2N+ of sulfobetaine fragment 1H,1H-NOESY NMR spectrum.
The presence of these cross peaks indicates a spatially close location of CH2SO3

− and the
methyl protons of Me2N+ in sulfobetaine fragments of pillar[5]arenes 3. Due to electrostatic
interactions, the charge in the sulfobetaine part is compensated, and a stable six-membered
ring is formed (Figure 2). The coordination of Ag+ is possible with bridging sulfur atoms
and at the oxygen atoms of the carbonyl groups of the receptor [34,35]. Apparently,
such an organization of the sulfobetaine fragment in the symmetric cone conformation in
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space and the coordination of Ag+ over bridging sulfur atoms does not lead to significant
shielding of the macrocycle fragments. This is not reflected in the 1H NMR spectrum of the
3/Ag+ associates.
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Figure 2. Coordination of the metals by the isomers of thiacalix[4]arenes 3–5 proposed for various
conformations.

In the 1H NMR spectrum of 5/Ag+ associates formed by a macrocycle in the 1,3-
alternate conformation, significant changes were found only in the region of oxymethylene
protons. The signal shifts to the low-field region by 0.16 ppm (Figure S47). At the same time,
in the 1H–1H NOESY NMR spectrum of macrocycle 5, a cross-peak between the methylene
group of CH2SO3

− and the methyl groups of Me2N+ is also observed (Figure S52), which
indicates the formation of a cyclic structure between the charged groups of the sulfobetaine
fragment. In this case, the Ag+ is so oriented in the space of the symmetric conformation
of the macrocycle that it causes shielding of only oxymethylene fragments of OCH2 and
does not promote self-assembly into ordered aggregates of the same size (Figure S47). This
is possible only in the case of a similar arrangement of the Ag+ cation, as shown in the
Figure 2.

The most significant changes in the 1H NMR spectrum are observed for the 4/Ag+ sys-
tem (Figure 3). Macrocycle 4 in paco conformation is more dissymmetric than macrocycles
in cone and 1,3-alternate conformations and is more conformationally labile. Proton signal
shifts are observed for almost all fragments, except for the tert-butyl groups of the aromatic
ring and methyl groups at the quaternized nitrogen atom. The greatest changes were
observed for aromatic protons, as well as methylene protons of sulfobetaine fragments.

It should be noted that in the 1H–1H NOESY NMR spectrum of macrocycle 4, in
contrast to macrocycles 3 and 5, there are no cross peaks between the methylene group
of CH2SO3

− and the methyl groups of Me2N+ (Figure S50). This means that the confor-
mational lability of macrocycle 4 increases the mobility of the fragments relative to the
macrocyclic ring. This complicates such an orientation of groups in space, which would
lead to intermolecular cyclization of the sulfobetaine fragment. As a result, coordination
of the Ag+ cation becomes possible not only at bridging sulfur atoms and oxygen atoms
of carbonyl groups but also through electrostatic interactions with the sulfo group of the
betaine fragment (Figure 2). Such electrostatic interactions “glue” the thiacalix[4]arene
molecules into extended structures, which we observe in the images obtained by the method
of transmission electron spectroscopy (Figure 1). The coordination of Ag+ for different
conformations of p-tert-butylthiacalix[4]arene functionalized with sulfobetaine fragments
is schematically shown in Figure 4.
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2.3. Cytotoxicity of Test Compounds 3–5 on Cancer and Non-Cancer Human Cell Lines

It is known that Ag nanoparticles are highly cytotoxic [20]. It is worth noting that Ag
nanoparticles can be toxic because they release Ag+, which are well known for their antibac-
terial and other destructive behavior [36]. Moreover, nanoparticles enhance the effect of
ions [37,38]. Taking these data into account, the cytotoxicity of the synthesized nanostruc-
tures based on sulfobetaine thiacalix[4]arenes and Ag+, as the most aggressive form of silver,
was evaluated. We studied the cytotoxic effect of thiacalix[4]arene derivatives 3–5 and their
aggregates 3/Ag+ and 4/Ag+ on cancer human cell lines MCF-7, M-HeLa, HuTu 80 and on
non-cancer cells (change liver) in the concentration range of 1–100 µM. This concentration
range is recommended for screening for new anticancer agents (1–100 µМ) [39].

It was shown that compounds 3–5 do not demonstrate cytotoxic activity against all
cell lines (Table 1). It can be seen that among the tested compounds, the 4/Ag+ aggregate
selectively decreases the viability of cervical carcinoma cells (M-HeLa). In terms of cytotoxic
activity, this complex is twice as great as the reference anti-cancer drug imatinib mesylate.
Its cytotoxicity against Chang liver cells differs slightly from the known anti-cancer drug.
It should be noted that all studied compounds and 3/Ag+ aggregates were inactive against
MCF-7 and HuTu 80 to cell lines.

Table 1. In vitro cytotoxic effects (µM) of sulfobetaine derivatives 3–5 and their aggregates with Ag+.

Test Compounds
IC50 (µM)

M-HeLa HuTu 80 MCF-7 Chang Liver

3 >5000 >5000 >5000 >5000
3/Ag+ >5000 >5000 >5000 >5000

4 >500 >500 >500 >500
4/Ag+ 38.9 ± 2.6 >500 >500 85.1 ± 6.4

5 >500 >500 >500 >500
Imatinib mesylate 84.7 ± 6.3 288 ± 23 207 ± 17 102 ± 7.9

The experiments were repeated for three times. The results are expressed as the mean ± standard deviation.

The selectivity of compounds for cancer cells is an important criterion for assessing
the cytotoxic effect. For this purpose, the selectivity index (SI) was calculated as the ratio
between the IC50 value for non-cancer cells and the IC50 for cancer cells. Compounds with
SI ≥ 3 are usually selective [36]. The SI values for lead system 4/Ag+ on the M-HeLa cell
line were 2.2. The reference drug Imatinib mesylate was significantly inferior to the leading
compounds in selectivity.

The cytotoxic selectivity of 4/Ag+ aggregates may be due to their architecture. It is
known from the literature that the shape of nanostructures can have a critical effect on the
effectiveness of the cytotoxic action [37]. Indeed, the association of macrocycle 4 in the
presence of Ag+ leads to the formation of extended nanostructures, while the association of
macrocycle 3 with the addition of AgNO3 gives spherical aggregates (Figure 1).

3. Materials and Methods
3.1. General

All NMR experiments were performed on the Bruker Avance-400 spectrometer. Chem-
ical shifts were reported relative to deuterated water as an internal standard. Attenuated
total internal reflectance, FTIR spectra of all compounds have been recorded using Spec-
trum 400 (Perkin Elmer) 4000 to 400 cm−1 range. Analysis of elements C, H and N have
been recorded using a Perkin-Elmer 2400 CHN elemental analyzer. MS experiments (elec-
trospray ionization) were carried out using a AmazonX spectrometer (Bruker Daltonics,
Bremen, Germany). The ionization parameters were as follows: positive ion mode; capillary
voltage 4.5 kV, drying gas of 10 L/min nitrogen at 300 ◦C. Mass analyzer scanned from 100
to 2800 u. Melting points were determined using the Boetius Block apparatus. Chemicals
were purchased from Sigma-Aldrich.

Compounds 1, 2 were synthesized by the authors of [40,41].
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3.2. General Procedure for the Synthesis of Compounds 3–5

The compounds 2 (2-cone, 2-paco, 2-alt) (0.20 g, 0.16 mmol) and 1,3-propanesultone
(0.64 mmol) was mixed in 15 mL of acetonitrile. The reaction mixture was refluxed for
72 h. After that, solvent was removed under reduced pressure and the residue was dried
in vacuo.

5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrakis[(N-(3′,3′-dimethyl-3′-{3′′-sulfonatopropyl})
ammoniumpropyl)-carbamoylmethoxy]-2,8,14,20-tetrathiacalix[4]arene (cone) (3) was syn-
thesized in our research group early [32]. Spectral data are presented in Supporting
Information (Figures S1–S4).

5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrakis[(N-(3′,3′-dimethyl-3′-{3′′-sulfonatopropyl})
ammoniumpropyl)-carbamoylmethoxy]-2,8,14,20-tetrathiacalix[4]arene (partial cone) (4).

Yield 0.26 g (95%). 1H NMR (DMSO-d6, δ, ppm, J/Hz): 1.01 (s, 18H, (CH3)3C), 1.28 (s, 9H,
(CH3)3C), 1.29 (s, 9H, (CH3)3C), 1.80–2.04 (m, 16Н, -N+CH2CH2CH2SO3

-,
-NCH2CH2CH2NH), 2.45 (m, 8Н, -N+CH2CH2CH2SO3

−), 2.97–3.03 (m, 24H, (CH3)2N+), 3.14–
3.30 (m, 16H, N+CH2CH2CH2NH, -N+CH2CH2CH2SO3

−), 3.4 (m, 8H, N+CH2CH2CH2NH),
4.36 (d, 2H, OCH2CO, 2JHH = 13.6 Hz), 4.46 (s, 2H, OCH2CO), 4.54 (s, 2H, OCH2CO),
4.82 (d, 2H, OCH2CO, 2JHH = 13.6 Hz), 7.02 (m, 2Н, ArH), 7.64 (m, 2Н, ArH), 7.67 (s, 2Н,
ArH), 7.76 (s, 2Н, ArH), 8.32 (m, 2Н, CONH), 8.45 (m, 2Н, CONH). 13C NMR (DMSO-d6,
δ, ppm): 169.21, 168.40, 167.51, 160.02, 157.70, 147.04, 146.08, 135.92, 135.31, 134.44, 128.48,
127.95, 127.49, 126.92, 73.17, 63.07, 62.67, 61.46, 61.35, 50.49, 48.09, 36.09, 34.45, 34.37, 34.28,
31.48, 31.19, 22.76, 22.68, 19.32. FTIR ATR (ν,cm−1): 1663 (C=О), 2954 (N+), 3429 (NH). El.
Anal. Calcd for C80H128N8O20S8 (%): C 54.03%, H 7.25%, N 6.30%, S 14.42%. Found (%):
C 54.47%, H 7.17%, N 6.57%, S 14.41%. MS (ESI): calculated 911.339 [M+2Na]2+, 615.222
[M+3Na]3+, 607.895 [M+2Na+H]3+, found: 911.337 [M+2Na]2+, 615.221 [M+3Na]3+, 607.893
[M+2Na+H]3+.

5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrakis[(N-(3′,3′-dimethyl-3′-{3′′-sulfonatopropyl})
ammoniumpropyl)-carbamoylmethoxy]-2,8,14,20-tetrathiacalix[4]arene (1,3-alternate) (5).

Yield 0.25 g (91%). 1H NMR (DMSO-d6, δ, ppm, J/Hz): 1.20 (s, 36H, (CH3)3C), 1.89 (m,
8Н, -NCH2CH2CH2NH), 1.99 (m, 8Н, -N+CH2CH2CH2SO3

−), 2.06 (m, 8Н,
-N+CH2CH2CH2SO3

−), 3.01 (s, 24H, (CH3)2N+), 3.18 (m, 8Н, -N+CH2CH2CH2SO3
−), 3.30

(m, 8H, NCH2CH2CH2NH), 3.43 (m, 8H, NCH2CH2CH2NH), 4.01 (s, 8H, OCH2CO), 7.60
(s, 8Н, ArH), 8.06 (m, 4Н, CONH). 13C NMR (DMSO-d6, δ, ppm): 167.79, 157.64, 146.54,
133.50, 127.98, 71.54, 62.84, 61.39, 50.52, 48.09, 39.90, 36.19, 34.37, 31.27, 22.84, 19.32. FTIR
ATR (ν,cm−1): 1657 (C=О), 2957 (N+) 3300 (NH). El. Anal. Calcd for C80H128N8O20S8
(%): C 54.03%, H 7.25%, N 6.30%, S 14.42%. Found (%): C 54.36%, H 7.28%, N 6.47%, S
14.40%. MS (ESI): calculated 1777.7 [M+H]+, 889.4 [M+2H]2+, found: 1777.6 [M+H]+, 889.8
[M+2H]2+.

3.3. Transmission Electron Microscopy (TEM)

TEM images were obtained using a Hitachi HT7700 Exalens microscope, Japan. The
images were acquired at an accelerating voltage of 100 keV. Samples were dispersed on
300 mesh copper grids with continuous carbonformvar support films.

3.4. Dynamic Light Scattering (DLS)

Hydrodynamic Size of the Particles. Zetasizer Nano ZS instrument (Malvern Instruments,
Worcestershire, UK) determined the particle size at 293 K. The source of laser radiation was
a He-Ne gas laser with a power of 4 mW power (λoperating = 633 nm). The collected signals
were treated in terms of frequency and phase analysis of scattered light using software
attached to the device. All measurements were carried out at a 173◦ scattering angle.
Deionized water with resistivity > 18.0 MΩ cm (Millipore-Q) was used for the preparation
of the solutions. Synthesized p-tert-butylthiacalix[4]arenes 3–5 were dissolved in water at
concentrations used in research (from 3 × 10−6 M to 3 × 10−4 M).

Electrokinetic Potentials. Electrokinetic (ζ) potentials were determined by electrophoretic
light scattering on the Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK). Sam-
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ples were prepared for the DLS measurements and transferred with the syringe to the
disposable folded capillary cell for measurement. The ζ potentials were measured using
the Malvern M3-PALS method and averaged from five measurements.

3.5. UV–Visible Spectroscopy

UV–visible spectra were recorded on the Shimadzu UV-3600 spectrophotometer at 293
K. Measurements were carried out in quartz cells with pathway lengths of 1.0 cm. AgNO3
were used as received. The 1 × 10−4 М solution of the AgNO3 (300 µL) in water was added
to 0.3 mL of the solution of host (1 × 10−4 M) in water and diluted to final volume of 3 mL
with water.

3.6. Cytotoxicity Assay

The M-HeLa clone 11 human, epithelioid cervical carcinoma, strain of HeLa, clone of
M-Hela; human duodenal adenocarcinoma (HuTu 80); human breast adenocarcinoma cells
(MCF-7) from the Institute of Cytology (Sankt-Petersburg) and human change liver from
the collection and Research Institute of Virology, Russian Academy of Medical Sciences
(Moscow) were used.

Cell viability was estimated using multifunctional Cytell Cell Imaging system (GE
Health Care Life Science, Sweden) and Cell Viability Bio App. The cells were cultured
in a standard Eagle’s nutrient medium (PanEco) and supplemented with 10% fetal calf
serum and 1% nonessential amino acids. The cells were seeded in a concentration of
105 cells/mL in 96-well plates (Eppendorf), then 150 µL of standard Eagle’s medium
(PanEco, Russia) was added per well, and incubation proceeded with CO2 at 37 ◦C. Twenty-
four hours after seeding the cells into wells, the tested compounds were added at a preset
dilution, 150 µL to each well. Each experiment was repeated three times. Intact cells
cultured in parallel with experimental cells were used as a control. The calculation of the
concentration of the drug causing inhibition of cell growth by 50% (IC50) was performed
with an Internet tool: MLA—“Quest Graph™ IC50 Calculator” (AAT Bioquest, Inc., https:
//www.aatbio.com/tools/ic50-calculator, accessed on 25 July 2019).

4. Conclusions

Thus, for the first time, we have synthesized a series of water-soluble sulfobetaine
derivatives of p-tert-butylthiacalix[4]arene in cone, partial cone, and 1,3-alternate conforma-
tion. It was shown by dynamic light scattering that none of the synthesized macrocycles
3–5 form stable self-associates in water. The association of macrocycles 3–5 with Ag+ was
confirmed by DLS methods. The particle size and polydispersity of systems depend on the
conformation of macrocycle and are determined by the spatial structure of the sulfobetaine
fragments. It was shown by 1H and 1H-1H NOESY NMR spectroscopy that in the case of
cone and 1,3-alternate, intramolecular electrostatic attraction in the sulfobetaine fragment
becomes possible, leading to the formation of a stable six-membered ring and coordination
of Ag+ exclusively over the bridging sulfur atoms and the carbonyl oxygen atoms. In the
case of a more conformationally mobile, asymmetric partial cone molecule, such charge
compensation turns out to be impossible, and a third coordination center (the terminal sulfo
group) appears. This leads to a difference in the morphology of the formed aggregates. In
the case of 4/Ag+ aggregates, extended nanostructures are formed. The cytotoxic effects
are shown to be controlled by the shape of the associates. Among the tested compounds,
only the 4/Ag+ aggregates act selectively on the cervical carcinoma cell line (M-HeLa).
In terms of cytotoxic activity, this complex is two times higher than the reference drug
imatinib mesylate. The selective activity against tumor cells in combination with low
toxicity toward normal cells allow the consideration of 4/Ag+ aggregates as effective novel
antitumor agents.

We show structural requirements implicated in the anticancer activity of the thia-
calix[4]arene/Ag+ system, which might help to rationalize their development as antitumor
agents. We hope that the results of our work will make it possible to develop fundamentally

https://www.aatbio.com/tools/ic50-calculator
https://www.aatbio.com/tools/ic50-calculator
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new approaches to the synthesis of nanostructures without a drug to solve the problem
of multidrug resistance. This work may become the basis for the creation of a new class
of anticancer systems: "nano anticancer drugs”. The directed design of the structures
allows the control of the activity, selectivity, and biological compatibility of nanoparticles
exhibiting anticancer properties.

Supplementary Materials: The following are available online, Figures S1, S5 and S9: 1H NMR
spectra of the compounds 3–5; Figures S2, S6 and S10: 13C NMR spectra of the compounds 3–5;
Figures S3, S7 and S11: Mass spectra of the compounds 3–5; Figures S4, S8 and S12: IR spectra of
the compounds 3–5; Figures S13–S42: Size distributions of compounds 3–5 and mixture with Ag+;
Figures S43–S45: UV spectra of compounds 3–5 with Ag+; Figures S4 and S47: 1H NMR spectrum
of the compounds 3 and 5 and their mixtures with Ag+; Figures S48–S53: 2D 1H–1H NOESY NMR
spectra of the compounds 3–5 and their mixtures with Ag+; Tables S1–S4: Size of aggregates formed
during association of compound 3–5 and their mixtures with Ag+.
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