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Individuals with schizophrenia have a reduced life-
expectancy compared to the general population, largely 
due to an increased risk of cardiovascular disease (CVD). 
Clinical and epidemiological studies have been unable to un-
ravel the nature of this relationship. We obtained summary-
data of genome-wide-association studies of schizophrenia 
(N = 130 644), heart failure (N = 977 323), coronary ar-
tery disease (N  =  332 477), systolic and diastolic blood 
pressure (N = 757 601), heart rate variability (N = 46 952), 
QT interval (N  =  103 331), early repolarization and di-
lated cardiomyopathy ECG patterns (N  =  63 700). We 
computed genetic correlations and conducted bi-directional 
Mendelian randomization (MR) to assess causality. With 
multivariable MR, we investigated whether causal effects 
were mediated by smoking, body mass index, physical ac-
tivity, lipid levels, or type 2 diabetes. Genetic correlations 
between schizophrenia and CVD were close to zero (−0.02–
0.04). There was evidence that liability to schizophrenia 
causally increases heart failure risk. This effect remained 
consistent with multivariable MR. There was also evidence 
that liability to schizophrenia increases early repolarization 
pattern, largely mediated by BMI and lipids. Finally, there 
was evidence that liability to schizophrenia increases heart 
rate variability, a direction of effect contrasting clinical 
studies. There was weak evidence that higher systolic blood 
pressure increases schizophrenia risk. Our finding that lia-
bility to schizophrenia increases heart failure is consistent 
with the notion that schizophrenia involves a systemic 
dysregulation of the body with detrimental effects on the 
heart. To decrease cardiovascular mortality among indi-
viduals with schizophrenia, priority should lie with optimal 
treatment in early stages of psychosis.

Key words:  coronary artery disease/heart rate 
variability/QT interval/early repolarization/dilated cardi
omyopathy/causality

Introduction

Schizophrenia is a serious mental disorder affecting 
up to 1% of the population.1 The life-expectancy of 
individuals diagnosed with schizophrenia is approx-
imately 15–20  years shorter than that of the general 
population2—a major contributor being cardiovascular 
mortality.3 Both cardiovascular diseases (CVD), in-
cluding coronary artery disease and heart failure, and 
CVD risk factors, including high blood pressure and ab-
normal electro-cardiogram (ECG) patterns, are prevalent 
amongst individuals with schizophrenia.4–8

There are broadly 2, not mutually exclusive, explan-
ations for this co-morbidity. First, there may be a shared 
etiology. Low birth weight, pre-term birth and maternal 
malnutrition during pregnancy are associated with an 
increased risk of both schizophrenia and CVD in off-
spring.9,10 There is also evidence for shared genetic influ-
ences, but only for a limited number of cardio-metabolic 
traits and using considerably smaller samples than cur-
rently available.11 Second, there may be causal effects. 
The predominant hypothesis is that schizophrenia in-
creases the risk of CVD. Schizophrenia is characterized 
by elevated cortisol levels, dysfunction of the autonomic 
nervous system, inflammation, lipid abnormalities, ox-
idative stress and increased platelet reactivity,4,9,10 all of 
which contribute to the development and progression of 
CVD.12 Reverse causal effects have also been proposed, 
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with markers of CVD preceding and potentially inducing 
psychosis.10,13

While systemic characteristics of schizophrenia may 
directly induce CVD, there are also potential mediators. 
Anti-psychotic medication use, which can cause central 
obesity, hypertension, and abnormal lipid patterns,14 may 
consequently increase CVD risk.15 This does not explain 
all excess cardiovascular mortality though, as patients 
who do not use anti-psychotics are also at increased 
risk of CVD.5,14 Other potential mediators are smoking, 
poor diet and lack of physical activity, all common in 
individuals with schizophrenia.16,17 While conducting a 
randomized controlled trial (RCT) to determine causal 
factors is not feasible, a powerful alternative is Mendelian 
Randomization (MR).18 MR mimics an RCT by using 
genetic variants as proxies, or “instrumental variables,” 
for the proposed risk factor.19 Because genetic variants 
are randomly passed on from parents to offspring, bias 
from confounders can be circumvented (provided core as-
sumptions are met).20

We capitalize on the availability of large genetic sam-
ples and sophisticated methods to elucidate the nature of 
the relationship between schizophrenia and CVD. Using 
summary-level data of genome wide association studies 
(GWAS), we: (1) compute genetic correlations to deter-
mine genome-wide overlap between schizophrenia and 
CVD risk, (2) perform univariable MR to test if  liability 
to schizophrenia causally increases CVD risk, (3) perform 
univariable MR to test if  liability to CVD causally in-
creases schizophrenia risk, and (4) perform multivariable 
MR to test if  key health behaviors mediate effects of lia-
bility to schizophrenia on CVD risk.

Methods

The analysis plan was pre-registered at https://osf.io/
fprew.

Data

We employed European-based estimates from the lar-
gest available GWAS on schizophrenia.21 Cases were 
individuals diagnosed with schizophrenia spectrum dis-
order based on DSM-IV criteria. For CVD, we selected 8 
phenotypes often linked to schizophrenia, for which suf-
ficiently large GWAS were available (supplement). These 
entailed 2 clinical endpoints: coronary artery disease22 and 
heart failure,23 and 6 markers of CVD risk: systolic blood 
pressure,24 diastolic blood pressure, 23 heart rate varia-
bility (HRV),25 QT interval,26 early repolarization ECG 
pattern,27 and dilated cardiomyopathy ECG pattern27 
(phenotype definitions in table 1). For multivariable MR, 
we selected 5 potential mediators of effects of liability to 
schizophrenia on CVD. These capture health behaviors, 
or their downstream consequences, particularly prevalent 
among individuals with schizophrenia: smoking (initia-
tion28 and lifetime smoking20), body mass index (BMI),29 

physical activity,30 lipid levels (total cholesterol and trigly-
cerides31– may be increased as a result of anti-psychotic 
medication), and type-2-diabetes.32 For MR, overlap be-
tween some of the exposure and outcome samples was 
prevented by excluding overlapping UK-Biobank partici-
pants. For further explanation see Supplement.

Genetic Correlations

Genetic correlations were computed using linkage dise-
quilibrium score (LDSC) regression.33 The genetic corre-
lation is based on the estimated slope from the regression 
of the product of z-scores from 2 GWAS on the LD score 
and represents the covariation between 2 traits based on 
all polygenic effects captured by the included SNPs. We 
filtered GWAS summary statistics to only include the 
1 290 028 million SNPs from the HapMap3 European 
reference panel, used to provide the genome-wide LD 
information.33,34

Univariable Mendelian Randomization

We conducted bi-directional MR to assess evidence for 
causal effects of liability to schizophrenia on CVD risk, 
and vice versa, of liability to CVD on schizophrenia risk. 
MR relies on 3 main assumptions (figure 1A). “Horizontal 
pleiotropy,” a variant associating with multiple traits, 
may violate assumptions 2 and 3, if  the variant associates 
with the outcome directly or via a confounding factor.18

The main method was inverse-variance weighted (IVW) 
regression. Independent SNPs that reached genome-wide 
significance (P  <  5E−08) in the exposure GWAS were 
extracted to form instrumental variables. SNP-outcome 
effects were obtained from the outcome GWAS. A ratio 
estimate was obtained by dividing the effect a SNP has 
on the outcome by the effect it has on the exposure. 
Individual SNP-effects were weighted by the inverse of 
their variance and estimates of all SNPs combined. IVW 
provides the first indication of whether the exposure 
causes the outcome, assuming all assumptions are met. 
To verify its validity, we applied 6 sensitivity methods: 
First, weighted median regression which can provide a 
consistent causal estimate even when <50% of the weight 
of the instrument does not satisfy the MR assumptions.35 
Second, weighted mode regression, the estimate of which 
is reliable as long as the most frequent SNP-effects are 
contributed by valid SNPs.36 Third, MR-Egger regression, 
which explicitly tests for horizontal pleiotropy.37 Instead 
of being fixed to zero, the intercept is freely estimated 
and can be interpreted as the average horizontally plei-
otropic effect. Crucially, MR-Egger relies on 2 assump-
tions: the INstrument Strength Independent of Direct 
Effect (InSIDE; meaning that any pleiotropic effects 
should not be correlated with the instrument strength) 
assumption and the NO Measurement Error (NOME) 
assumption. An important limitation is that MR-Egger 
has markedly lower statistical power than IVW. Fourth, 

https://osf.io/fprew
https://osf.io/fprew


465

Exploring Schizophrenia and Cardiovascular Disease

T
ab

le
 1

. 
O

ve
rv

ie
w

 o
f 

th
e 

m
ai

n 
ph

en
ot

yp
es

, d
et

ai
ls

 o
n 

th
ei

r 
re

fe
re

nc
e 

an
d 

ho
w

 t
he

y 
w

er
e 

m
ea

su
re

d,
 t

he
 n

um
be

r 
of

 in
de

pe
nd

en
t,

 g
en

om
e-

w
id

e 
si

gn
ifi

ca
nt

 S
in

gl
e 

N
uc

le
ot

id
e 

Po
ly

m
or

ph
is

m
s 

(S
N

P
) 

id
en

ti
fie

d 
in

 t
he

 G
W

A
S 

an
d 

ge
ne

ti
c 

co
rr

el
at

io
ns

 b
et

w
ee

n 
sc

hi
zo

ph
re

ni
a 

an
d 

th
e 

ca
rd

io
va

sc
ul

ar
 d

is
ea

se
 p

he
no

ty
pe

s

P
he

no
ty

pe
G

W
A

S 
re

fe
re

nc
e

H
ow

 t
he

 p
he

no
ty

pe
 w

as
 m

ea
su

re
d

Sa
m

pl
e 

si
ze

n 
SN

P
s

G
en

et
ic

 c
or

re
la

ti
on

 
w

it
h 

sc
hi

zo
ph

re
ni

a

Sc
hi

zo
ph

re
ni

a
R

ip
ke

 e
t 

al
, 2

02
0

C
as

es
 w

er
e 

in
di

vi
du

al
s 

di
ag

no
se

d 
w

it
h 

a 
sc

hi
zo

ph
re

ni
a 

sp
ec

tr
um

  
di

so
rd

er
, b

as
ed

 o
n 

D
SM

-I
V

 c
ri

te
ri

a
53

 3
86

 c
as

es
  

77
 2

58
 c

on
-

tr
ol

s

18
5 

 
(E

ur
op

ea
n)

—

C
or

on
ar

y 
 

ar
te

ry
 d

is
ea

se
N

el
so

n 
et

 a
l, 

20
17

C
as

es
 w

er
e 

in
di

vi
du

al
s 

w
it

h 
a 

fa
ta

l o
r 

no
nf

at
al

 m
yo

ca
rd

ia
l i

nf
ar

ct
io

n,
 

pe
rc

ut
an

eo
us

 t
ra

ns
lu

m
in

al
 c

or
on

ar
y 

an
gi

op
la

st
y 

(P
T

C
A

),
 c

or
on

ar
y 

 
ar

te
ry

 b
yp

as
s 

gr
af

ti
ng

 (
C

A
B

G
),

 c
hr

on
ic

 is
ch

em
ic

 h
ea

rt
 d

is
ea

se
, o

r 
 

an
gi

na

71
 6

02
 c

as
es

  
26

0 
87

5 
co

n-
tr

ol
s

56
rg

 =
 −

0.
02

, 
SE

 =
 0

.0
3,

 P
 =

 .4
39

H
ea

rt
 f

ai
lu

re
Sh

ah
 e

t 
al

, 2
02

0
C

as
es

 w
er

e 
in

di
vi

du
al

s 
w

it
h 

a 
cl

in
ic

al
 d

ia
gn

os
is

 o
f 

he
ar

t 
fa

ilu
re

 o
f 

an
y 

ae
ti

ol
og

y 
(n

o 
in

cl
us

io
n 

cr
it

er
ia

 b
as

ed
 o

n 
le

ft
 v

en
tr

ic
le

 e
je

ct
io

n 
fr

ac
ti

on
)

47
 3

09
 c

as
es

  
93

0 
01

4 
co

n-
tr

ol
s

12
rg

 =
 −

0.
01

, 
SE

 =
 0

.0
4,

 P
 =

 .6
96

Sy
st

ol
ic

 b
lo

od
 

pr
es

su
re

E
va

ng
el

ou
 e

t 
al

, 2
01

8
M

ea
n 

of
 2

 s
ys

to
lic

 b
lo

od
 p

re
ss

ur
e 

m
ea

su
re

m
en

ts
 (

if
 a

va
ila

bl
e)

, m
an

ua
l 

or
 a

ut
om

at
ic

 (
or

 b
ot

h)
. M

ea
su

re
d 

in
 m

ill
im

et
re

s 
of

 m
er

cu
ry

 (
m

m
H

g)
75

7 
60

1
23

7
rg

 =
 −

0.
01

, 
SE

 =
 0

.0
2,

 P
 =

 .6
99

D
ia

st
ol

ic
 

bl
oo

d 
pr

es
su

re
E

va
ng

el
ou

 e
t 

al
, 2

01
8

M
ea

n 
of

 2
 d

ia
st

ol
ic

 b
lo

od
 p

re
ss

ur
e 

m
ea

su
re

m
en

ts
 (

if
 a

va
ila

bl
e)

, m
an

ua
l 

or
 a

ut
om

at
ic

 (
or

 b
ot

h)
. M

ea
su

re
d 

in
 m

ill
im

et
re

s 
of

 m
er

cu
ry

 (
m

m
H

g)
75

7 
60

1
15

8
rg

 =
 0

.0
01

, 
SE

 =
 0

.0
2,

 P
 =

 .9
65

H
ea

rt
 r

at
e 

 
va

ri
ab

ili
ty

N
ol

te
 e

t 
al

, 2
01

7
T

he
 r

oo
t 

m
ea

n 
sq

ua
re

 o
f 

th
e 

su
cc

es
si

ve
 d

iff
er

en
ce

s 
of

 in
te

r 
be

at
 in

te
rv

al
s 

(R
M

SS
D

),
 w

hi
ch

 r
efl

ec
ts

 h
ea

rt
 r

at
e 

va
ri

ab
ili

ty
46

 9
52

 e
xp

o-
su

re
 s

am
pl

e 
 

26
 5

23
  

ou
tc

om
e 

sa
m

pl
e

9
rg

 =
 −

0.
01

, 
SE

 =
 0

.0
5,

 P
 =

 .8
50

Q
T

 in
te

rv
al

A
rk

in
g 

et
 a

l, 
20

14
T

he
 t

im
e 

fr
om

 t
he

 s
ta

rt
 o

f 
th

e 
Q

 w
av

e 
to

 t
he

 e
nd

 o
f 

th
e 

T
 w

av
e 

as
 r

ea
d 

fr
om

 a
n 

E
C

G
. I

nd
iv

id
ua

ls
 w

er
e 

ex
cl

ud
ed

 if
 t

he
re

 w
as

 a
tr

ia
l fi

br
ill

at
io

n,
 

at
ri

al
 fl

ut
te

r, 
pr

es
en

ce
 o

f 
Q

R
S 

du
ra

ti
on

 >
12

0 
m

se
c 

or
 p

re
se

nc
e 

of
 le

ft
/

ri
gh

t 
bu

nd
le

 b
ra

nc
h 

bl
oc

k

10
3 

33
1

68
rg

 =
 0

.0
4,

 
SE

 =
 0

.0
3,

 
P

 =
 0

.1
42

E
ar

ly
 

re
po

la
ri

za
ti

on
 

E
C

G
-p

at
te

rn

V
er

w
ei

j e
t 

al
, 2

02
0

T
he

 h
ei

gh
t 

of
 a

 s
pe

ci
fic

 p
oi

nt
 o

f 
th

e 
el

ec
tr

oc
ar

di
og

ra
m

 (
E

C
G

),
 +

44
 

m
se

c 
af

te
r 

th
e 

R
 w

av
e,

 w
hi

ch
 c

oi
nc

id
ed

 w
it

h 
th

e 
ea

rl
y 

re
po

la
ri

za
ti

on
  

cr
it

er
ia

. T
he

 g
en

om
e-

w
id

e 
si

gn
ifi

ca
nt

 S
N

P
s 

w
er

e 
fo

llo
w

ed
 u

p 
in

 a
n 

 
in

de
pe

nd
en

t 
co

ho
rt

 (
L

if
el

in
es

) 
to

 c
on

fir
m

 t
he

ir
 a

ss
oc

ia
ti

on
 w

it
h 

ea
rl

y 
re

po
la

ri
za

ti
on

 d
ia

gn
os

is
 (

1,
25

3 
ca

se
s,

 1
1,

46
3 

co
nt

ro
ls

);
 2

 w
er

e 
si

gn
ifi

ca
nt

 
at

 t
he

 B
on

fe
rr

on
i l

ev
el

 a
nd

 5
 s

ho
w

ed
 s

ug
ge

st
iv

e 
as

so
ci

at
io

n,
 m

or
e 

th
an

 
ex

pe
ct

ed
 b

y 
ch

an
ce

. C
om

bi
ne

d 
in

 a
 I

V
W

-r
eg

re
ss

io
n 

an
al

ys
is

, t
he

re
 w

as
 

st
ro

ng
 e

vi
de

nc
e 

th
at

 t
he

se
 S

N
P

s 
ca

us
al

ly
 p

re
di

ct
 e

ar
ly

 r
ep

ol
ar

iz
at

io
n 

pa
tt

er
n.

63
 7

00
9

rg
 =

 −
0.

02
, 

SE
 =

 0
.0

4,
 P

 =
 .6

00

D
ila

te
d 

 
ca

rd
io

m
yo

pa
th

y 
E

C
G

-p
at

te
rn

V
er

w
ei

j e
t 

al
, 2

02
0

T
he

 h
ei

gh
t 

of
 a

 s
pe

ci
fic

 p
oi

nt
 o

n 
el

ec
tr

oc
ar

di
og

ra
m

 (
E

C
G

),
 -

18
 m

se
c 

 
be

fo
re

 t
he

 R
 w

av
e,

 w
hi

ch
 s

ho
w

ed
 s

tr
on

g 
ov

er
la

p 
w

it
h 

di
la

te
d 

 
ca

rd
io

m
yo

pa
th

y 
ri

sk
. T

he
 g

en
om

e-
w

id
e 

si
gn

ifi
ca

nt
 S

N
P

s 
w

er
e 

fo
llo

w
ed

 
up

 in
 a

n 
in

de
pe

nd
en

t 
co

ho
rt

 (
U

K
 b

io
ba

nk
) 

to
 c

on
fir

m
 t

he
ir

 a
ss

oc
ia

ti
on

 
w

it
h 

di
la

te
d 

ca
rd

io
m

yo
pa

th
y 

di
ag

no
si

s 
(1

,3
75

 c
as

es
, 2

41
,3

25
 c

on
tr

ol
s)

. 
C

om
bi

ne
d 

in
 a

 I
V

W
-r

eg
re

ss
io

n 
an

al
ys

is
, t

he
re

 w
as

 s
tr

on
g 

ev
id

en
ce

 t
ha

t 
th

es
e 

SN
P

s 
ca

us
al

ly
 p

re
di

ct
 d

ila
te

d 
ca

rd
io

m
yo

pa
th

y 
pa

tt
er

n.

63
 7

00
34

rg
 =

 0
.0

04
, 

SE
 =

 0
.0

4,
 P

 =
 .8

92



466

R. R. Veeneman et al

MR pleiotropy residual sum and outlier (MR-PRESSO) 
analysis,38 which consists of 3 steps: testing for horizontal 
pleiotropy (global test), correcting for horizontal pleiot-
ropy using outlier removal (outlier test) and evaluating 
significant differences in the causal estimate before and 
after outlier removal (distortion test). Fifth, generalized 
summary data-based MR (GSMR).39 GSMR provides 
high statistical power by using low levels of LD between 
the SNPs and considering sampling variation in the esti-
mated effects of all SNPs. Pleiotropic SNPs are removed 
with the HEIDI-outlier procedure. Sixth, Steiger filtering 
which corrects for reverse causality.40 The Steiger test was 
used to identify and then exclude SNPs that explained a 
larger amount of variance in the outcome, compared to 
the exposure.

We also performed leave-one-out analyses, repeating 
IVW after removing each SNP, and computed Cochran’s 
Q to assess heterogeneity between SNP-estimates in 
each instrument. To assess instrument strength, we 
computed the F-statistic (F > 10 is sufficiently strong). 
To assess whether the NOME assumption was satisfied 
for MR-Egger we computed the I2GX statistic.41 If  I2GX 
is higher than 0.9, bias due to violation of the NOME 
assumption is not likely. When I2GX = 0.6–0.9, bias can 
be corrected for with simulation extrapolation (SIMEX) 
MR-Egger.

An MR finding was considered robust when results 
were consistent across methods. Because sensitivity 
methods rely on stricter assumptions than IVW, they 
are less powerful. Their statistical evidence, but not ef-
fect size, will therefore be weaker, even for a true effect. 
We describe findings as showing no clear evidence, weak 
evidence, evidence or strong evidence for a causal effect, 
taking into account IVW and the sensitivity methods, 
adhering to the broad interpretation of P-values de-
scribed by Sterne and Davey Smith (2001).42 We consider 
a finding to be consistent across sensitivity methods if  
the beta coefficient is in the same direction and of com-
parable size (or larger). Analyses were performed in R 
(3.6.3), using packages: “TwoSampleMR,” “GSMR,” 
“psych,” and “MR-PRESSO.”

Multivariable Mendelian Randomization

Using multivariable MR, health behaviors were added to 
see whether effects of liability to schizophrenia as the ex-
posure on CVD as the outcome diminished, which could 
indicate mediation (figure  1B).43 For each univariable 
analysis we added each health behavior separately (we did 
not combine them to prevent violation of linearity and 
homogeneity assumptions44). We evaluated robustness 
with multivariable MR-Egger, computed the Sanderson-
Windmeijer conditional F statistic for instrument 
strength, and computed an adaption of the Cochran’s Q 
statistic to detect heterogeneity (see Supplement for more 
information).

Results

Genetic Correlations

Genetic correlations, reflecting overlap between genome-
wide liability to schizophrenia and CVD, were all close to 
zero (table 1).

Univariable Mendelian Randomization

Instruments for schizophrenia and CVD were suffi-
ciently strong (supplementary table S1). Bi-directional 
univariable MR results are depicted in table 2.

Liability to Schizophrenia on CVD. There was evidence 
that liability to schizophrenia causally increases heart 
failure risk (betaIVW  =  0.027, 95% confidence inter-
vals  =  0.003−0.051, P  =  0.027). Weighted median and 
weighted mode regression confirmed this with consistent 
effect sizes, but weaker statistical evidence. GSMR showed 
much stronger evidence for a positive effect, of greater mag-
nitude (beta = 0.266, CIs = 0.25−0.281, P = 3.3E−251). 
While the MR-Egger intercept showed strong evidence for 
horizontal pleiotropy (−0.013, CIs  =  −0.019 to −0.007, 
P = 9.4E−05; supplementary table S2), its slope also in-
dicated strong evidence for a positive effect (beta = 0.220, 

Fig. 1. Mendelian randomization (MR). (A) MR relies on 3 
assumptions; the genetic variants in the instrument must (1) 
associate robustly with the exposure (e.g. schizophrenia), (2) 
be independent of confounders, and (3) not directly affect the 
outcome (e.g. heart failure), except through their effect on the 
exposure. (B) Multivariable MR allows an additional variable, 
besides the main exposure. We tested whether key health 
behaviours mediate the effect of schizophrenia on cardiovascular 
disease. E.g., if  the inclusion of smoking (considerable) decreases 
the direct effect of schizophrenia on heart failure, it implies that 
smoking mediates the relationship.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab132#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab132#supplementary-data
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CIs = 0.129−0.312, P = 4.5E−06). There was strong ev-
idence for heterogeneity across SNPs (Cochran’s Q 
P = 2.3E−04; supplementary table S3). MR-PRESSO de-
tected one outlier, but eliminating it did not have a large 
impact (supplementary table S4). Steiger filtering did not 
find SNPs that explained more variance in the outcome 
than the exposure, suggesting no reverse causality (sup-
plementary table S5). While leave-one-out analysis showed 
SNP rs13107325 to have a relatively large impact, the effect 
size and statistical evidence remained considerable after re-
moval (supplementary figure S1). In sum, horizontal plei-
otropy notwithstanding, there is consistent evidence for 
a causal, increasing effect of liability to schizophrenia on 
heart failure across all included (sensitivity) methods.

There was evidence that liability to schizophrenia caus-
ally increases early repolarization pattern (betaIVW = 0.020, 
CIs = 0.001–0.038, P = .040). While weighted median and 
GSMR confirmed this, weighted mode and MR-Egger 
regression did not (beta  =  0.005, CIs  =  −0.050–0.061, 
P = .850, and beta = 0.001, CIs = −0.066–0.067, P = .982, 
respectively). There was strong evidence for heterogeneity 
(P  =  6.8E−09), but the MR-Egger intercept indicated 
that this was not due to horizontal pleiotropy (P = .580). 
MR-PRESSO detected one outlier, which did not impact 
the results. Steiger filtering excluded one SNP resulting in 
a slightly weaker effect.

There was evidence that liability to schizophrenia causally 
increases HRV (betaIVW = 0.019, CIs = 2.5E−03 to 0.036, 
P = 0.024). Weighted median, weighted mode and GSMR 
were consistent, while MR-Egger was not. There was evi-
dence for heterogeneity (P = 0.009), but this was likely not due 
to horizontal pleiotropy (MR-Egger intercept P  =  0.499). 
Excluding one outlier with MR-PRESSO did not impact the 
results, while excluding 6 SNPs with Steiger filtering slightly 
attenuated the effect. No other analyses showed clear evi-
dence for association (supplementary table 2).
Liability to CVD on Schizophrenia Risk. There was 
weak evidence that increased systolic blood pressure 
causally increases schizophrenia risk (betaIVW  =  0.008, 
CIs  =  −2.1E−04 to 0.017, P  =  .056), confirmed by all 
sensitivity methods. There was strong evidence for het-
erogeneity (P  =  4.6E−68), but the MR-Egger intercept 
indicated that this was not due to horizontal pleiotropy 
(P = 0.491). MR-PRESSO detected 14 outliers, yet elim-
ination of these SNPs did not change the results. Steiger 
filtering removed 16 SNPs, resulting in even stronger ev-
idence (betaIVW = 0.010, CIs = 0.003–0.016, P = 0.006). 
Leave-one-out analysis showed that removing SNP 
rs11191548 considerably decreased the effect size and 
weakened statistical evidence (supplementary figure S2).

There was very weak evidence that liability to in-
creased diastolic blood pressure decreases schizophrenia 
risk (betaIVW = −0.008, CIs = −0.018–0.001, P =  .088), 
but this was not corroborated by sensitivity analyses. 
No other analyses showed clear evidence for association 
(supplementary table 2).

Multivariable Mendelian Randomization

For relationships with evidence of causality, multivariable 
results are shown in figure 2. Other multivariable results 
are in supplementary tables S6–S21. The conditional 
F-statistic indicated sufficient instrument strength, except 
for physical activity which ranged between ~8 and ~11 
(table S15).45 Most health behaviors had a larger impact 
on heart failure than did liability to schizophrenia. When 
added in multivariable MR, only BMI had a noteworthy 
impact on the direct effect of liability to schizophrenia on 
heart failure. BMI increased the causal effect of liability 
to schizophrenia by ~70% (betaIVW = 0.046, CIs = 0.01–
0.083, P  =  .013). MR-Egger confirmed the effect size 
and direction and the intercept indicated no horizontal 
pleiotropy (P  =  .537; supplementary table S16). BMI 
itself  showed a positive association with heart failure 
(betaIVW = 0.447, CIs = 0.34–0.555, P = 3.4E−16), sug-
gesting it is negatively associated with schizophrenia. We 
conducted post-hoc analyses with underweight (versus 
normal weight) and overweight (vs normal weight) as 
potential mediators (Supplement). Underweight did 
not change the main effect, while overweight increased 
it by ~30% (conditional F-statistic for underweight was 
low (2.28)). The effect of liability to schizophrenia on 
HRV remained consistent after adding health behav-
iors. The effect of liability to schizophrenia on early 
repolarization pattern decreased when adding BMI,  
total cholesterol and triglycerides, with 70% 
(betaIVW  =  0.006, CIs  =  −0.017 to 0.028, P  =  .617),  
65% (betaIVW = 0.007, CIs = −0.017–0.031, P = .549), and 
60% (betaIVW  =  0.008, CIs  =  −0.016–0.032, P  =  .538),  
respectively. MR-Egger results were consistent.

Discussion

We computed genome-wide genetic correlations be-
tween schizophrenia and eight important CVD pheno-
types, all of which were nearly zero. Using MR, there 
was evidence that liability to schizophrenia causally in-
creases heart failure risk. This effect was not mediated 
by health behaviors in multivariable MR. There was 
also evidence that liability to schizophrenia causally in-
creases early repolarization pattern, largely mediated by 
BMI and lipid levels. There was evidence that liability to 
schizophrenia increases HRV, a direction of effect con-
trasting clinical observations. Finally, there was weak 
evidence that increased systolic blood pressure increases 
schizophrenia risk.

The lack of evidence for genetic correlation between 
schizophrenia and CVD is striking, given consistent phe-
notypic correlations3 and the fact that a considerable 
amount of the risk variants for schizophrenia are located 
in genes relevant for cardiological functioning, such as 
calcium channels. In contrast, considerable positive ge-
netic correlations between schizophrenia and immune-
mediated diseases mirrored earlier epidemiological 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab132#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab132#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab132#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab132#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab132#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab132#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab132#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab132#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab132#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab132#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab132#supplementary-data
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Fig. 2. Forest plots of multivariable Mendelian randomization (MR) analyses of liability to schizophrenia on heart failure (A), heart 
rate variability (B), and early repolarization (C), showing the direct effect of liability to schizophrenia on the respective outcomes. Each 
health behaviour was added in a separate analysis. Lifetime smoking and physical activity could not be added for C, because there was 
considerable sample overlap.
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evidence.46 Our findings indicate that there is minimal 
shared genetic etiology, implying that phenotypic associ-
ations between schizophrenia and cardiovascular disease 
are due to other mechanisms. However, since a genetic 
correlation is computed on a genome-wide scale, it may 
also be that only a subset of variants overlaps, with the 
average shared signal being weak. Moreover, our ana-
lyses test the effects of liability to schizophrenia, and not 
a schizophrenia diagnosis per se. It may be that an ac-
tual diagnosis, and all detrimental factors associated with 
it, drive associations with cardiovascular disease and we 
were not able to capture that.

With MR, we found evidence that liability to schizo-
phrenia causally increases CVD. MR employs a selection 
of genetic variants, as opposed to the genome-wide ap-
proach for genetic correlations. MR might therefore find 
an association that was “cancelled out” by opposing ef-
fects in a genome-wide correlation.47 There was robust 
evidence that liability to schizophrenia increases heart 
failure risk, confirming its high prevalence among indi-
viduals with schizophrenia.48 MR’s powerful premise and 
the robustness across sensitivity analyses allows us to 
say with more certainty that this is due to causal effects. 
Important to note is that the MR-Egger intercept indi-
cated horizontal pleiotropy, such that genetic variants for 
schizophrenia also exerted some effect on heart failure, 
independent of schizophrenia. The effect on heart failure 
was not mediated by health behaviors, which is partic-
ularly noteworthy for smoking – smoking rates among 
individuals with schizophrenia are high and smoking 
increases cardiovascular mortality.17 Our findings are in 
line with the notion that schizophrenia is characterized 
by a systemic dysregulation of the body, including in-
flammation and oxidative stress, which promotes cardiac 
alterations and ultimately heart failure.9,49 This implies 
that changing health behaviors—while useful to improve 
health—is not sufficient to reduce cardiovascular mor-
tality among patients with schizophrenia. To prevent 
heart failure, priority should lie with optimal treatment 
and early-stage interventions, thereby preventing detri-
mental systemic effects. Finally, it should be noted that 
we did not find clear evidence for an effect of liability to 
schizophrenia on coronary artery disease (CAD), which 
is surprising as CAD can be an underlying cause of heart 
failure. This may indicate that causal effects on heart 
failure do not run through pathways typical to CAD 
(e.g. atherosclerosis), but rather through pathways related 
to the myocardium itself  (e.g. contractility or electrical 
function).50 A post hoc multivariable MR analysis con-
firmed that the direct effect of liability to schizophrenia 
on heart failure remained the same after adding CAD 
(supplementary table S22).

There was evidence that liability to schizophrenia in-
creases early repolarization pattern, corroborating re-
ports that early repolarization disproportionately affects 
patients with schizophrenia.51,52 Historically, this pattern 

was considered normal,53 but recent evidence linked it to 
an increased risk of sudden cardiac death.54 Sudden car-
diac death is particularly prevalent in patients with schiz-
ophrenia, making early repolarization an important risk 
marker. The association with early repolarization pattern 
declined when correcting for BMI, total cholesterol, and 
triglycerides. This helps elucidate the, currently poorly 
understood, etiology of early repolarization and suggests 
that among individuals with schizophrenia this pattern 
can be improved by lowering BMI and lipid levels.54

Liability to schizophrenia was associated with higher 
HRV, while patients present with lower HRV in the 
clinic—partly due to anti-psychotic use.55,56 This discrep-
ancy may be explained by the fact that we employed 2 
separate GWAS (one for schizophrenia, a separate one 
for HRV). The number of individuals with a schizo-
phrenia diagnosis – and thus antipsychotic use—was 
likely low in the HRV GWAS. Another consideration is 
that the HRV GWAS data were not corrected for heart 
rate, which correlates strongly with HRV and is usually 
higher in individuals with schizophrenia.8 Finally, lower 
HRV may result from the systemic presentation of schiz-
ophrenia, which our measure of liability did not capture. 
Studies tracking HRV before and after schizophrenia is 
diagnosed would help clarify our findings.

There was evidence that higher systolic, but not dias-
tolic, blood pressure increases schizophrenia risk. This 
corroborates a large cohort study reporting that, in men, 
higher blood pressure in adolescence predicts schizo-
phrenia in adulthood.57 Higher blood pressure has also 
been reported in individuals who were at risk of, but 
had not yet developed, psychosis.58 Combined, this sug-
gests that dysfunction of the autonomic nervous system 
precedes schizophrenia onset. A  potentially important 
confounder is smoking, as it affects both blood pressure59 
and schizophrenia.60 However, in a post-hoc multivariable 
MR analysis, we found no change in effect when adding 
smoking (supplementary table S23).

Our study has some important strengths. We were able 
to conduct powerful analyses, investigating disorders 
with a low prevalence on the population level (especially 
schizophrenia). In addition to computing genetic cor-
relations, we applied a wide range of rigorous MR sen-
sitivity methods, which increases the robustness of our 
inferences, including multivariable MR which allowed 
us to investigate important mediators. Combined, this 
has kept the risk of bias from horizontal pleiotropy and 
reverse causality to a minimum. There are also limita-
tions to consider. Schizophrenia is a severe illness and 
those who suffer most may not have been able to par-
ticipate in research, causing selection bias.61,62 For early 
repolarization and dilated cardiomyopathy, it should 
be taken into consideration that these do not reflect the 
whole pattern, but rather a particular amplitude of the 
ECG that corresponds with the beginning of the respec-
tive patterns. For some relationships, there may have 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab132#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab132#supplementary-data
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been temporality issues. Schizophrenia often arises in 
early adulthood, whereas heart failure and coronary ar-
tery disease develop later in life. Testing heart failure and 
coronary artery disease as exposures for schizophrenia is 
therefore imperfect. However, genetic risk to CVD can 
already have an impact early in life and therefore causal 
relationships are plausible.63 Assortative mating, dynastic 
effects (“genetic nurture’) and residual population strati-
fication could not be accounted for – future within-family 
Mendelian randomization analyses may be able to reduce 
such bias.64 Another limitation that warrants attention is 
the fact that we based our primary analyses on European 
ancestry individuals only. When we attempted to replicate 
2 of the main findings, increasing effects of liability to 
schizophrenia65 on heart failure66 and of blood pressure67 
on schizophrenia risk, we found effects in the same direc-
tion, but without clear evidence for causality (supplemen-
tary table S24; GWAS were not available for heart rate 
variability and early repolarization pattern).

In conclusion, we showed that a shared genetic eti-
ology is not the most likely mechanism underlying as-
sociations between schizophrenia and CVD. There was, 
however, evidence that liability to schizophrenia causally 
increases the risk of heart failure and early repolarization 
pattern. While the effect on early repolarization pattern 
was largely mediated by BMI and lipid levels, the effect 
on heart failure remained stable after adding key health 
behaviors. This implies that effective treatment and in-
tervention in early psychosis is important to decrease ex-
cess cardiovascular mortality. Tracking of physical health 
and screening for CVD is currently done less frequently 
than advised in clinical guidelines, and start of treatment 
is often delayed.68 More thorough screening throughout 
psychiatric treatment must become a priority, in order to 
decrease the stark mortality gap between schizophrenia 
patients and individuals from the general population.
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