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Introduction
Shortly after the development of techniques for growing cells  
in culture, “tension striae” or “stress fibers” (SFs) were detected 
by light microscopy as dark lines or fibrils crossing many types 
of cells growing in culture (Lewis and Lewis, 1924). After 
some initial interest, these structures were neglected for many 
years and were even considered to be possible fixation artifacts. 
The application of electron microscopy to analyze cellular cyto­
plasmic organization renewed interest in SFs, as they were 
seen to be prominent structures in many cells in tissue culture 
(Buckley and Porter, 1967; Abercrombie et al., 1971; McNutt 
et al., 1971; Perdue, 1973). The speculation that SFs relate to 
striated muscle thin filaments composed of actin was confirmed  
by “decoration” with heavy meromyosin (Perdue, 1973). Re­
search into SFs accelerated with the application of immuno­
fluorescence microscopy, which made it possible to compare the 
organization of SFs in thousands of cells (Lazarides and Weber, 
1974; Goldman et al., 1975; Lazarides and Burridge, 1975).  
In the nearly 100 years since they were first discovered, SFs 
continue to command attention. Not only are they often the most 

conspicuous cytoskeletal arrays in cultured cells (and as such 
are highly photogenic), but their ease of visualization has made 
them models for studying cytoskeletal assembly, organization, 
dynamics, and repair. SFs are load-bearing, tension-generating 
mechanosensitive structures. Their presence reflects a cell’s  
response to the external environment, not only the soluble factors 
that drive assembly and disassembly but also the physical prop­
erties of the environment, such as its rigidity or compliance. In 
this review, we will discuss SF organization, how they assemble 
and disassemble, their dynamics, and their relationship to me­
chanical force as well as unresolved questions in the field.

Definitions
Initially, SFs were defined simply from their appearance as large 
bundles of actin filaments extending across much of a cell’s  
diameter. Further analysis revealed that most SFs are anchored 
at one or both ends by focal adhesions and that the filaments are 
cross-linked by a periodic distribution of -actinin that alternates 
with myosin II (together generating a sarcomeric appearance). 
Containing myosin, SFs were interpreted to be contractile, but 
shortening was rarely seen, leading to the interpretation that 
they are usually under isometric tension because of strong focal 
adhesion attachments preventing shortening (Burridge, 1981). 
Several types of SFs have been distinguished (Fig. 1; Small  
et al., 1998). The most commonly observed are ventral SFs; 
these are anchored at each end by focal adhesions. Ventral SFs 
are frequently many micrometers long and may extend most  
of the length of a cell. Dorsal SFs (also known as radial SFs)  
are usually shorter and anchored at just one end to a focal adhe­
sion or focal complex. They are often precursors to ventral SFs 
and form just behind the leading edge of migrating cells, extend­
ing back toward the cell nucleus. In many migrating cells, as 
well as in spreading cells, contractile bundles of actin filaments 
develop at the base of lamellipodia. These “transverse arcs” 
display a convex shape and move away from the leading edge 
(Soranno and Bell, 1982; Heath and Holifield, 1993). Because 
they are not directly anchored at adhesions, they were not origi­
nally classified as SFs, although now they frequently are and 

Stress fibers (SFs) are often the most prominent cytoskele-
tal structures in cells growing in tissue culture. Composed 
of actin filaments, myosin II, and many other proteins, SFs 
are force-generating and tension-bearing structures that 
respond to the surrounding physical environment. New 
work is shedding light on the mechanosensitive properties 
of SFs, including that these structures can respond to me-
chanical tension by rapid reinforcement and that there 
are mechanisms to repair strain-induced damage.  
Although SFs are superficially similar in organization to 
the sarcomeres of striated muscle, there are intriguing dif-
ferences in their organization and behavior, indicating 
that much still needs to be learned about these structures.
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the Rho kinase (ROCK)–dependent phosphorylation of endo­
thelial tight junction proteins, such as occludin and claudin 5, 
which leads to blood–brain barrier breakdown (Yamamoto  
et al., 2008). Another is RhoA-associated myosin-driven contrac­
tility and SF formation; the tension transmitted to the junctions 
is an easily envisioned mechanism for enhanced permeability. 
There can often appear to be a physical connection between SFs 
of neighboring endothelial cells (Fig. 2 B). Because these SFs 
are anchored at adherens junctions, the junctions have been 
termed focal adherens junctions (Huveneers et al., 2012). Junc­
tional SFs are increased in response to permeability-enhancing 
factors, such as TNF (Millán et al., 2010; Huveneers et al., 2012). 
It is noteworthy that, in highly polarized epithelia characterized 
by very tight junctions, cortical actin belts, not SFs, are the pre­
dominant apical junction–associated F-actin structures, indica­
tive of their more static barrier properties. The interplay between 
actin filaments and cadherin-based junctions is reviewed in  
detail by Ratheesh and Yap (2012).

Myths and fallacies
The prominence of SFs in cells grown in tissue culture com­
pared with their rarity in intact tissues has raised the question of 
whether they are in vitro artifacts. Under specific conditions, 
however, SFs are seen in tissues. For example, they were observed 
in wound granulation tissues (Gabbiani et al., 1972; Tomasek  
et al., 2002), in which they have been implicated in the contrac­
tion of wounds and scar tissue. They have also been noted in 

will be here because, together with dorsal SFs, they give rise  
to ventral SFs (Hotulainen and Lappalainen, 2006).

Another type of SF is found in endothelial cells. These 
SFs are essentially identical to ventral SFs except that, rather 
than inserting into focal adhesions, they insert into the adherens 
junctions, linking endothelial cells together (Millán et al., 2010). 
In most resting endothelial cells, F-actin is predominantly found 
as a circumferential belt, similar to the apical belt in epithelial 
cells that associates with tight junctions and adherens junctions 
(Fig. 2 A). These cortical actin bundles generate centrifugal 
(outwardly directed) tension (Prasain and Stevens, 2009) that 
opposes the contractile forces exerted by SFs that form when, 
for example, RhoA is activated. Association of actin filaments 
with adherens and tight junctions in endothelia is critical for the 
regulation of barrier function (Lai et al., 2005). Junction-associated 
actin morphology is dynamic, thus allowing rapid permeability 
adjustments, transendothelial migration of immune cells during 
the inflammatory response (Adamson et al., 1999), and adapta­
tion to mechanical forces, such as shear flow and vascular 
stretch (Noria et al., 1999; Birukov et al., 2002; Birukov et al., 
2003; Wojciak-Stothard and Ridley, 2003). Barrier-enhancing 
agents, such as sphingosine-1-phosphate, cAMP analogues, and 
certain oxidized phospholipids, promote the formation of corti­
cal F-actin structures, usually in a Rac1 and/or Rap1 GTPase- 
dependent fashion (Garcia et al., 2001; Birukov et al., 2004; 
Cullere et al., 2005). In contrast, RhoA signaling triggers junc­
tional disruption. One mechanism for junctional disruption is 

Figure 1.  Three types of actin SFs. U2OS human osteosar-
coma cells were plated on 10 µg/ml fibronectin-coated cover-
slips and allowed to attach and spread for 4 h before fixation 
(Hotulainen and Lappalainen, 2006). In the immunofluores-
cence image, antiphosphotyrosine was used as a marker for 
focal adhesions (red), phalloidin was used for F-actin SFs 
(green), and the nucleus (blue) was detected by DAPI. This 
single cell exhibits the three main types of actin SFs: (trans-
verse) arcs, dorsal SFs, and ventral SFs. (inset) Schematic 
drawing depicting the SF subtypes.
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within three-dimensional matrices but rather whether the physi­
cal properties of the surrounding environment result in the cells 
generating isometric tension.

What is it about rigid substrata and the resulting develop­
ment of isometric tension that leads to the assembly of SFs?  
A major factor is the activation of RhoA, which occurs when cells 
are cultured on rigid substrata (Wozniak et al., 2003; Paszek  
et al., 2005), and which, as discussed in the next section, drives 
the assembly of SFs. Integrins mediate attachment of cells  
to their underlying ECM, and although integrin-mediated adhe­
sion initially depresses RhoA activity (Ren et al., 1999; Arthur  
et al., 2000), sustained adhesion activates several guanine nucleo­
tide exchange factors (GEFs) to elevate RhoA activity (Dubash 
et al., 2007; Lim et al., 2008). Applying tension on integrins, 
as occurs with isometric tension, also induces RhoA activation 
(Zhao et al., 2007; Guilluy et al., 2011). Pursuing the mecha­
nism has led to the identification of two signaling pathways, 
one involving the tyrosine kinase Fyn, resulting in activation 
of the GEF leukemia-associated Rho GEF, and the other in­
volving the tyrosine kinase FAK (but not Fyn) and resulting 
in the activation of the Ras/MEK/ERK pathway, with ERK 
phosphorylation activating GEF-H1 (Guilluy et al., 2011). 
Heck et al. (2012) similarly identified GEF-H1 activation in 
cells adhering to rigid substrata but, in this situation, found 
that activation of GEF-H1 resulted from destabilization of 
microtubules and the consequent release of this GEF from 
these structures.

A role for SFs in cell migration has often been sug­
gested or assumed. However, most highly migratory cells 
lack SFs, and the presence of SFs is correlated more with 
strong adhesion than rapid migration (Burridge, 1981; Herman  
et al., 1981). Nevertheless, in order for strongly adherent 
cells to move forward, it is necessary for them to break their 
strong adhesions in the rear. So, although there is a negative 
correlation between SFs and rate of migration, in situa­
tions in which cells are strongly adherent, SFs do contrib­
ute to migration by generating the force necessary to release  
the tail of the cell and move the rear forward (Crowley and 
Horwitz, 1995).

endothelial cells, particularly those lining arteries exposed  
to high velocity flow, such as the aorta (Wong et al., 1983), and 
were increased in endothelial cells lining vessels from hyper­
tensive animals (White et al., 1983). These different situations 
have in common that the cells are experiencing high mechanical 
forces. Supporting the idea that SFs are induced in response  
to mechanical signals, they could be experimentally induced by 
exposing cultured endothelial cells to high levels of sheer stress 
equivalent to those found in arteries but not in veins (Franke  
et al., 1984). Together, these results illustrate that although cells 
in the body rarely exhibit SFs, under appropriate conditions, 
many cells have the capacity to develop them.

A related question is whether SFs are a product of growing 
cells on two-dimensional surfaces, as it is rare to observe SFs  
in cells growing in a 3D matrix in vitro. For example, when 
fibroblasts are grown in soft collagen gels, they develop thin, 
elongated morphologies and lack detectable SFs. If the collagen 
gels are free floating, fibroblasts within them will contract the 
gels by as much as 90% in a few days. However, if the gels are 
firmly anchored to a rigid culture dish, the gels do not shrink  
in size even though tension is being generated. Under these 
conditions, the fibroblasts develop isometric tension, and now, 
SFs can be discerned (Mochitate et al., 1991; Tomasek et al., 1992; 
Grinnell, 1994; Halliday and Tomasek, 1995). Detaching the 
gels from their culture dishes results in rapid gel contraction 
that is accompanied by SF disassembly (Mochitate et al., 1991; 
Tomasek et al., 1992; Grinnell, 1994). These simple but elegant 
experiments indicate the importance of matrix compliance in 
determining whether cell–matrix interactions lead to isotonic or 
isometric contraction. Similarly, the rigidity of a two-dimensional 
surface together with strong adhesions to the surface can result 
in isometric contraction, in which SFs extending between ess­
entially fixed focal adhesions generate tension but not shorten­
ing of their lengths (Burridge, 1981). The significance of soft 
versus rigid two-dimensional substrata was tested by Pelham 
and Wang (1999), who showed that cells developed SFs and  
focal adhesions on rigid surfaces but not on soft substrata. Together, 
these results reveal that the presence or absence of SFs reflects 
not whether cells are grown on two-dimensional surfaces or 

Figure 2.  Endothelial cell junctional F-actin 
structures. Human umbilical vein endothelial cells 
grown as confluent monolayers were fixed and 
stained for -catenin to identify cell junctions and 
phalloidin to label F-actin. (A) Example of corti-
cal actin belts. This cell demonstrates a strong 
cortical enrichment of F-actin, arranged parallel 
to cell junctions. Bars, 15 µm. (B) Example of in-
serted junctional SFs. Another cell exhibits several 
discontinuous junctions (indicated by asterisks in 
enlarged merged image), where the insertion of 
SF ends can be observed. These junctions appear 
to physically connect SFs between two adjacent 
endothelial cells. Boxed areas show the area en-
larged below. Bars, 25 µm.
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may occur later. In parallel with the assembly of dorsal SFs, 
transverse arcs arose from the region behind the lamellipodium 
and moved centripetally toward the nucleus. They appeared  
to assemble from the annealing of short bundles of filaments 
generated in an Arp2/3 complex–dependent process within the 
lamellipodium. Some of these bundles were associated with 
myosin, whereas others were associated with -actinin. Over 
time, annealing of these bundles gave rise to a sarcomeric alter­
nating pattern of -actinin and myosin that is characteristic of 
transverse arcs and ventral SFs. Hotulainen and Lappalainen 
(2006) observed examples in which much of a transverse arc 
fused with dorsal SFs on opposite sides of a cell, resulting in an 
SF anchored at each end. Contractions of the curved, anchored 
transverse arc generated a straight ventral SF. They also pro­
vided examples in which two dorsal SFs growing from opposite 
sides of the cell fused to give rise to a ventral SF.

Since the work of Ridley and Hall (1992), RhoA has been 
recognized as a dominant factor regulating SF assembly. For 
ventral SFs, the critical pathway downstream from RhoA 
appears to be mediated by ROCK regulation of myosin light 
chain phosphorylation and consequent contractility (Amano et al., 
1996; Chrzanowska-Wodnicka and Burridge, 1996; Kimura  
et al., 1996). The inhibition of cofilin-mediated F-actin severing 
downstream from ROCK and LIM kinase may also contribute to 
SF assembly induced by RhoA (Maekawa et al., 1999). RhoA 
activation of mDia driving actin polymerization is more criti­
cal for dorsal SF assembly (Hotulainen and Lappalainen, 2006; 
Oakes et al., 2012). Watanabe et al. (1999) showed that both of 
these arms of the RhoA signaling pathway are required to 
generate a “normal” pattern of SFs. They expressed constitu­
tively active ROCK or mDia, or a ratio of these two effectors, 
in cells in which endogenous RhoA activity was inhibited. High 
ROCK activity in the absence of mDia induced large condensed 
SFs, often exhibiting a contracted starlike configuration. In con­
trast, high mDia activity without ROCK activity induced the 
assembly of many thin filaments that were organized in a sheet­
like array with few, if any, bundles being seen (Watanabe et al., 
1999). These results demonstrate that the pattern of SFs seen 
in a particular cell reflects not only the level of RhoA activity 
but also the ratio of these different effectors. They also con­
firm the importance of myosin as a protein that cross-links actin 
filaments into bundles (Chrzanowska-Wodnicka and Burridge, 
1996), which has also been shown through the use of myosin 
mutants that retain actin binding but which are unable to gener­
ate force (Choi et al., 2008).

In migrating cells, dorsal SFs emerge from focal adhesions, 
but contrary to the prevailing dogma, Oakes et al. (2012) have 
provided evidence that the tension they generate is less impor­
tant in adhesion maturation than their role as structural tem­
plates. When tension was reduced by as much as 80%, adhesions 
matured as judged by their growth and accumulation of phos­
phorylated FAK and paxillin. However, inhibiting assembly of 
dorsal SFs by blocking mDia-induced actin polymerization  
or by knocking down -actinin expression resulted in adhesions 
that failed to mature even though tension on the adhesions was 
unaffected and derived from myosin activity within the lamella 
driving rearward movement of transverse arcs. These results 

SF assembly
Two model systems have been used to examine how SFs assem­
ble. In one, quiescent cells that are essentially stationary and  
often in a confluent monolayer are stimulated with agents that 
activate RhoA. In the other, the formation of SFs is studied in 
actively migrating cells. Different results and conclusions have 
been reached, consistent with the view that the mode of assembly 
is influenced by the migratory state of the cell. In the first sys­
tem, exploited by Ridley and Hall (1992), cells, such as Swiss 
3T3 fibroblasts, were starved of serum, i.e., deprived of growth 
factors, for a few hours. Under these conditions, preexisting  
SFs and focal adhesions disassembled. Synchronous reassem­
bly was triggered by the addition of serum or agents, such as  
lysophosphatidic acid, that activate RhoA (Ridley and Hall, 
1992). Using this system, in which ventral SFs are rapidly assem­
bled, it was shown that active RhoA drives assembly by stimu­
lating myosin activity (Chrzanowska-Wodnicka and Burridge, 
1996). It was suggested that active myosin induces the aggrega­
tion of actin filaments into SFs, both by generating tension and 
by cross-linking the filaments (Chrzanowska-Wodnicka and 
Burridge, 1996; Burridge et al., 1997). In turn, integrins that 
have been dispersed during the period of serum starvation and 
low RhoA activity are recruited to form the core of the focal  
adhesion. In this model, SF formation was proposed to occur  
by aggregation of preexisting actin filaments, and relatively little 
actin polymerization was anticipated. Consistent with this,  
Machesky and Hall (1997) found only low levels of polymer­
ization occurred during the formation of ventral SFs in qui­
escent cells in which RhoA had been activated. It was also 
speculated that the low affinity of integrins for their ECM  
ligands facilitated clustering of dispersed but ECM-bound inte­
grins (Chrzanowska-Wodnicka and Burridge, 1996). Recent 
work supports this model but with an interesting twist. Evidence 
was presented that the association of the critical linker protein 
talin with integrins occurs in the focal adhesion but not in the 
dispersed state. Away from focal adhesions, other interactions 
presumably maintain the connection between integrins and  
F-actin (Rossier et al., 2012).

The second model system involves studying the formation 
of SFs as cells spread and migrate (Hotulainen and Lappalainen, 
2006; Oakes et al., 2012). Elegant analysis by Hotulainen and 
Lappalainen (2006) revealed a critical role for actin polymer­
ization in the de novo assembly of SFs in migrating cells. Using 
cells that displayed dorsal SFs, transverse arcs, and ventral SFs 
(depicted in Fig. 1), they were able to demonstrate an interplay 
between the assembly of these filament bundles as well as con­
version of dorsal SFs and arcs into ventral SFs. Dorsal SFs grew 
by formin-mediated actin polymerization from small adhesions 
developing just behind the leading edge. As the actin bundles 
polymerized, they became associated with the filament cross-
linking protein -actinin; myosin was incorporated later into 
regions where -actinin was depleted. Earlier work revealed 
that the region of an SF emerging from a focal adhesion is char­
acterized by unipolar actin filaments with their barbed ends 
closest to the adhesion (Cramer et al., 1997). However, in order 
for myosin to incorporate and generate force, filaments with the 
opposite polarity need to be generated. We will discuss how this 
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sarcomeres. With respect to myosin, one possibility is that the 
number of myosin molecules polymerizing into myosin fila­
ments varies and may be affected by the contractile demands 
of the cell. For -actinin, the situation must be different, as 
this protein primarily cross-links actin filaments. Curiously, in 
striated muscle, -actinin has always been depicted as cross-
linking antiparallel F-actin at the Z disk, whereas in nonmuscle 
cells, it is usually considered to be cross-linking parallel fila­
ment bundles. However, in vitro studies have revealed that it 
is a highly flexible cross-linker (Courson and Rock, 2010) and 
can cross-link parallel (Taylor et al., 2000) as well as antipar­
allel bundles (Liu et al., 2004) and even that both ends of an 
-actinin dimer can interact simultaneously with a single actin 
filament (Hampton et al., 2007), although this may be an in vitro 
artifact. Regardless of the dimensions of the SF sarcomeres, 
whether they are long or short (stretched or contracted), the  
-actinin and myosin bands appear to maintain a complementary 
periodicity. -Actinin has a relatively high rate of exchange on 
and off SFs as determined by fluorescence recovery after photo­
bleaching (Edlund et al., 2001), and it was speculated that there 
is competition (either direct or indirect) between myosin and  
-actinin for binding to the actin filaments (Peterson et al., 2004). 
During contraction of the SF sarcomeres, it was suggested that 
myosin displaces -actinin, except from the Z disk–equivalent 
structures. Conversely, when myosin is released from F-actin, 
-actinin reassociates, generating a banding pattern that is longer  
in regions of low tension but shorter in contracted regions  
(Peterson et al., 2004).

The least understood region of an SF is where it attaches 
to a focal adhesion. Many protein–protein interactions have 
been identified biochemically, with several proteins binding  
integrin cytoplasmic tails and some of these proteins also bind­
ing F-actin directly (Zaidel-Bar et al., 2007; Zaidel-Bar and 
Geiger, 2010). Most attention has focused on talin, which binds 
both integrins and actin, and its binding partner vinculin, which 
binds actin, as well as many other components in focal adhe­
sions. The very high protein density in focal adhesions has lim­
ited the value of conventional EM analysis. However, Patla  
et al. (2010) used cryo-electron tomography to reveal a strati­
fied organization at the inner face of focal adhesions. Just above 
the plasma membrane, they visualized doughnut-shaped parti­
cles that interacted with short tangential fibers. In turn, these  
associated with SF F-actin at the highest level. This organization is 

raise questions concerning the mechanosensitivity of dorsal 
SFs. Currently, we know of no direct studies on this topic, which 
may reflect that dorsal SFs have been much less studied than 
ventral SFs.

Organization of SFs
Although SFs have long been described as having a sarcomeric 
type of organization, there are many questions that remain about 
how the SF sarcomere is organized. Certainly, many of the 
components exhibit a periodic distribution along SFs, including 
myosin, tropomyosin, zyxin, caldesmon, and -actinin (Fig. 3).  
However, it is striking that actin rarely displays a detectable  
periodicity. This raises the question of how the actin filaments 
are organized. In general, the lack of a periodic actin distribu­
tion has been attributed to variable lengths of actin filaments, 
with many of the filaments extending more than one sarcomeric 
unit. In early work, using heavy meromyosin decoration of  
F-actin, Sanger and Sanger (1980) were able to follow individual 
filaments in SFs extending for distances of up to four sarco­
meres. They observed filaments with uniform polarity at their 
sites of attachment to membranes, but in the middle of SFs, they 
noted overlapping filaments of opposite polarity. To explain the 
apparent lack of actin periodicity, they concluded that the sar­
comeres in an SF are visualized in a contracted state. In their  
model, contraction occurs until the myosin filaments essentially 
collide with the -actinin–containing Z disk–equivalent struc­
tures. Because the actin filaments are much longer than myosin 
filaments, in this contracted state, they extend beyond the bor­
ders of a single sarcomere (Sanger and Sanger, 1980). This ex­
planation is supported by the observation that SFs are under 
tension as indicated by traction force measurements at focal 
adhesions (Balaban et al., 2001; Beningo et al., 2001) and by 
the rapid shortening of SFs commonly observed when they are 
released from their attachment to the substratum at focal adhe­
sions. However, this explanation does not account for the peri­
odicity of proteins such as tropomyosin. This usually parallels 
the distribution of myosin along the SF and has the counter peri­
odicity to -actinin (Lazarides, 1976; Gordon, 1978). In muscle 
sarcomeres, the distribution of tropomyosin essentially parallels 
the distribution of actin, except at the Z disks where -actinin 
is present.

One of the unexpected observations concerning SF or­
ganization is that the dimensions of the bands corresponding 
to myosin and -actinin vary, not only between cells but even 
along a single SF (Peterson et al., 2004). Variable dimensions 
of -actinin periodicity are visible in Fig. 3. The widths of the 
myosin and -actinin bands were noted to be shorter toward 
the periphery of the cell and longer in the middle (Peterson  
et al., 2004). Even more surprisingly, in response to factors stim­
ulating contraction, some SF sarcomeres shortened as expected 
(typically at the periphery), whereas those in the center elon­
gated. In contrast, in striated muscle, myosin thick filaments 
do not change their length during contraction or stretching. 
Similarly, -actinin appears to remain confined to the Z disk 
and be unaffected by the contractile state of the muscle. These 
results indicate that although their structures are similar, there 
are significant differences in behavior between muscle and SF 

Figure 3.  Periodicity of -actinin within SFs. Swiss 3T3 cells stably ex-
pressing GFP–-actinin (Edlund et al., 2001) were fixed and labeled with 
Texas red–phalloidin to label F-actin. Note the variable dimensions and 
spacing of the periodic fluorescence of GFP-tagged -actinin along the 
length of SFs (red). Bar, 25 µm. (inset) Enlarged view of the boxed area. 
Bar, 10 µm.
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as many alternatively spliced isoforms (Gunning et al., 2008). 
Different isoforms are recruited to different populations of  
actin filaments (Gunning et al., 2005). When some tropomyosin 
isoforms are overexpressed, SFs are induced, whereas knock­
down of all tropomyosin leads to SF disassembly (Gimona  
et al., 1996; Bryce et al., 2003; Bakin et al., 2004; Gupton et al., 
2005). Studying U2OS osteosarcoma cells, it was shown that 
different tropomyosin isoforms associated with different re­
gions of dorsal SFs. Tm2 distributed along the whole length 
of dorsal SFs, whereas Tm1 and Tm5NM1 or 2 concentrated 
in focal adhesions. In contrast, Tm3 and Tm4 were excluded 
from the ends of SFs (Tojkander et al., 2011). In this same 
study, Tm4 was implicated in recruiting myosin to transverse 
arcs and hence to ventral SFs arising from arcs. In another 
cell type, however, Tm5NM1 was found to selectively re­
cruit myosin IIA, but not IIB, to SFs (Bryce et al., 2003).  
Together these results reveal the importance of tropomyosin 
in determining the recruitment of myosin filaments to SFs but 
raise additional questions concerning the factors regulating 
tropomyosin distribution and the subtleties of tropomyosin– 
myosin interactions.

Disassembly
In comparison with the large amount of work studying how 
SFs assemble, much less attention has been paid to their dis­
assembly, even though it is equally important during dynamic 
morphological changes involving the actin cytoskeleton. Disas­
sembly occurs when cells go into mitosis, are detached from 

intriguing, but the significance of the particles remains elusive, 
although they were shown to be mechanosensitive, disassem­
bling when the RhoA–ROCK pathway was inhibited. Using super-
resolution fluorescence microscopy, Kanchanawong et al. (2010) 
revealed the architecture of multiple components in focal  
adhesions in nanometer resolution. They found that the integ­
rins in the plasma membrane are vertically separated from actin 
by a zone of 40 nm. Within this zone, they identified several 
layers; closest to the membrane is a signaling layer containing 
FAK, paxillin, and the integrin cytoplasmic domains, and then 
there is a layer involved in force transduction, including talin 
and vinculin, and finally, there is a layer containing actin fila­
ments as well as vasodilator-stimulated phosphoprotein (VASP), 
-actinin, and zyxin. Interestingly, the N and C termini of talin 
were spatially separated, with the N terminus closer to the mem­
brane and the C terminus extending into the actin-rich domain, 
consistent with talin linking the cytoplasmic domains of integrins 
to F-actin in SFs. Much remains to be determined about the orga­
nization of this critical region, but these techniques provide an 
encouraging start.

Generation of sarcomeric periodicity and 
the recruitment of myosin II
Cramer et al. (1997) showed that SFs have uniformly oriented 
actin filaments emerging from focal adhesions with their barbed 
ends at the adhesion. One of the challenges is to understand how 
bundles of unipolar filaments are converted into sarcomeres with 
alternating polarity. Antiparallel arrays of F-actin are necessary 
for myosin to generate force. When Hotulainen and Lappalainen 
(2006) considered how dorsal SFs incorporate myosin and 
convert from a uniform bundle of filaments into a sarcomeric 
arrangement, they suggested that actin filaments might rotate 
through 180°. Although theoretically possible, rotation of fila­
ments seems both unlikely and energetically unfavorable. 
Here, we propose an alternative mechanism (Fig. 4). We sug­
gest that the filaments are cleaved and that the protein that sev­
ers and caps the newly exposed barbed ends either contains 
actin-nucleating activity itself or recruits a nucleating protein or 
complex that induces polymerization. The critical requirement 
is that polymerization occurs in the opposite direction of the 
preexisting filament so that a filament of opposite polarity is 
generated. Many proteins that nucleate actin polymerization 
have been identified (Campellone and Welch, 2010), and at least 
one formin, FRL- (FRL1), has actin-severing activity (Harris 
et al., 2004), raising the possibility that a single protein may 
fulfill the required characteristics (severing/capping/nucleation) 
for this model. Much has been learned from striated muscle  
sarcomere assembly (Sparrow and Schöck, 2009), and one of the 
actin-nucleating proteins implicated in sarcomere organization 
is leiomodin (Chereau et al., 2008). As several leiomodin family 
members exist, it will be important to determine whether any of 
these molecules function similarly in nonmuscle sarcomeres 
(Conley et al., 2001).

Related to the question of how sarcomeric organization 
is generated is the question of how myosin is recruited to SFs. 
Several studies point to the importance of tropomyosin in this 
process. Tropomyosin is an actin-binding protein that exists 

Figure 4.  Proposed model for conversion of unipolar to bidirectional  
actin filaments during the maturation of SFs. Unipolar, -actinin cross-linked  
actin filament bundles oriented with their barbed ends facing the focal adhe
sion are first severed and capped (step 1). This severing protein then either 
recruits another protein or protein complex that nucleates actin filament 
polymerization in the opposite orientation, or alternatively, a single protein 
possessing severing/capping/nucleation activity may fulfill this role (step 2). 
The final stage involves incorporation of myosin filaments into the maturing 
SF with its characteristic periodic distribution (step 3).
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the transmitted force made intuitive sense. Unexpectedly, how­
ever, a very different result was obtained by Beningo et al. 
(2001). Investigating migrating cells, they discovered that the 
highest forces were transmitted to the substrate by small adhe­
sions in the front of the cell, and these forces were greater than 
those exerted by the large focal adhesions away from the cell 
front. Similar results were also obtained by Stricker et al. (2011). 
Reconciling these opposite results has been difficult, but Tan  
et al. (2003) suggest a possible explanation. They cultured cells 
on flexible microneedles and measured cell-generated traction 
forces by quantifying the bending of the microneedles. For most 
adhesions, they found a linear relationship between the area of 
the adhesion and the force exerted at it, and they calculated that 
the force was 4–5 nN/µm2, similar to the values obtained by 
Balaban et al. (2001) and Schwarz et al. (2002). However, they 
also detected a set of small adhesions that did not fit this rela­
tionship between size and force; these were associated with un­
expectedly high forces. These small adhesions were <1 µm2 and 
most likely are equivalent to the high traction, force-generating 
nascent adhesions found at the front of migrating cells. The 
force transmitted by SFs will generally be proportional to the 
level of active myosin within that SF. With dorsal SFs, however, 
additional force derives from the contraction and rearward 
movement of transverse arcs that are coupled to dorsal SFs. 
This extra force generated by arcs likely accounts for the high 
forces associated with small adhesions at the front of some cells 
(Beningo et al., 2001; Stricker et al., 2011).

Remodeling, reinforcement, and repair
Although the response of SFs to mechanical force has been 
known for many years, most attention has focused on the mech­
anotransduction properties of focal adhesions, in which SFs  
interact with the ECM (Chen et al., 2004; Shemesh et al., 2005; 
Bershadsky et al., 2006; Vogel and Sheetz, 2006; Lessey et al., 
2012). As structures that are load bearing but also force gener­
ating, it is to be expected that SFs have mechanisms to adapt 
to changes in force allowing them to strengthen as the tension 
increases. As discussed earlier, mechanical force exerted on  
integrins activates RhoA (Zhao et al., 2007; Guilluy et al., 2011), 
which contributes to the cellular stiffening response (Matthews 
et al., 2006; Guilluy et al., 2011). Several pathways downstream 
from RhoA should strengthen SFs, including myosin light chain 
phosphorylation (promoting myosin filament assembly and 
ATPase activity), actin polymerization via mDia1, and inhibi­
tion of F-actin severing by cofilin, via cofilin phosphorylation.

Cyclic stretch is a unique type of mechanical perturba­
tion that cells must adapt to in many physiological settings; an 
example is the pulsatile stretching and shear forces encoun­
tered by endothelial cells and vascular smooth muscle. The 
response to cyclic stretch involves several concurrent steps: 
SF reorganization and remodeling, ultimately leading to cell 
reorientation, and SF reinforcement and repair, as means of 
adaptation to cyclic strain. In contrast to endothelial cells ex­
posed to uniform shear forces, which reorient parallel to the 
direction of flow (Tzima, 2006), fibroblasts exposed to cyclic 
stretch rearrange their SFs perpendicular to the direction of 
force (Hayakawa et al., 2001), with the temporal dynamics of 

their adhesions, or when RhoA is inhibited. Elevating cAMP 
also causes the rapid loss of SFs (Lamb et al., 1988; Lampugnani 
et al., 1990); this is a result of inhibiting RhoA activity via 
PKA-dependent phosphorylation of RhoA, which enhances 
its binding to Rho guanine nucleotide dissociation inhibitor 
(Lang et al., 1996; Sauzeau et al., 2000; Ellerbroek et al., 2003)  
as well as PKA phosphorylation and inhibition of the myosin 
light chain kinase (Lamb et al., 1988). Most of the situations 
in which SFs disassemble are associated with a loss of tension. 
Notably, a direct effect of decreased tension on cofilin-mediated 
severing and disassembly of F-actin was recently discovered 
(Hayakawa et al., 2011). These investigators proposed that ten­
sion is sensed directly in the actin filament protecting it from 
cofilin severing. Using laser tweezers to manipulate single 
filaments, they demonstrated that F-actin under tension bound 
less cofilin than filaments under resting conditions. Although 
relaxation-induced cofilin severing of F-actin is likely to be an 
important mechanism, we suspect that other pathways also con­
tribute to SF disassembly.

Although loss of tension and decreased myosin contrac­
tility lead to SF disassembly, complete severing of SFs with a  
laser surprisingly did not (Colombelli et al., 2009). When SFs 
were cut in the middle, there was rapid retraction away from the 
cut site. The SF sarcomeres close to the cut site shortened, but 
then, the severed SF segments stabilized, and the ends devel­
oped new adhesions. This was accompanied by loss of zyxin 
from the original focal adhesion and SF as well as redistribution 
to distinct regions along the new SF fragments. The foci of 
zyxin were immobile, suggesting that they were linked to the 
underlying ECM. Analyzing the behavior of laser-severed SFs 
led Colombelli et al. (2009) to conclude that before the severing, 
SFs were already associated along their length with the substra­
tum via integrins in adhesions too small to detect by light micro­
scopy. As the severed SFs contracted, these small preexisting 
adhesions would rapidly become reinforced in response to the 
increased tension. In turn, as they strengthened, isometric ten­
sion would be reestablished between these new adhesions, thus 
preventing continued disassembly of the severed SF.

SFs and the generation of force
Not only is tension an important factor in the assembly of SFs, 
but SFs are themselves recognized as tension-generating struc­
tures. Originating from the pioneering work of Harris et al. 
(1980) who used flexible rubber surfaces to visualize the trac­
tion forces generated by cells, many techniques have been  
developed for quantifying these forces (Lee et al., 1994;  
Galbraith and Sheetz, 1997; Pelham and Wang, 1999; Balaban 
et al., 2001; Tan et al., 2003). The resolution of these techniques 
has been developed to the point at which the force exerted  
at single focal adhesions, i.e., generated by a single SF, can be 
calculated. Balaban et al. (2001) and Schwarz et al. (2002)  
determined that the focal adhesions in their fibroblasts were 
transmitting forces of 5.5 nN/µm2 and that the force at a focal 
adhesion was proportional to its area. Given that the area of a 
focal adhesion is usually related to the diameter of the SF and 
that larger SFs would be expected to contain more myosin mol­
ecules, this relationship between the area of focal adhesions and 
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opposing muscles that stretch the contracted sarcomeres. With 
SFs, there is no equivalent counteracting mechanism. One pos­
sibility is that the tension generated in an SF by one sarcomere 
shortening may be important for stretching neighboring sarco­
meres so as to counter their contracted state. Such a mechanism 
might prevent individual sarcomeres from becoming “locked” 
irreversibly into a fully contracted state and would allow repeated 
cycles of contraction to occur.

Conclusions
The adage that familiarity breeds contempt holds true for SFs; 
this familiarity obscures unresolved and fundamental questions 
about these often taken for granted cytoskeletal arrays. One key 
question concerns the organization of SF sarcomeres, which  
at first glance appear similar to, but which, in fact, differ in sev­
eral key aspects from the sarcomeres of striated muscle. This is  
illustrated by the unexpected shortening or lengthening of myo­
sin and -actinin bands as SF sarcomeres contract or stretch,  
a radically different behavior from muscle, in which the equiva­
lent bands remain constant regardless of sarcomere stretching 
or contraction. Understanding how new sarcomeres are added 
in regions of strain is a challenge that is only beginning to be 
approached. Already, one protein, zyxin, has been identified 
contributing to this process, and it will be important to learn 
how zyxin is recruited to sites of tension and high stress where 
reinforcement and repair of SFs occur in part by the addition 
of new sarcomeres. The idea that tensional homeostasis exists 
along an SF is intriguing and deserves further investigation, as 
does the implication that adjacent sarcomeres communicate. 
Another unanswered question relates to how bundles of unipolar 
actin filaments are converted into sarcomeres with alternating 
polarity, which is necessary for myosin-based force generation. 
Although much has been learned about the pathways governing 
SF assembly, numerous questions remain about their disassem­
bly, which is equally important but rarely studied. Addressing 
questions such as these should provide a deeper understanding 
of how cells remodel and fine tune their cytoskeletons not only 
in response to the chemical signals that cells receive but also in 
response to the physical state of their extracellular environment 
and the forces that they encounter.
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