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The conditioned place preference (CPP) paradigm is a well-established model utilized
to study the role of context associations in reward-related behaviors, including both
natural rewards and drugs of abuse. In this review article, we discuss the basic history,
various uses, and considerations that are tied to this technique. There are many potential
takeaway implications of this model, including negative affective states, conditioned drug
effects, memory, and motivation, which are all considered here. We also discuss the
neurobiology of CPP including relevant brain regions, molecular signaling cascades,
and neuromodulatory systems. We further examine some of our prior findings and
how they integrate CPP with self-administration paradigms. Overall, by describing the
fundamentals of CPP, findings from the past few decades, and implications of using
CPP as a research paradigm, we have endeavored to support the case that the CPP
method is specifically advantageous for studying the role of a form of Pavlovian learning
that associates drug use with the surrounding environment.

Keywords: conditioned place preference, CPP, drug reward, addiction-like behavior, drugs of abuse, substance
use disorder, addiction, rodent model

INTRODUCTION

Conditioned place preference (CPP) was developed as a technique to assess the reinforcing
properties of opioid drugs (Rossi and Reid, 1976; Katz and Gormezano, 1979; Mucha and Iversen,
1984). Now, CPP is widely used to test context associations based on the rewarding properties
of an unconditioned stimulus in many organisms including, rodents (Lu et al., 2005; Akbarabadi
et al., 2018; Cunningham, 2019), flies (Kaun et al., 2011), C. elegans (Musselman et al., 2012;
Engleman et al., 2018), planaria (Hutchinson et al., 2015; Mohammed Jawad et al., 2018; Adams
and Byrne, 2019; Phelps et al., 2019), primates (Wang et al., 2012; Borges et al., 2015; Yan et al.,
2015; Wu et al., 2016), and humans (Thewissen et al., 2006; Childs and De Wit, 2009, 2013,
2016). Although a widely used behavioral model, CPP is a complex behavior that incorporates
Pavlovian learning, memory, and motivated behaviors. Due to the complexity, CPP findings are
often difficult to understand and interpret. The purpose of this review article is to define common
terms used throughout the CPP literature, as well as to discuss factors that are likely to contribute
to CPP behaviors in mammals. We include a section related to the neurobiology of opioid-
induced conditioned place preference and we conclude by discussing how CPP and addiction-like
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behaviors can be combined experimentally to assess spatial
memory involved in affective states, and to provide a quantifiable
readout of context/environment-specific drug-seeking.

THE BIOLOGICAL PURPOSE OF
PAVLOVIAN LEARNING AND HOW IT
RELATES TO DRUG-INDUCED CPP

CPP is posited to be based on Pavlovian learning which refers to
our ability to form relationships between temporally-associated
stimuli. This form of learning as stated elegantly by Fanselow and
Wassum (2015), has an evolutionary function that enables us to
anticipate events and alter our behavior accordingly to promote
survival (Fanselow and Wassum, 2015). Pavlovian learning is
advantageous to reproduction (Domjan and Gutiérrez, 2019)
as it influences hormonal responses (Graham and Desjardins,
1980), sexual performance (Zamble et al., 1985), and attraction
(Domjan, 1994). For example, fish or quail exposed to a paired
cue while seeing, but not interacting with a female, will have
an increased number of offspring (fish) or increased number
of sperm production and fertilized eggs (quail) when the cue
is presented and the barrier between the male and female is
removed (Hollis et al., 1989; Matthews et al., 2007). Additionally,
Pavlovian learning prepares us for food consumption such that
eating and digestion occur simultaneously. Pavlov showed that
our physiological response to a cue associated with food will elicit
salivary secretion and this salivary section is food-dependent
(Pavlov, 2010). For example, the meat will evoke thick and
viscous saliva containing high levels of mucus, while different
substances like salt, acid, and mustard will evoke the release of
‘‘watery’’ saliva (Pavlov, 2010). Furthermore, Pavlovian learning
prepares us for danger as well as rewards. In fear conditioning,
neutral stimuli that become associated with an aversive event will
evoke freezing behaviors in rodents (Rescorla, 1968; Fanselow,
1986; Iwata and Ledoux, 1988; Maren, 1999), while stimuli
associated with drugs of abuse will evoke homeostatic alterations
to counter previously experienced drug-induced changes (see
‘‘Opponent Process Theory in the Factors to Consider’’ Section
in Siegel et al., 1982). In terms of substance use disorders,
Pavlovian learning is critically important for context-induced
relapse where re-exposure to drug-associated contexts evokes
strong drug-craving (O’Brien et al., 1986, 1992). To study this
form of relapse, one must understand how the brain forms
and retains drug-context associations, which can be preclinically
modeled using the CPP paradigm.

CONDITIONED PLACE PREFERENCE AS A
MEASURE OF DRUG REWARD

CPP is used to measure associations formed between a rewarding
stimulus (e.g., drug) and a contextual environment (Tzschentke,
2007). The paradigm uses a two or three-compartment
apparatus with each compartment displaying distinct contextual
characteristics (e.g., wall colors/patterns and floor texture). The
CPP model consists of three phases: habituation, conditioning,
and post-conditioning (i.e., CPP test). During habituation,

animals are given free access to all compartments before they
are returned to their home cage. The habituation sessions serve
two purposes. First, they expose the animal to the apparatus,
which is intended to habituate the animal to the environment,
and second, they provide a measure of an animal’s baseline
preference for each compartment. Measuring the baseline
preference allows the experimenter to perform a biased design
[pairing a drug with the least preferred side to avoid ceiling
effects when the drug is assigned to an already preferred
environment (Cunningham et al., 2003)] or an unbiased design
[randomly pairing the drug with a context; advantages and
disadvantages of both designs can be found here (Cunningham
et al., 2006)] as well as exclude animals based on predefined
exclusion criteria (e.g., spending >80% of the time in one
compartment). However, implementing a biased or unbiased
design is up to the experimenter as evidence suggests, at least
with morphine, that there are no differences in the outcome of
CPP when employing a biased or unbiased approach (Blander
et al., 1984). Conditioning sessions consist of a non-contingent
(experimenter administered) injection of vehicle (control) or
drug given before placing and confining the animal in a distinct
context. Control and drug conditioning sessions occur on the
same day (separated by 4–6 h) or on alternating days. These
pairings take place one time or over multiple days. During
the conditioning session, the drug-context associations become
acquired (often referred to as the acquisition phase). Lastly,
following conditioning sessions, animals undergo a CPP test
where they are again given free access to all compartments
and the time spent in the drug-paired side is measured, which
provides a measure of CPP expression. Selective administration
of test compounds can be used to assess effects on different
phases of CPP. Administration prior to the drug-context pairing
(i.e., conditioning phase) assesses the test compound’s effects on
the acquisition of CPP, while administration prior to the CPP test
measures effects of the test compound on the CPP expression.
CPP is measured as the total time spent in each context on
test day, or as a CPP score. CPP scores are calculated as either:
(i) time in the drug-paired context on test day minus time in
the drug-paired context during habituation; or (ii) time in the
drug-paired context on test day minus time in the vehicle-paired
context on test day. Significant increases in time spent in the
drug-paired side is associated with the rewarding properties of
the drug.

For CPP, in the context of Pavlovian learning, the drug
(i.e., the unconditioned stimulus) is expected to elicit a hedonic
feeling of pleasure (i.e., an unconditioned response; Figure 1).
The drug is paired with a distinct context in the CPP
chamber (i.e., a neutral stimulus), which, following conditioning,
becomes a conditional stimulus. After conditioning, in the
absence of the drug (i.e., the unconditioned stimulus), the
drug-paired chamber (i.e., conditional stimulus) is expected to
evoke hedonic feelings of pleasure (i.e., conditioned response)
leading to approach behaviors toward, and increased time
spent in the drug-paired chamber. This approach behavior
toward the drug-paired context is similar to sign-tracking
behaviors (Huston et al., 2013) which refer to behaviors
that are directed toward a stimulus as a result of that
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FIGURE 1 | Illustration of Pavlovian learning during conditioning with a drug that elicits hedonic feelings of pleasure. Before conditioning, a drug injection elicits an
unconditioned response of pleasure. During conditioning, the neutral stimulus becomes a conditioned stimulus, which results in a conditioned response.

stimulus becoming associated with a reward (Huys et al., 2014).
Despite this seemingly straightforward behavioral response,
there may be many additional underlying factors that contribute
to drug-induced CPP. The next section discusses factors
that independently and/or synergistically may regulate this
complex behavior.

FACTORS TO CONSIDER WHEN
INTERPRETING CONDITIONED PLACE
PREFERENCE

As stated above, conditioning in the CPP paradigm refers
to pairing a drug with a context. Evidence suggests that a
single drug-context pairing (Bardo and Neisewander, 1986;
Fenu et al., 2006; Grisel et al., 2014; Nentwig et al., 2017)
or repeated drug-context pairings (Cunningham et al., 2006;
Dickinson et al., 2009; Ma et al., 2011; Otis and Mueller,
2011; Koo et al., 2014) induces CPP, but these varied exposure
protocols may be influenced by different underlying factors
including the rewarding properties of the drug, removal of an

aversive state, conditioned behaviors, memory, and/or motivated
states (Figure 2).

First, a logical interpretation of CPP is that it is mediated
by the rewarding properties of the drug. Therefore, the animal
seeks out or prefers the drug-paired context during the CPP
test because this behavioral response has produced a beneficial,
rewarding outcome. This is a valid interpretation and supported
by neurobiological responses related to reward encoding that
occurs during the conditioning sessions (Tzschentke, 1998,
2007). Additional support comes from human data which not
only demonstrate that drug ‘‘liking’’ predicts room liking scores,
but also shows the validity of CPP as a translational procedure.
In one study, human male and female subjects received either
d-amphetamine (20 mg) or placebo using a biased design (paired
group). Treatments were alternated across successive sessions. A
second group received d-amphetamine (20 mg) and a placebo in
both rooms (unpaired group). The subjective mood was assessed
using the Profile of Mood States and participants rated their
liking and preference for the testing rooms once before the
conditioning sessions and once during re-exposure to the test
session after conditioning (Childs and De Wit, 2013). Using
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FIGURE 2 | Infographic summarizing the factors that contribute to conditioned place preference (CPP).

this model, Childs and De Wit (2013) showed that the acute
positive and negative subjective responses to d-amphetamine
significantly predicted changes in room liking after conditioning.
Additionally, the authors also showed that the context of
drug administration can influence acute drug effects on re-
administration. This is supported by subjects in the paired group
experiencing greater subjective stimulation and drug craving
after d-amphetamine on the second administration relative to
the first (Childs and De Wit, 2013). However, this context-
dependent change in subjective drug response is likely drug
class-specific as the same authors showed that alcohol effects
were consistent across repeated administrations in the same
vs. different contexts (Childs and De Wit, 2016). In this latter
study, the authors showed that social drinkers developed a place
preference for locations paired with alcohol, which was enhanced
in subjects experiencing sedative effects from alcohol in those
locations (Childs and DeWit, 2016). Therefore, interpreting CPP
in rodents as drug reward is validated by human research and
is dependent upon the drug, the drug-dose used, and/or the
drug-exposure paradigm.

Removal of an aversive state to evoke CPP has been
observed in animals expressing chronic pain, in which pairing
a pain-relieving drug with a context during conditioning elicits

CPP for the drug-paired context (King et al., 2009; Cahill
et al., 2013; Navratilova et al., 2013). Additionally, in animals
expressing chronic pain, inhibiting the anterior cingulate
cortex (ACC), a brain region involved in pain expression,
during context pairing elicits CPP for the context paired with
ACC inhibition (Gao et al., 2020). These findings suggest
that the removal of an aversive state, such as pain, reinforces
the animal’s behavioral response to prefer the drug-paired
context. Decades of pre-clinical and clinical research have
illustrated that, following repeated administration of many
drugs of abuse (e.g., opioids, psychostimulants, nicotine, and
alcohol), behaviors associated with negative affective states
are observed during drug abstinence. These negative states
can be physiological, including withdrawal and craving, but
also psychological, such as anxiety and depression, and both
separately or combined, may be relieved by drug exposure
during conditioning, thus facilitating CPP. For example,
we found that 5 days of repeated morphine exposure elicits
anxiety-like behaviors as well as CPP and that removing the
morphine-induced anxiety-like behavior using ketamine is
sufficient to block morphine CPP (McKendrick et al., 2020a).
Since we did not observe any physiological signs of withdrawal,
such as jumping, wet dog shakes, teeth chattering, rearing,
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tremor, and diarrhea [which coincides with the lack of observed
somatic withdrawal symptoms following a more prolonged
injection regimen of five daily morphine (10 mg/kg, i.p.)
injections over 4 weeks (Robinson and Kolb, 1999)], our
results suggest that CPP may be elicited, not only by the
rewarding properties of morphine but also by the ability of
morphine to relieve ‘‘psychological’’ rather than physiological
withdrawal symptoms. There is also evidence that anxiety-like
behaviors are linked to somatic withdrawal. Escalating doses of
morphine (20–100 mg/kg, i.p.), over 6 days, induce anxiety-like
behaviors in the marble burying task, as well as resulting in
significant increases in piloerection, jumps, and ptosis (Becker
et al., 2017). These studies demonstrate how altering the
morphine exposure and concentration paradigm allows the
researcher to distinguish morphine-induced negative-affective
states from negative affect confounded by somatic signs of
withdrawal. In line with this, fewer days of morphine exposure
[three morphine injections (10 mg/kg) every other day] does
not elicit anxiety-like behaviors (Benturquia et al., 2007),
which highlights how the dosing regimen impacts the
behavioral paradigm.

Other classes of drug of abuse may also evoke aversive
states during conditioning such that the potential ‘‘rewarding’’
effects are mediated by the removal of aversive states. In
line with this, pairing a distinct context with an intravenous
injection of cocaine during conditioning elicits CPP when
the pairing occurs immediately or 5 min after the injection
(Ettenberg et al., 1999), however, cocaine-context pairings that
occur 15 min after the cocaine injection elicit conditioned
place aversion (Ettenberg et al., 1999). Likewise, ethanol,
nicotine, and amphetamine exposure show that the immediate
effects are rewarding, but that the delayed effects are aversive
(Fudala and Iwamoto, 1986, 1987, 1990; Cunningham et al.,
1997). Others have shown that, following chronic (14–28 days)
non-contingent cocaine administration, rodents displayed less
open arm exploration in the elevated plus-maze (Fung and
Richard, 1994; Sarnyai et al., 1995; Basso et al., 1999; Rudoy
and Van Bockstaele, 2007), which is an indication of the rodent
expressing anxiety-like behavior. Furthermore, evidence suggests
that repeated, non-contingent cocaine injections (i.e., daily
cocaine injections that occur over 5 or 8 days) elicit cocaine-
induced anxiety-like behavior when tested on abstinence day
9 or 15 (Valzachi et al., 2013; Hu et al., 2016). Therefore, it
is possible that conditioning sessions that occur over many
days result in drug-context pairings that alleviate drug-induced
negative affective states, subsequently leading to preference for
the drug-paired chamber.

Conditioning in the CPP paradigm may also elicit
conditioned behavior and conditioned drug effects which,
theoretically, may lead to increased or decreased time spent in
the drug-paired side during CPP tests (for review, see Huston
et al., 2013). Conditioned behaviors, which may be simple
or complex, occur spontaneously during conditioning and
are inadvertently reinforced during drug exposure, resulting
in an increased frequency of the behavior (Skinner, 1948;
Staddon and Simmelhag, 1971; Huston et al., 2013). During the
test, the drug-paired context may elicit spontaneous behavior

(e.g., grooming, rearing, and repetitious movements) and
prevent the animal from leaving the conditioned compartment
(Huston et al., 2013). Conditioned drug effects refer to
drug-induced behavioral responses that become associated
with a drug-paired context. After conditioning, re-exposure
to the drug-paired context may elicit the reinforced behavior,
which may prevent the animal from leaving the drug-paired
context, or mask drug-induced CPP (Huston et al., 2013).
An example of masked drug-induced CPP is evident from
hyperactivity in animals following cocaine administration.
This cocaine-induced hyperactivity becomes conditioned
to the drug-paired context, which results in conditioned
hyperactivity during the CPP test (Saunders et al., 2014).
This increased locomotion may increase the probability
that the animal leaves the conditioned compartment, thus,
inadvertently reducing the true cocaine-induced CPP (Huston
et al., 2013).

Memory is another factor to consider that may influence
drug-induced CPP. Most CPP tests occur during a period of
drug abstinence, so the learned associations that occur during
conditioning session/s would have to have been consolidated
and maintained for the animal to be able to recall the
association when re-exposed to the CPP chamber on test
day. Upon drug re-exposure, the memory is retrieved and
destabilized, which enables the memory to be updated with
new information. Subsequently, the memory is restabilized
in a process called reconsolidation (Torregrossa and Taylor,
2013, 2016). Therefore, it is plausible that drug-induced CPP
relies on three phases of memory: consolidation, retrieval,
and reconsolidation (Milton and Everitt, 2010). Each memory
phase is vulnerable to interference in a CPP paradigm,
depending upon the time point that the memory interference
is initiated by the experimenter. Typically, administering a
test compound shortly after a conditioning session will assess
effects on memory consolidation (Cervo et al., 1997; Hsu
et al., 2002; Robinson and Franklin, 2007; Yu et al., 2009).
After conditioning is completed, exposing an animal to a test
compound just before re-exposure to the CPP apparatus will
assess the effects on memory retrieval (Miller and Marshall,
2005; Yim et al., 2006; Fan et al., 2013), and exposing an
animal to a test compound following re-exposure to the CPP
apparatus will assess the effects on memory reconsolidation
(Brown et al., 2007; Otis et al., 2013; Sartor and Aston-
Jones, 2014). The timing of test compound administration, if
pharmacologically mediated, depends upon the pharmacokinetic
properties of the compound. Of note, re-exposure to the CPP
apparatus is not the only way to retrieve drug-associated
contextual memory as the rewarding properties of the drug
may establish state-dependent retrieval (Overton, 1972). In
state-dependent retrieval, CPP is more strongly expressed in
the presence, vs. the absence, of the drug. This occurs as
the learned associations are formed in the presence of the
drug during conditioning. Therefore, if the animal learns
the associations in a drugged state and performs the test
in a drug-free state, retrieval deficits may result due to
changes in the internal state of the animal (Spear, 1978;
Urcelay and Miller, 2008).
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Additionally, CPP memory is liable to extinction and
reinstatement. Extinguishing CPP occurs over many days and
is often performed by confining the animal to the drug-paired
compartment in the absence of the drug, then, on the next
day, the animal is given free access to all compartments. This
procedure is repeated until the animal reaches extinction criteria
(Hearing et al., 2016). CPP is then reinstated with a drug-prime
injection or stress exposure (Aguilar et al., 2009).

Reinstatement paradigms are frequently compared to the
human experience known as ‘‘relapse,’’ but an important
distinction is that relapse in humans is often characterized
by a resumption of drug-taking, whereas in rodent models,
these reinstatement models are performed in a drug-free state
and/or without the ability to continue drug exposure (Sanchis-
Segura and Spanagel, 2006). Therefore, it is more accurate
to state that reinstatement in CPP more directly reflects a
continuation of CPP behaviors, whether it be triggered by a
drug-prime injection or a stressor. Types of stressors that have
been utilized to trigger reinstatement include: (1) naturalistic
stressors, such as water/food deprivation, physical restraint stress
(Ribeiro Do Couto et al., 2006), painful stimuli such as the
foot-shock paradigm (Wang et al., 2000; Sanchez and Sorg,
2001), and fear/anxiety-inducing stimuli such as the forced
swim stress (Sanchez and Sorg, 2001; Ribeiro Do Couto et al.,
2006; Redila and Chavkin, 2008); (2) social disruption/conflict
stressors including social isolation and maternal deprivation
(Ribeiro Do Couto et al., 2006; Calpe-López et al., 2020); and
(3) pharmacological stressors, such as injections of agonists of the
kappa opioid system (Redila and Chavkin, 2008), and yohimbine
(Mantsch et al., 2010). While comparisons of drug-prime vs.
stressor-induced reinstatement models are common concerning
operant drug self-administration paradigms, they are rather
limited in the field of CPP (Mantsch et al., 2016). The
findings of Ribeiro Do Couto et al. (2006) demonstrate that
social defeat stress is similar to physical restraint stress at
reinstating morphine conditioned place preference. Also, one
study by Wang et al. (2000) found that both foot-shock
stress and an acute morphine prime injection sufficiently
reinstated extinguished morphine conditioned place preference.
Therefore, future studies are needed to directly compare CPP
reinstatement models.

Motivation may also contribute to increases in time spent
in the drug-paired compartment during CPP tests. Evidence
for this comes from a study showing that a hungry animal
will approach contexts previously associated with food, whereas
the same animal, when water-deprived, will approach contexts
associated with fluid (Perks and Clifton, 1997). Similarly, with
drugs of abuse, morphine-dependent chimpanzees given daily,
passive injections of morphine and then trained to choose
between a white box hiding a syringe filled with morphine
or a black box hiding a banana, will choose the white
box when deprived of morphine, and choose the black box
when pretreated with their daily dose of morphine (Spragg,
1940). These drug-induced motivated behaviors are potentially
explained by the combined incentive sensitization and opponent-
process theories of substance use disorders (Koob et al.,
1989; Robinson and Berridge, 1993, 2008). Here, the drug

of abuse elicits an unnatural, strong hedonic sensation of
pleasure resulting in the drug becoming highly salient, attractive,
and ‘‘wanted’’ (Robinson and Berridge, 1993). Meanwhile, the
brain automatically compensates and dampens drug reward
by recruiting opponent processes, which, over time, following
repeated drug exposure, become quicker, stronger, and longer-
lasting, leading to negative affective states (Solomon and Corbit,
1978; Koob et al., 1989; Koob and Le Moal, 2008; Grisel,
2019). It is possible that, in patients diagnosed with substance
use disorders, a reward is required to sufficiently curtail these
negative affective states. Given the incentive salience that
the nervous system attributes to the act of drug taking, the
negative affective state may drive drug craving and the recall
of Pavlovian associations related to drug taking, thus directing
motivated drug-seeking behaviors (O’Brien, 1975; Perkins and
Grobe, 1992; Zinser et al., 1992; Wetter et al., 1994; Cooney
et al., 1997; Baker et al., 2004; Conklin and Perkins, 2005;
Fox et al., 2007; Wikler, 2013).

When interpreting CPP, considering factors such as the
rewarding properties of the drug, alleviation of aversive
states, conditioned behavior, conditioned drug effects, memory,
and/or motivational states, has the potential to lead to more
comprehensive assessments. Additionally, considering how these
factors work independently and/or synergistically has the
potential to explain drug-specific effects that direct behaviors
toward, or away from, a stimulus, and/or the underlying
neurobiological mechanisms contributing to the behavior. These
factors may be unique to addictive-drug categories (e.g., opioids,
psychostimulants, cannabis, dissociative, inhalants, depressants,
and hallucinogens), or to addictive drugs vs. natural rewards
(Spiteri et al., 2000; Yonghui et al., 2006; Steiner et al., 2013).

NEUROBIOLOGY OF DRUG-INDUCED
CPP: FOCUS ON OPIOID CPP

Ongoing research investigates the neurobiological mechanisms
that regulate CPP, with evidence supporting the role of the
central nervous system in mediating learned associations.
Seminal work by Schultz et al. (1997) showed that, in monkeys,
dopamine neuron firing occurred directly after a juice reward,
but over time, these neurons began to fire upon exposure to
a light cue that preceded the reward. Further support comes
from studies showing that neuronal activation in the ventral
tegmental area (VTA), a brain region where dopamine neurons
are expressed, is necessary for the acquisition of morphine
CPP (Harris et al., 2004; Moaddab et al., 2009). Additional
studies show that lesions of VTA dopaminergic terminals in
the ACC block opioid-induced CPP (Narita et al., 2010), while
in vivo stimulation of VTA dopaminergic projections to the
nucleus accumbens enhances morphine CPP (Koo et al., 2012).
Additionally, increases in dopamine and dopamine metabolites
in the nucleus accumbens are correlated withmorphine CPP (Ma
et al., 2009), and blocking dopamine receptors in the nucleus
accumbens and basolateral amygdala prevents the acquisition
of morphine CPP (Fenu et al., 2006; Lintas et al., 2011,
2012). Although evidence suggests that the nucleus accumbens
and potentially the VTA are not necessary and sufficient for
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the acquisition of morphine CPP (shown by lesions in the
nucleus accumbens or CPP tests in dopamine-deficient mice;
Olmstead and Franklin, 1996; Hnasko et al., 2005), more recent
reports show that transient inactivation of the VTA or nucleus
accumbens inhibits both acquisition and expression of morphine
CPP (Moaddab et al., 2009; Esmaeili et al., 2012).

Further support of the nucleus accumbens and VTA in
mediating morphine CPP comes from studies focusing on
molecular signaling cascades in these brain regions. For example,
evidence suggests that the activation of p38 mitogen-activated
protein kinase (MAPK) and the transcription factor, nuclear
factor-κB (NF-κB) in the nucleus accumbens is critically
involved in the acquisition of morphine CPP and that this
signaling cascade potentially relies upon the activation of
transient receptor potential vanilloid type 1 channel (TRPV1;
Zhang et al., 2011, 2012; Hong et al., 2017). Furthermore,
antagonizing the transcription factor, ∆FosB in dynorphin-
expressing medium spiny neurons, which are putative dopamine
D1receptor-expressing medium spiny neurons (McDevitt and
Graziane, 2018), or inhibiting the transcription factor cAMP
response element (CRE)-binding protein (CREB) in the nucleus
accumbens, decreases and increases morphine CPP, respectively
(Nestler et al., 2001; Barrot et al., 2002; Zachariou et al.,
2006). Lastly, the inhibition of phosphodiesterase (PDE)
10A, which inhibits cAMP- and cGMP-mediated intracellular
signaling and is selectively expressed in the nucleus accumbens,
inhibits the acquisition of morphine-induced CPP (Mu et al.,
2014). In the VTA, inhibition of the mitogen-activated
protein kinase kinase (MEK)-extracellular signal-regulated
kinase (ERK) pathway blocks the acquisition of morphine CPP
(Lin et al., 2010).

Also, there are other brain regions involved in opioid
CPP such as the pedunculopontine tegmental nucleus (PPTg),
which, when lesioned, blocks morphine-induced CPP (Olmstead
and Franklin, 1997; Olmstead et al., 1998). The PPTg sends
cholinergic inputs to the VTA, which elicit dopamine-neuron
depolarization and increase firing in activated neurons (Floresco
et al., 2003). Therefore, it would be expected that the cholinergic
neurons of the PPTg are involved in the formation of opioid-
context associations via activation of dopamine neurons in the
VTA. However, evidence suggests that, in heroin-induced CPP,
PPTg cholinergic cells that project to the VTA are not involved
in opioid CPP (Steidl et al., 2014). Rather, orexin neurons
that project from the lateral hypothalamus to the VTA, and
the hippocampal dentate gyrus, are critical in the formation
of associations between contextual cues and morphine (Harris
et al., 2007; Guo et al., 2016) with evidence suggesting that this
morphine-induced activation of orexinergic neurons relies on
corticotropin-releasing factor 1 receptor (CRF1R) activation in
morphine CPP (Lasheras et al., 2015).

Seminal work in the field of fear conditioning supports the
role of the hippocampus in mediating contextual encoding
(Selden et al., 1991; Kim and Fanselow, 1992; Phillips and
Ledoux, 1992) and research in opioid-induced contextual
learning suggests that the hippocampus may play a similar role.
The activation of cholinergic and dopaminergic systems in the
dorsal hippocampus regulates the acquisition of morphine CPP

(Rezayof et al., 2003, 2006). Additionally, long-term potentiation
(enhanced synaptic transmission) in the CA1 region of the
hippocampus, which is associated with learning and memory
(Kauer and Malenka, 2007), is disrupted (unknown whether it
is blocked or occluded) in rodents expressing morphine CPP
(Portugal et al., 2014). In vivo electrophysiological studies have
shown that long-term potentiation of glutamate transmission
at hippocampal ventral subiculum to the nucleus accumbens
shell is facilitated in rats following re-exposure to the morphine-
paired chamber (Li et al., 2017), with evidence suggesting that
this potentiation is involved in spatial learning (Goto and Grace,
2005). Recently, it has been shown that astrocytic µ-opioid
receptor activation in the CA1 region of the hippocampus is
necessary and sufficient to enhance synaptic transmission at
Schaffer collateral to CA1 synapses and that this long-term
potentiation leads to the acquisition of contextual memory
(Nam et al., 2019).

There are also molecular signaling cascades in the
hippocampus involved, in part, in long-term potentiation that
are important for the acquisition of morphine CPP. Inhibiting
phosphatidylinositol 3-kinase (PI3K) or its downstream target
mammalian target of Rapamycin (mTOR) in hippocampal
CA3 prevents the acquisition of morphine CPP and inhibits the
morphine-induced activation of PI3K-Akt signaling pathway
(Cui et al., 2010). Additionally, inhibiting ERK in the ventral
hippocampal-medial prefrontal cortical circuit blocks the
formation of opiate contextual memory (Wang et al., 2019).

The central amygdala, another brain region involved in fear
conditioning (Ciocchi et al., 2010; Goode and Maren, 2019),
also influences the acquisition of morphine CPP in this case,
through NMDA receptor and dopamine-D1 receptor activation
(Zarrindast et al., 2003; Rezayof et al., 2007). Additionally,
inhibition of MEK or NMDA receptors in the central amygdala
blocks the expression of morphine-induced place preference
(Li et al., 2011).

Cortical regions are also involved in the acquisition of
morphine-induced Pavlovian learning including viscerosensory
regions like the somatosensory cortex and granular insular
cortex, which when lesioned, block morphine CPP (Meng
et al., 2009; Li et al., 2013). Additionally, blocking NMDA
receptors in the prelimbic cortex, a brain region involved in
promoting relapse to both fear and drug-seeking (Ma et al.,
2014; Goode and Maren, 2019), potentiates the acquisition of
morphine CPP, likely mediated by dopamine receptor activation,
glutamate release, and basolateral amygdala activation (Bishop
et al., 2011). Furthermore, norepinephrine depletion in the
medial prefrontal cortex impairs the acquisition of morphine
CPP (Ventura et al., 2005).

As evidenced above, morphine CPP is regulated by
glutamatergic, cholinergic, and dopaminergic systems.
In addition to this, preclinical evidence suggests that
morphine-context associations rely on signaling from
another neurotransmitter, hormonal, and neuromodulatory
systems, including opioid, GABA, norepinephrine, serotonin,
cannabinoid, nitric oxide, hypocretin/orexin, neuropeptide
S, and cholecystokinin (Tzschentke, 1998, 2007; Le Merrer
et al., 2009; Li et al., 2009; Billa et al., 2010; Karimi et al., 2013;
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Ghavipanjeh et al., 2015; Loureiro et al., 2016; Zhang et al.,
2016; Azizbeigi et al., 2019) as well as systems involved in
immune function and inflammation (Ghahremani et al., 2006;
Zhang et al., 2012; Chen et al., 2017). Additionally, evidence
suggests that morphine-induced suppression of endogenous
histamine is important for morphine CPP as bilateral lesions
of the tuberomammillary nucleus, a brain region that expresses
histamine-releasing neurons, potentiated the development of
morphine CPP (Gong et al., 2007). Also, activation of scaffolding
proteins such as receptor for activated protein kinase C 1
(RACK1) is necessary for morphine CPP (Wan et al., 2011; Liu
et al., 2016). Given the rewarding properties of drugs of abuse, it
is reasonable to expect that a drug of abuse that elicits hedonic
feelings (i.e., pleasant sensations) will activate neurobiological
mechanisms that signal reward during each conditioning trial.
However, many of the neurobiological mechanisms described
above are potentially involved in negative affective states
depending upon the drug exposure paradigm, the induction
of dependence or tolerance, and/or the drug class used. The
suppression of these negative affective states during conditioning
may also contribute to CPP.

Negative affect observed during drug abstinence is timed with
neurobiological responses that mediate negative affective states
(Koob, 2013, 2020). For example, following repeated exposure
to morphine, there are increases in norepinephrine-induced
modulation of the extended amygdala (Aston-Jones et al., 1999;
Delfs et al., 2000; Smith and Aston-Jones, 2008), activation
of the amygdalar corticotrophin-releasing factor (CRF) system
(Heinrichs et al., 1995; Maj et al., 2003), norepinephrine release
in the extended amygdala (Fuentealba et al., 2000; Aston-Jones
and Harris, 2004), and decreases in dopamine transmission
(Diana et al., 1995). Also, following repeated exposure to cocaine,
the lateral habenula, a brain region whose increased activity
is correlated with aversive states (Graziane et al., 2018), has
increased activation 15min after repeated cocaine administration
(Jhou et al., 2013), with evidence suggesting that this increase in
cocaine-induced lateral habenula activation lasts until abstinence
day 2 in rodents with a history of cocaine self-administration
(Neumann et al., 2014). Additionally, lateral habenula neuronal
firing is increased in vivo during ethanol-induced conditioned
taste aversion (Tandon et al., 2017). Finally, when activated, the
dynorphin-κ opioid system produces aversion and dysphoria in
humans and in animals (McLaughlin et al., 2003, 2006; Land
et al., 2008, 2009; Sirohi and Walker, 2015), with evidence
suggesting that this system is activated during drug abstinence,
potentially driving drug-induced negative affective states (Mucha
and Herz, 1985; Pfeiffer et al., 1986; Wee and Koob, 2010;
Chartoff et al., 2012).

Combined, this section highlights how many different
brain regions involved in signaling salient cues (VTA and
nucleus accumbens), contributing to affective, emotional, and
cognitive control (amygdala, insula, prefrontal cortex, and ACC),
signaling sensation (somatosensory cortex), and processing
spatial information and memory (hippocampus) work together
to acquire and maintain drug-context associations. Interestingly,
these same brain regions are implicated in processes related to
pain (Bushnell et al., 2013; Navratilova and Porreca, 2014) and

fear (Goode and Maren, 2019) demonstrating how pathological
processing within and between these brain regions can lead to
pathological behaviors that are easily differentiated clinically,
but influence similar neurocircuit connections, albeit, likely in
different ways.

CONDITIONED PLACE PREFERENCE
COMBINED WITH ORAL
SELF-ADMINISTRATION

Substance use disorder is a chronic, relapsing condition that
is characterized by specific hallmark behaviors including the
difficulty to stop drug use, augmented motivation to seek
and take drugs, continued use despite adverse consequences,
and high susceptibility to relapse. Addiction-like behaviors,
therefore, encompass all aspects of behavior that contribute to
these criteria and can be observed in both basic and clinical
settings. CPP fundamentally tests the incentive value of contexts,
and how environmental conditions contribute to the formation
of drug-context associations. The long-term nature of drug
context-seeking behavior is evident in our CPP paradigm, in
which we observe a robust CPP with 28 days of abstinence
following conditioning and drug exposure (McKendrick et al.,
2020a). In line with this finding, the motivation to seek a
context associated with a drug is seen by the induction of
approach behaviors, with CPP tests following conditioning
(Aguilar et al., 2009), which can persist for 12 weeks without
any additional drug exposure (Mueller et al., 2002). Similar
to operant self-administration models, reinstatement following
extinction is also reliably shown in CPP. Reinstatement of
drug-induced CPP can be induced by both stress (Wang et al.,
2002; Aguilar et al., 2009) and drug-primes (Mueller et al.,
2002; Aguilar et al., 2009), all with the added component
of drug-associated contexts. The ability to reinstate CPP
is indicative of persistent drug-associated memories, which
likely results in the propensity to elicit drug cravings and/or
directs drug-seeking long into abstinence (O’Brien et al.,
1986, 1992). Furthermore, work by LeCocq et al. (2020) has
advocated the ability of drug-associated contexts to serve as
a vital trigger for reinstatement and renewal of extinguished
addiction-like behaviors.

Understanding how drugs of abuse become associated with
contexts is critical in the study of addiction to deconstruct how
contexts influence drug-seeking behaviors, relapse propensity,
and treatment success. Through repetitive pairings with drug
use, contexts that were previously neutral gain incentive salience,
and this intense association can serve to reinforce the cyclical
nature of drug-seeking behaviors. In animal models of drug
abuse, the ABA renewal paradigm [whereby the subject is
conditioned in one context (A), extinguished in another (B),
and is then re-exposed to the original context (A)] emphasizes
how environmental contexts that have been associated with
drug use can directly prompt reinstatement (LeCocq et al.,
2020). Clinical research has established that drug-associated
contexts promote cue reactivity, elevate craving responses, and
are sufficient to elicit context-induced relapse (LeCocq et al.,
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2020). Recent studies have suggested that a way to improve
the discovery of more effective treatments is to accentuate
the influence of environmental contexts and their influence
on drug-seeking behaviors (Everitt and Robbins, 2005; Aguilar
et al., 2009; LeCocq et al., 2020). Therefore, CPP serves as
a specialized paradigm that can be exploited just for this
purpose.

Seeking the drug-paired context (approach toward and
spending more time in the drug-paired context) is not typically
considered drug-seeking. This is because drug-seeking behaviors
are associated with operant responses for a drug, and occur
during an extinction session in a self-administration model [see
Marchant et al. (2013) for a description of this model]. Here, an
animal that has learned to press a lever or nose poke into an
active hole to receive an intravenous drug injection, continues
this behavior in the absence of the drug. The amount of lever
presses is measured and associated with drug-seeking behavior.
In the CPP model, the drug is administered non-contingently
in a paired context, so the approach to the context and
time spent in the context is not typically considered drug
seeking because the drug has not been operantly available
during the conditioning session. However, one may argue that
drug-seeking requires a motivated response directed toward a
context associated with the drug. In this case, drug-context
seeking is a critical step in the process of drug-seeking. The
problem, thus far, with this argument is that there has not
been any direct measure in the CPP paradigm to demonstrate
that drug-context seeking is linked to drug-seeking behaviors.
Recently, we have developed a novel CPP approach in whichmice
can consume solutions while confined to either context, thus,
enhancing the paradigm by including a voluntary, motivated
behavior [see McKendrick et al. (2020b) for details regarding
methodology, set-up, and figures illustrating the procedure].
This oral self-administration model can include natural rewards
such as sucrose and saccharin solutions, or drug-containing
solutions like morphine. When mice are conditioned with a
solution of 0.1 mg/ml morphine dissolved in 0.2% saccharin in
one chamber and only 0.2% saccharin in the opposing chamber,
there is a significant preference for the morphine-paired
context on test day. Furthermore, to incorporate instrumental,
drug-seeking behaviors with CPP, water bottles were placed
in each context on test day. In addition to CPP, morphine-
conditioned mice consumed significantly more water on the
morphine-paired side, a finding not observed in saccharin
controls (McKendrick et al., 2020b). These results suggest
that drug-context seeking in the CPP model is not a passive
state and is potentially important for directing drug-seeking
behavior. As denoted above, this method can expand on
traditional CPP paradigms by including a voluntary drug-taking
aspect, which allows one to study the importance of learned
drug-context associations that are based on distinguishing spatial

characteristics represented by distinct environments, similar to
human experiences.

CONCLUSION

Drug-induced CPP is a Pavlovian-based behavior, used to
model the transition of a neutral stimulus to a conditioned
stimulus, which drives a conditioned response (i.e., approach
behaviors to a drug-paired context). This complex behavior
consists of many overlapping components that may work
synergistically or independently to drive place preference.
Although not considered a gold standard for modeling
addiction-like behaviors, CPP provides a valuable tool that can
be used to understand how drugs of abuse become associated
with environmental contexts, a process which is implicated
in context-induced drug craving and relapse (O’Brien et al.,
1986, 1992). Additionally, this approach can provide insight
into contingency awareness [knowledge that the conditioned
stimuli predict the unconditioned stimulus (Grillon, 2002)],
which relies on conscious cognitive operations (Dawson and
Furedy, 1976; Lovibond and Shanks, 2002). Despite the limitation
of non-contingent drug administration, drug-induced CPP
provides a measure of motivated approach behaviors toward
a drug-associated environment, which is a critical step in
drug-seeking behaviors.
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