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Development of genetic quality 
tests for good manufacturing 
practice-compliant induced 
pluripotent stem cells and their 
derivatives
Hye-Yeong Jo1,2, Hyo-Won Han1, Inuk Jung3, Ji Hyeon Ju4, Soon-Jung Park5, 
Sunghwan Moon5, Dongho Geum6, Hyemin Kim7, Han-Jin Park7, Sun Kim2,8,9, 
Glyn N. Stacey10,11,12, Soo Kyung Koo1, Mi-Hyun Park1* & Jung-Hyun Kim   1*

Although human induced pluripotent stem cell (hiPSC) lines are karyotypically normal, they retain the 
potential for mutation in the genome. Accordingly, intensive and relevant quality controls for clinical-
grade hiPSCs remain imperative. As a conceptual approach, we performed RNA-seq-based broad-range 
genetic quality tests on GMP-compliant human leucocyte antigen (HLA)-homozygous hiPSCs and their 
derivatives under postdistribution conditions to investigate whether sequencing data could provide a 
basis for future quality control. We found differences in the degree of single-nucleotide polymorphism 
(SNP) occurring in cells cultured at three collaborating institutes. However, the cells cultured at each 
centre showed similar trends, in which more SNPs occurred in late-passage hiPSCs than in early-
passage hiPSCs after differentiation. In eSNP karyotyping analysis, none of the predicted copy number 
variations (CNVs) were identified, which confirmed the results of SNP chip-based CNV analysis. HLA 
genotyping analysis revealed that each cell line was homozygous for HLA-A, HLA-B, and DRB1 and 
heterozygous for HLA-DPB type. Gene expression profiling showed a similar differentiation ability of 
early- and late-passage hiPSCs into cardiomyocyte-like, hepatic-like, and neuronal cell types. However, 
time-course analysis identified five clusters showing different patterns of gene expression, which were 
mainly related to the immune response. In conclusion, RNA-seq analysis appears to offer an informative 
genetic quality testing approach for such cell types and allows the early screening of candidate hiPSC 
seed stocks for clinical use by facilitating safety and potential risk evaluation.

In the decades since the discovery of human induced pluripotent stem cells (hiPSCs) by Takahashi and 
Yamanaka1, considerable advances have been made in our understanding of these cells2–4. hiPSCs currently 
present potential clinical applications in cell therapy and regenerative medicine5, and with the broadening of 
these clinical applications, the standardization of the quality control (QC) of hiPSCs is becoming increasingly 
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important. In particular, the evaluation of the genetic stability of the starting materials and the final product is a 
key consideration during QC processes for selecting suitable hiPSC lines for clinical application, as it may affect 
final product quality, efficacy, and safety6,7.

The genomes of hiPSCs are characterized by potentially wide variability, including aneuploidy, subchromo-
somal copy number variation (CNV), single-nucleotide variations (SNVs), and epigenetic aberrations8. Deletions 
of tumour suppressor genes and changes in immune response-related genes may not be reflected in phenotypic 
changes in hiPSCs; however, they could play a pivotal role once the cells have differentiated or been transplanted, 
although such mutations are also known to occur in perfectly healthy individuals8. Therefore, it may be important 
to perform genetic quality tests on hiPSCs and differentiated cells to facilitate the selection of hiPSC seed stocks 
suitable for clinical application. Accordingly, there is a global consensus regarding the need to further evaluate the 
genomic quality testing of cell seed stocks using procedures such as karyotyping5,7,9,10. However, some chromo-
somal abnormalities are beyond the limits of resolution of routinely used assays, which may increase the risk of 
missing subtle chromosomal abnormalities. Thus, it is generally agreed that more informative genomic QC tests 
are a prerequisite for the selection of clinical-grade hiPSCs5,7,9,10.

There are a wide range of technological options available for monitoring the genomic integrity of clinical-grade 
hiPSCs, among which single-nucleotide polymorphism (SNP) chips, fluorescence in situ hybridization (FISH), 
whole-genome sequencing (WGS), whole-exome sequencing (WES), and karyotyping are considered appropriate 
methodological approaches for investigating genetic alterations in seed-stock banks6. In addition, gene expres-
sion profiling analysis could provide better insight into the consequences of genomic alterations8. However, most 
distributors of seed-stock hiPSCs are unable to perform such comprehensive analyses using this approach, owing 
to cost and time limitations. Therefore, it would be highly beneficial if methods qualified specifically for the dese-
lection of undesirable genetic variants and gene expression profiles using a single technology were available to 
researchers developing hiPSC lines for clinical use.

Although hiPSCs are generated and maintained based on good manufacturing practice (GMP)-compliant 
systems and have been approved for clinical trials, it remains to be determined which hiPSC lines are the most 
suitable for therapeutic application. In this regard, certain genetic variants in hiPSCs and their derivatives that are 
associated with human cancer, immune rejection, and cell cycle arrest could be a cause for concern, as illustrated 
by the decision to temporarily suspend the first clinical trial of autologous hiPSC-derived retinal cells11. Similarly, 
the impact of genetic changes on the potential of hiPSC cultures to differentiate is an important factor to be con-
sidered from a clinical application perspective. Once product safety and functional issues have been adequately 
addressed, an additional factor that should be considered is the human leucocyte antigen (HLA) type of the prod-
uct cells to be used for allogenic transplantation. Thus, HLA-matched hiPSC lines, which could present broad 
applications in global and regional populations, have been suggested for use in allogenic transplantation12,13. 
Accordingly, a haplobank could provide high-quality homozygous HLA-matched hiPSC lines, thereby saving 
time and reducing costs while maximizing coverage14. Therefore, the selection of high-frequency homozygous 
HLA-matched hiPSCs would be beneficial; however, such selection should include the analysis of the expression 
of HLA molecules in hiPSC-derived products.

In this study, we investigated the utility of a single RNA-seq-based intensive genetic quality test for 
GMP-compliant homozygous HLA-typed hiPSC lines and their differentiated derivatives for post-distribution 
monitoring. Importantly, we considered the potential impact of hiPSC-based products to be used at multiple 
manufacturing sites15. Accordingly, we distributed three hiPSC lines to three separate laboratories, from which 
we subsequently obtained feedback, and we performed comprehensive genomic and transcriptomic profiling 
using samples returned by the three institutions. We found that RNA-seq-based genetic quality analysis provided 
a broad range of valuable information, including information on genomic variation, time-dependent changes in 
gene expression and HLA phenotypes. More importantly, we were able to obtain additional information using 
this approach to evaluate potential safety issues in the seed stock via this analytical regime.

Results
Scheme of the postdistribution genetic stability test for HLA-homozygous lines.  The homozygous 
HLA-type GMP-compliant hiPSC lines CMC3, CMC9, and CMC11 were distributed to three external institutions, 
where they were expanded and differentiated into the three germ layers [neuronal cells (ectoderm), cardiomyocytes 
(mesoderm), and hepatocyte-like cells (endoderm); Fig. 1a]. To examine genetic stability under postdistribution 
conditions, differentiated cells and original hiPSC lines were collected from the three institutions and returned to 
the Korea Stem Cell Bank. The characteristics of the cell lines are described in Supplementary Table S1.

The workflow of the analyses performed in the present study is shown in Fig. 1b. Five different quality tests 
were conducted using a single RNA-seq dataset. The raw data from RNA-seq were aligned to the human refer-
ence genome using two alignment tools, TopHat2 and STAR and were subsequently subjected to genetic quality 
tests, including chromosomal aberration analysis, variant calling, HLA typing, DEG analysis, and time-course 
expression analysis. In the present study, we focused in particular on the genomic variations that may affect 
the genetic stability of hiPSCs and their derivatives, the significant expression levels and expression patterns of 
lineage-specific markers, and the effects of long-term culture.

Differentiation into representative cells of the three germ layers.  Initially, the cell lines were 
successfully differentiated into progenies of the three germ layers: neuronal cells, cardiomyocytes, and 
hepatocyte-like cells (Supplementary Figs. S1–S3), except for the CMC11 lines, which failed to undergo differen-
tiation into hepatocyte-like cells. Among these cell lines, we performed RNA-based genomic and transcriptomic 
quality tests in the CMC3 hiPSC line and its derivatives, as it contains the most frequent HLA type in the Korean 
population.
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Identification of SNVs and indels in hiPSCs and differentiated cells.  To characterize SNVs and 
indels on the basis of the RNAseq data, we applied a bioinformatics approach, treating the differentiated cells as 
the “case” and the matched hiPSCs as the “control” (Table 1). Among the total SNVs, we considered only SNVs 
and indels showing an alternative allelic frequency greater than 20% without missing values to retain a stringent 
variation dataset. In addition, we considered SNVs and indels in protein-coding regions and functional SNVs and 
indels, including missense variants, frameshift variants, and in-frame insertions/deletions.

On the basis of the filtering results, we initially examined whether genes containing functional SNVs and 
indels affect gene expression levels, thereby enabling us to correlate gene expression at SNV and indel loci. 
Overall, we found that prolonged culture of hiPSCs resulted in the induction of SNVs and indels at all three par-
ticipating institutes (Table 1). In addition, compared with early-passage hiPSCs, we observed that there was an 
increase in mutation rates when the late-passage hiPSCs were differentiated into final products (Table 1).

Next, we evaluated whether the SNVs obtained at the earlier stage of differentiation were still present at the 
later stage of differentiation. Indeed, 23.93–50.96% of SNVs were also detected in the last stage of cell differen-
tiation (Supplementary Table S2). Interestingly, the number of SNVs that were maintained gradually decreased, 
and other mutations were produced during each stage of differentiation. In addition, approximately 40% of the 

Figure 1.  Schematic depiction of the protocol used to study the differentiation potential of good manufacturing 
practice-compliant human induced pluripotent stem cells (hiPSCs). (a) Three homozygous human leucocyte 
antigen (HLA)-type hiPSC lines were differentiated into three germ layers (i.e., neuronal cells, cardiomyocytes, 
and hepatocyte-like cells) during early and late passages at three independent collaborating institutions. The 
differentiation of the neuronal cells, cardiomyocytes, and hepatocyte-like cells is illustrated in orange, green, 
and blue boxes, respectively. The differentiation protocols are briefly presented at the bottom of each box. 
(b) Analysis workflow for the RNA-seq data of the hiPSCs and their derivatives. Five different analyses were 
performed. For the detection of chromosomal aberrations using eSNP karyotyping, we employed dedicated 
tools in the eSNP karyotyping package for alignment and variant calling.
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protein-coding SNVs that accumulated under the prolonged culture of hiPSCs were maintained during the first 
stage of differentiation, and approximately 20% of these SNVs were found in terminally differentiated samples 
(Supplementary Table S3). However, we detected no significant differences in the expression levels of the genes 
retaining functional SNVs and indels, indicating that the generated SNVs and indels may not affect gene expres-
sion levels (Table 1). To determine whether the SNVs detected at the RNA level were transcribed from the DNA, 
we performed the whole-exome sequencing of hiPSCs, definitive endoderm (DE) cells, hepatic endoderm (HE) 
cells, and hepatocyte-like cells (HLCs) at passage 37 and compared the results to the RNA-seq data. Among the 
maintained SNVs identified via RNA-seq analysis, approximately 34.26–50.30% of the SNVs were transcribed 
from the DNA during hepatocyte differentiation (Supplementary Table S2).

To investigate SNVs at the genomic level, we performed a SNP chip (Cytoscan HD array, Affymetrix)-based 
SNV analysis (Supplementary Table S4). Although we identified several nonsynonymous SNVs, we detected vir-
tually no correlations between the final SNVs and gene expression levels (threshold: 2-fold change) in any of the 
comparisons; the one exception was the identification of significant heterozygous SNVs in the PRDM14 gene at 
an early passage in stage three of cardiomyocyte differentiation that may result in the downregulation of gene 
expression (Supplementary Table S4). However, all of the other differentiated cells that we examined in the pres-
ent study showed lower expression of PRDM14 compared with hiPSCs devoid of SNVs (Supplementary Fig. S4), 
indicating that the differences in PRDM14 gene expression may not reflect SNVs. Thus, SNV analyses using both 
SNP chip and RNAseq data revealed the accumulation of nonsynonymous SNVs and indels during the prolonged 
culture and differentiation of hiPSCs, although these variants showed no significant effects on gene expression.

Evaluation of chromosomal aberrations of hiPSCs and differentiated cells.  It has been suggested 
that chromosomal aberrations that occur during the differentiation of hiPSCs may have unexpected consequences 
with respect to the propensity for differentiation and, ultimately, regenerative medicine16. We examined chromo-
somal aberrations in hiPSCs and their derivatives based on RNA-seq data using eSNP-karyoryping17, measuring 
the ratio of expression between the two alleles (Fig. 2). The eSNP-karyotyping of all of the lines revealed that the 
lines presented normal diploid karyotypes. We also found that the major/minor SNP ratios were similar between 
hiPSCs and their differentiated derivatives, indicating that no chromosomal aberrations had occurred during 
either the early or late passages.

Using SNP chip genotyping data, we also analysed CNV changes in the differentiated lines in the final stages 
compared with the original cell line at the genome-wide level. We found no significant differences in CNVs 
between the hiPSCs and the derivative cell lines under prolonged culture at the whole-genome level. Notably, 
we detected no CNVs in the 1q41, 12p13.31, 17q25.2, and 20q11.21 regions (which have been reported to affect 
the genomic stability of hiPSCs9,18,19) in the homozygous HLA cell lines and derivative cells (Supplementary 
Fig. S5a–d).

Evaluation of cancer-related gene expression.  To investigate whether the differentiated lines showed 
significant genomic instability in terms of tumourigenicity compared with the original lines during early and late 
passages, we sought to identify DEGs among cancer-related genes between the hiPSCs and differentiated cells 
showing significant expression changes. Among the 707 candidates20,21, we identified a number of genes exhibit-
ing significant changes in expression during the differentiation process. In neuronal cells, the cancer-related gene 

No. Layer Control Case
Total 
SNPs

>20% of alternative 
allelic frequency

protein_
coding

functional 
SNPs

# of 
genes

#Corr. w/
expression

1

Neuron

p20-iPS p40-iPS 1,407 712 452 24 23 0

2 p20-iPS p20- rosettes 1,679 850 491 20 20 0

3 p20-iPS p20-Neuron 1,010 504 310 18 18 0

4 p40-iPS p40- rosettes 1,367 699 418 16 16 0

5 p40-iPS P40-Neuron 1,043 548 356 17 17 0

6

Heart

p25-iPS p47-iPS 1,145 544 303 24 19 0

7 p25-iPS p25-Stage1 1,065 441 288 7 7 0

8 p25-iPS p25-Stage2 1,083 472 304 14 13 0

9 p25-iPS p25-Stage3 1,261 659 396 20 17 0

10 p47-iPS p47-Stage1 1,362 699 397 24 21 0

11 p47-iPS p47-Stage2 1,014 476 304 31 28 0

12 p47-iPS p47-Stage3 1,671 1,097 642 19 17 0

13

Liver

p20-iPS p37-iPS 1,584 829 494 24 22 0

14 p20-iPS p20-DE 1,198 562 358 38 37 0

15 p20-iPS p20-HE 827 406 289 26 25 0

16 p20-iPS P20-HLC 1,244 626 392 29 27 0

17 p37-iPS p37-DE 1,616 909 572 37 34 0

18 p37-iPS p37-HE 1,148 619 430 29 27 0

19 p37-iPS p37-HLC 1,509 823 465 34 33 0

Table 1.  Single-nucleotide variants (SNVs) and indels in the differentiated lines based on RNAseq data.
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SLIT2 was found to be upregulated (Supplementary Fig. S5e), as were six other cancer-related genes (PDGFRA, 
DDR2, RSPO3, IL6ST, NTRK2, and HEY1) in cardiomyocytes (Supplementary Fig. S5f) and one cancer-related 
gene (HSD3B1) in hepatocyte-like cells (Supplementary Fig. S5g). However, in hiPSCs, the expression levels of 
these tumourigenicity-associated genes were similar during differentiation, regardless of the number of passages. 
These changes in gene expression were found to be consistent in replicates of differentiated cultures.

Quality testing of HLA types in differentiated cells using RNA-seq data.  To determine the changes 
in HLA types during the differentiation or passaging of cells, we subsequently investigated the expression of HLA 
molecules in both the hiPSCs and their differentiated derivatives for QC testing using RNA-seq data (Table 2 and 
Supplementary Table S5). We specifically focused on major HLA genes, including both MHC class I (HLA-A, 
HLA-B, HLA-C, HLA-E, and HLA-F) and MHC class II (HLA-DPA1, HLA-DPB1, HLA-DPB2, HLA-DQB1, 
HLA-DRB1, and HLA-DRB3) genes that are known to cause allogenic immune rejection in clinical settings. With 
the exception of HLA-DPB1, we found that both the hiPSCs and differentiated lines showed homozygous HLA 
types for all the detectable HLA molecules analysed using HLAProfiler. In contrast, we detected a heterozygous 
HLA type in the case of HLA-DPB1.

Importantly, the homozygous HLA types were maintained upon differentiation from the initiating hiPSCs 
during both early and late passages. We also found that class I MHC molecules showed increased expression 
compared with MHC class II molecules and that only the DPB2 type was detected in hiPSCs during both early 
and late passages (Supplementary Table S5). It should be noted here that HLA typing was not carried out in those 
cases in which there were fewer than 100 reads for HLAs.

Transcriptome profiling revealing effective differentiation into the three germ layers.  To eval-
uate the differentiation potential of early- and late-passage homozygous HLA-typed hiPSC lines, we carried out 
global gene expression profiling at the transcriptome level. We initially analysed the genetic distances between all 
of the samples examined in this study (Fig. 3a). Heatmap-based hierarchical clustering separated the hiPSC lines 
from the three lineages (neuronal cells, cardiomyocytes, and hepatocyte-like cells). In addition, the cells tended 

Figure 2.  Detection of chromosomal aberrations in human induced pluripotent stem cells (hiPSCs) and their 
derivatives using eSNP karyotyping. Moving median plots of 151 single-nucleotide polymorphisms (SNPs) 
of expressed genes from the RNA-seq data of all 22 cell lines used in this study are shown. For neuronal cells, 
hiPSCs and their neuronal derivatives are shown in a single plot at early (a) and late (b) passages, respectively. 
Black, red, and blue in the plot indicate hiPSCs, rosette progenitors, and neuronal cells, respectively. For 
cardiomyocytes, hiPSCs and their cardiomyocyte derivatives are shown in a single plot at early (c) and late (d) 
passages, respectively. Black, blue, green, and red in the plot indicate hiPSCs, stage 1 differentiation, stage 2 
differentiation, and stage 3 differentiation, respectively. For hepatocytes, hiPSCs and their hepatocyte derivatives 
are also shown in a single plot at early (e) and late (f) passages, respectively. Black, blue, green and red in the plot 
indicate hiPSCs, definitive endoderm (DE) cells, hepatic endoderm (HE) cells, and hepatocyte-like cells (HLC), 
respectively. Coloured bars represent FDR-corrected p-values. Positions with p-values < 0.01 are indicated with 
a black line.
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to be closely clustered according to their differentiation stage. One exception in this regard was found for stage 1 
cells in the cardiomyocyte lineage at a late passage (passage 47), which showed closer clustering with the hiPSC 
line, thereby indicating the retention of hiPSC-like characteristics.

PCA revealed four groups of cells showing distinct expression patterns, which could be classified as hiPSCs/
hiPSC-like cells, neuronal cells, cardiomyocytes, and hepatocyte-like cells (Fig. 3b). PC1 and PC2 captured 37.7% 
and 23.7% of the variability in gene expression, respectively. The hiPSCs and each cell lineage branched in dif-
ferent directions corresponding to the four different cell types. In neuronal cells, the changes in the expression 
patterns observed during differentiation from hiPSCs to neurons via rosette progenitor and neuronal cells were 
clustered: the changes between hiPSCs and stage 3 cardiomyocyte differentiation showed that stage 1 and stage 
2 cardiomyocytes were more similar to hiPSCs, in accord with the results of the sample distance matrix (Fig. 3a 
and b). In hepatocyte-like cells, we identified changes in expression patterns during differentiation from hiPSCs 
to HE and HLC via DE cells during both early and late passages, consistent with the results presented in Fig. 3a.

We also identified changes in gene expression for lineage-specific markers during the final stages of dif-
ferentiation compared with the respective undifferentiated cell lines. In neuronal cells, neuronal cell-specific 
markers, such as PAX3 and PAX6, were upregulated, whereas self-renewal markers, such as KLF4 and Nanog, 
were downregulated (Fig. 3c). In cardiomyocytes, the cardiomyocyte-specific marker GATA4 was upregulated, 
whereas the self-renewal markers Nanog, c-Myc, and KLF4 were downregulated (Fig. 3d). Furthermore, in 
hepatocyte-like cells, hepatocyte-specific markers such as HNF4α, AFP, GATA4, and TBX1 were upregulated, 
whereas self-renewal markers such as SOX2 and c-Myc were downregulated (Fig. 3e). These results thus indicated 
that in each lineage, the final stage of the differentiation process is associated with lineage-specific characteristics 
at the transcriptome level, suggesting that the CMC3 HLA-homozygous hiPSC line exhibits a stable differentia-
tion potential for the three lineages, regardless of passaging.

We subsequently focused on a specific set of DEGs that were maintained at significant levels from the 
mid-stage to the final stage of differentiation when the hiPSCs had differentiated into each layer, as they could be 
lineage-specific genes (Supplementary Tables S6–S8). GO analysis was performed to determine the functional 
roles of these genes in biological processes. In neuronal cells, we found that 104 DEGs were enriched in nervous 
system development, central nervous system development, central nervous system neuronal cell differentiation, 
cell fate commitment, and pattern-specific processes (Fig. 3f), indicating that these genes are related to neuronal 
development. In cardiomyocytes, the top-ranked GO categories for the 82 DEGs identified during cardiomyo-
cyte differentiation were related to development, including embryo development, tissue morphogenesis, ana-
tomical structure formation involved in morphogenesis, and circulatory system development (Fig. 3g). Similarly, 
the top-ranked GO categories for the 99 DEGs related to hepatocyte-like cell differentiation were enriched in 

Cell Line A B E DRB1 DPB1

Allele1 Allele2 Allele1 Allele2 Allele1 Allele2 Allele1 Allele2 Allele1 Allele2

Neuronal 
Cells

iPS_p20 A*33:03:01 A*33:03:01 n.d n.d. E*01:03:01:01 E*01:03:01:01 n.d n.d. DPB1*02:02 DPB1*04:01:01:01

Rosettes_
p20 A*33:03:01 A*33:03:01 B*44:03:01:01 B*44:03:01:01 E*01:03:01:01 E*01:03:01:01 n.d. n.d. DPB1*04:01:01:01 DPB1*02:02

Neuronal 
Cells_p20 A*33:03:01 A*33:03:01 n.d. n.d. E*01:03:01:01 E*01:03:01:01 n.d. n.d. DPB1*02:02 DPB1*04:01:01:01

iPS_p40 A*33:03:01 A*33:03:01 B*44:03:01:01 B*44:03:01:01 E*01:03:01:01 E*01:03:01:01 n.d. n.d. DPB1*02:02 DPB1*04:01:01:01

Rosettes_
p40 A*33:03:01 A*33:03:01 B*44:03:01:01 B*44:03:01:01 E*01:03:01:01 E*01:03:01:01 n.d. n.d. DPB1*02:02 DPB1*04:01:01:01

Neuronal 
Cells_p40 A*33:03:01 A*33:03:01 B*44:03:01:01 B*44:03:01:01 E*01:03:01:01 E*01:03:01:01 n.d. n.d. DPB1*02:02 DPB1*04:01:01:01

Cardio-
myocytes

iPS_p25 A*33:03:01 A*33:03:01 B*44:03:01:01 B*44:03:01:01 E*01:03:01:01 E*01:03:01:01 n.d. n.d. DPB1*02:02 DPB1*04:01:01:01

stage1_p25 A*33:03:01 A*33:03:01 B*44:03:01:01 B*44:03:01:01 E*01:03:01:01 E*01:03:01:01 n.d. n.d. DPB1*02:02 DPB1*04:01:01:01

stage2_p25 A*33:03:01 A*33:03:01 n.d. n.d. E*01:03:01:01 E*01:03:01:01 n.d. n.d. DPB1*02:02 DPB1*04:01:01:01

stage3_p25 A*33:03:01 A*33:03:01 n.d. n.d. E*01:03:01:01 E*01:03:01:01 n.d. n.d. DPB1*02:02 DPB1*04:01:01:01

iPS_p47 A*33:03:01 A*33:03:01 n.d. n.d. E*01:03:01:01 E*01:03:01:01 n.d. n.d. DPB1*02:02 DPB1*04:01:01:01

stage1_p47 A*33:03:01 A*33:03:01 n.d. n.d. E*01:03:01:01 E*01:03:01:01 n.d. n.d. DPB1*02:02 DPB1*04:01:01:01

stage2_p47 A*33:03:01 A*33:03:01 B*44:03:01:01 B*44:03:01:01 E*01:03:01:01 E*01:03:01:01 n.d. n.d. DPB1*02:02 DPB1*04:01:01:01

stage3_p47 A*33:03:01 A*33:03:01 B*44:03:01:01 B*44:03:01:01 E*01:03:01:01 E*01:03:01:01 n.d. n.d. DPB1*02:02 DPB1*04:01:01:01

Hepato-
cytes

iPS_p20 A*33:03:01 A*33:03:01 n.d. n.d. E*01:03:01:01 E*01:03:01:01 n.d. n.d. DPB1*02:02 DPB1*04:01:01:01

DE_p20 A*33:03:01 A*33:03:01 B*44:03:01:01 B*44:03:01:01 E*01:03:01:01 E*01:03:01:01 DRB1*13:02:01 DRB1*13:02:01 DPB1*02:02 DPB1*04:01:01:01

HE_p20 A*33:03:01 A*33:03:01 n.d. n.d. E*01:03:01:01 E*01:03:01:01 DRB1*13:02:01 DRB1*13:02:01 DPB1*02:02 DPB1*04:01:01:01

HLC_p20 A*33:03:01 A*33:03:01 B*44:03:01:01 B*44:03:01:01 E*01:03:01:01 E*01:03:01:01 n.d. n.d. DPB1*02:02 DPB1*04:01:01:01

iPS_p37 A*33:03:01 A*33:03:01 B*44:03:01:01 B*44:03:01:01 E*01:03:01:01 E*01:03:01:01 n.d. n.d. DPB1*02:02 DPB1*04:01:01:01

DE_p37 A*33:03:01 A*33:03:01 B*44:03:01:01 B*44:03:01:01 E*01:03:01:01 E*01:03:01:01 DRB1*13:02:01 DRB1*13:02:01 DPB1*02:02 DPB1*04:01:01:01

HE_p37 A*33:03:01 A*33:03:01 B*44:03:01:01 B*44:03:01:01 E*01:03:01:01 E*01:03:01:01 DRB1*13:02:01 DRB1*13:02:01 DPB1*02:02 DPB1*04:01:01:01

HLC_p37 n.d. n.d. B*44:03:01:01 B*44:03:01:01 E*01:03:01:01 E*01:03:01:01 n.d. n.d. DPB1*02:02 DPB1*04:01:01:01

Table 2.  Human leucocyte antigen (HLA) types of human induced pluripotent stem cells (hiPSCs) and 
differentiated cells. N. D.: not determined.
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intein-mediated protein splicing, epithelial-mesenchymal signalling involved in prostate gland development, cell 
fate commitment, and the regulation of cell proliferation (Fig. 3h).

Time-course transcriptome analysis to evaluate the effects of the prolonged culture of hiPSCs 
on the differentiation process.  In the present study, we were particularly interested in the ‘passaging’ 
effect on the original cells, with a view towards categorizing differentiation into the three germ layers at sequen-
tial stages. To this end, we performed a time-course transcriptome analysis comparing early (passages 20–25) 
and late (passages 37–47) passages of hiPSCs during differentiation at three time points to predict phenotypic 

Figure 3.  Characterization of differentiated cells of three lineages and the original human induced pluripotent 
stem cells (hiPSCs) at the transcriptome level. Global transcriptome analysis of hiPSC lines and differentiated 
cells. (a) Relationship of transcriptome profiles among the cells. Sample-to-sample distance matrix with 
hierarchical clustering. (b) Principal component analysis (PCA) of all lines. Neuronal cells (purple circles), 
cardiomyocytes (green circles), and hepatocyte-like cells (orange circles) were differentiated from hiPSCs. 
hiPSCs and iPS-like cells that divided with hiPSCs are highlighted with red circles. (c–e) Scatter plot of log2-
normalized read counts for differentiated lines, neuronal cells, cardiomyocytes, and hepatocytes in the final 
stages compared with the original hiPSC lines. Lineage-specific markers for each lineage (filled triangles) and 
hiPSC-specific markers (inverted filled triangles) are indicated. Up- and downregulated genes are also denoted 
by red and blue circles, respectively. PAX3, paired box 3; PAX6, paired box 6; KLF, Krüppel-like factor 4; GATA 
binding protein 4, GATA4; AFP, alpha foetoprotein; TBX1, T-box 1. The top five gene ontology (GO) categories 
for the common differentially expressed genes (DEGs) identified during the differentiation process for each 
lineage (i.e., neuronal cells (f), cardiomyocytes (g), and hepatocyte-like cells (h)) are shown. The heatmap for 
GO analysis indicates the expression of each gene at each stage during differentiation.
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changes under prolonged culture, although there were no significant genetic abnormalities detected. Among 
the significant gene clusters, we detected 45 types of similarly expressed profiles (SEPs) (Fig. 4), indicating that 
the early- and late-passage hiPSCs differentiated in a similar pattern overall. However, five types of differential 

Figure 4.  Time-course transcriptome analysis of differentiation during early and late passages. Comparison of 
expression profiles between early (red bars) and late (blue bars) passages at three time points [human induced 
pluripotent stem cells (hiPSCs), the middle stage of differentiation, and the final stage of differentiation]. Forty 
similar expression patterns (SEPs) and five differential expression profiles (DEPs) are shown in the top and 
bottom panels, respectively. The normalized expression values were applied to calculate relative expression. The 
number at the top of each graph indicates the number of clusters. ODEP: obscure DEP.
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expression profiles (DEPs) were detected. We subsequently performed GO enrichment analysis to determine 
the functional roles of the genes in the DEP clusters. GO analyses of the genes in cluster 38 (C38) and cluster 71 
(C71) showed significant enrichment in biological processes, among which the most significantly enriched terms 
(p-value < 0.05) are presented in Fig. 5 (Supplementary Table S9). Interestingly, the top-ranked GO terms were 
associated with immunogenicity, such as the inflammatory response, the type I interferon signalling pathway and 
the immune response, suggesting that ‘passaging’ may have certain immunogenicity-related repercussions on 
hiPSCs and their differentiation propensity.

Discussion
hiPSCs can undergo certain genomic changes during the course of proliferation and differentiation7,9. 
Consequently, to minimize any potentially adverse effects of acquired aberrations on cell therapies involving 
hiPSCs and their derivatives, it may be valuable to monitor hiPSC cultures throughout the preparation process 
using high-resolution techniques, preferably in a cost-effective manner22.

In this study, we performed SNV, indel, CNV, ekaryotyping, HLA genotyping and transcriptomic analyses in 
which differentiated cells were compared with hiPSCs using RNA-seq data from undifferentiated and differenti-
ated cultures returned from multiple centres. In particular, we evaluated whether prolonged culture conditions 
have the potential to give rise to genomic and phenotypic changes in the CMC3 hiPSC line, a candidate line for 
manufacturing cell therapies. RNA-seq data analysis revealed that when the CMC3 hiPSC line was subjected to 
prolonged culturing, these cells developed a greater number of SNVs in samples from all three collaborators. 
However, we detected no significant correlations between SNVs and the observed changes in gene expression. 
Furthermore, none of the predicted CNVs were detected in either the RNA-seq-based ekaryotyping or SNP 
chip-based analyses.

RNA-seq-based genetic stability testing showed that GMP-compliant CMC3 hiPSCs and their derivatives 
contained none of the predicted CNVs or important SNVs. In addition, no tumourigenic potential was identified, 
indicating that the hiPSC line could be safely applied in the clinical setting. However, the efficacy of the cell line 
in QC regimes, particularly as a clinical-grade seed stock that will be distributed and applied in diverse clinical 
settings for cell therapy, should be considered. When we examined phenotypic changes using gene expression 
profiling, we found that early- and late-passage CMC3 hiPSCs showed similar capacities to differentiate into 
cardiomyocytes, hepatic-like cells, and neuronal cells. In addition, RNA-seq-based efficacy testing results were 
obtained in phenotypic assays. These data indicated that the parameters of RNA-seq-based analysis were useful 
for cell line efficacy testing to reduce costs and save time in product development. Based on these safety and 
efficacy-related QC parameters and the results for the CMC3 line, we could consider the distribution of this line 
for clinical application.

We highlight that RNA-seq can facilitate in-depth genomic and transcriptomic analyses that can provide val-
uable insights into the consistency of the quality and integrity of hiPSC stocks and products under multisite 
manufacturing conditions, as needed to introduce these advanced therapies worldwide. However, there are some 
limitations to RNA-seq-based genomic and transcriptomic data analysis. First, transcript sequences are not com-
pletely faithful to the corresponding DNA sequences. Owing to RNA-DNA differences, we may have missed some 
important genetic abnormalities in the seed stocks23. Second, sequences showing low expression could not be 
evaluated. In particular, some genes showing high expression in hiPSC stocks were not expressed in differentiated 
cells, and it was therefore difficult to track their mutation patterns throughout the differentiation process.

We found that SNVs in the CMC3 hiPSC line generally had no significant effect on gene expression during 
passaging and differentiation. One exception was presented by a significant SNV detected in the PRDM14 gene, 
which was downregulated in stage 3 of cardiomyocyte differentiation from early-passage CMC3 hiPSCs. PRDM14 

Figure 5.  Gene ontology enrichment analysis of the genes of differential expression profiles (DEPs). Pie charts 
show the top-ranked GO terms of biological processes for the genes in Cluster 38 (left) and cluster 72 (right). 
The more significant the GO term, the larger the portion of the pie chart. Only GO terms with a p-value < 0.05 
were considered.
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plays important roles in maintaining stemness and self-renewal in embryonic stem cells through epigenetic 
mechanisms24. Although further studies are needed to determine whether the PRDM14 mutation directly alters 
gene expression, we found in the present study that all differentiated cells showed lower expression of PRDM14 
than hiPSCs. Therefore, it is conceivable that the downregulation of PRDM14 expression may be associated with 
the process of differentiation rather than being a consequence of SNVs in the PRDM14 sequence. Accordingly, 
this interpretation serves to highlight the importance of intensive analysis to identify mutations causing changes 
in gene expression that could affect the quality and safety of hiPSC-derived therapeutic products.

The analysis of tumourigenic potential is essential to assure the quality of hiPSC products, particularly with 
respect to their potential efficacy and safety in clinical applications25. In the present study, we evaluated changes 
in the expression of previously reported cancer-associated genes in hiPSCs and each derived lineage. Although 
prolonged culture did not appear to affect the expression of cancer-related genes, we found that several genes 
underwent passage-related changes during the differentiation of hiPSCs. These genes play diverse roles, including 
the suppression of tumours and the promotion of normal differentiation. However, when we closely examined the 
functions of the DEGs, we found that most of the genes were involved in the suppression of cancer progression 
or were related to pluripotent stem cells and cell differentiation (Supplementary Fig. S5e-f). For example, SLIT2, 
which is known to suppress tumour progression and metastasis26, showed increased expression during neuronal 
cell differentiation. In contrast, we found that Sox2, a pluripotency marker that plays an important role in tumour 
development and cancer proliferation27, showed decreased expression during cardiomyocyte differentiation. 
Similarly, LCK, which is overexpressed in colon and lymphoma cancer28, was downregulated in cardiomyocyte 
cells compared with hiPSCs. We note that these cancer-related genes are also associated with lineage-specific dif-
ferentiation29–31. However, we identified one gene for which changes in expression could pose a potential risk: the 
CDH1 gene. We found that compared with hiPSCs, this tumour suppressor gene was downregulated in differen-
tiated neuronal cells. Although CDH1 also plays an important role in pluripotent stem cell self-renewal and may 
therefore be downregulated during the differentiation process, this protein poses a potential cancer-related risk if 
expressed in the final therapeutic cell population because its expression indicates the presence of stem cells capa-
ble of producing benign but proliferating tumours. Therefore, it is necessary to assess changes in cancer-related 
genes during differentiation in more detail, including the application of in vivo tumourigenesis assays, which will 
be crucial for any hiPSC-based product release10.

Given that transplanted allogenic hiPSCs and their products can be immune-rejected by allogenic and autol-
ogous natural killer cells32, it is imperative that we monitor the major HLA types of hiPSCs and their derivatives 
to prevent adverse immune responses after the transplantation of their differentiated progeny. As a QC step, most 
haplobanks conduct tests for major HLA types, including HLA-A, HLA-B, and HLA-DR, via polymerase chain 
reaction (PCR). Nevertheless, there is still a risk of mutations in other unmonitored HLA genes during differen-
tiation and long-term passaging, and appropriate methods for quality testing therefore need to be developed for 
haplobanks. In the present study, we demonstrated the expression of HLA and the lack of mutations in the HLA 
locus in a seed stock and its derivatives for the first time. Due to cost and time limitations, donor compatibility 
tends only to be evaluated with respect to major HLA types; however, the importance of other HLA types in 
immune responses has been reported and should therefore not be overlooked33. For example, HLA-E-expressing 
hiPSCs can be immune-tolerant by avoiding potential allogenic responses34. Notably, the RNA-seq-based geno-
typing approach used in this study provided valuable information characterizing the expression of HLA molec-
ular types that are not normally targeted in genotyping, such as HLA-E, HLA-F, DPA1, DPB2, and DQB1. In 
the CMC3 seed stock, we identified homozygous HLA-E, HLA-F, DPA1, DPB2, and DQB1 types, which were 
maintained during differentiation. However, RNA-seq-based QC is unable to detect the haplotypes of weakly 
expressed HLA genes, and in some cases, we found that the HLA types showed expression below the detectable 
level, which this could be a limitation of RNA-seq-based QC analysis. Therefore, important HLA types with lower 
expression may require PCR-based QC tests.

Time-course transcriptional analysis allows the investigation of transcriptional regulatory networks and 
provides information regarding the dynamic behaviour of the genes associated with different phenotypes. 
This approach is particularly useful for the identification of the differential coexpression of biomarkers that are 
involved in the same biological processes, providing insights into the dynamics of their transcriptional activity 
under certain conditions35. Despite showing a normal karyotype, genetic aberrations tend to manifest in hiP-
SCs after an extended time in culture, giving rise to ‘culture-adapted’ and more rapidly growing hiPSCs9, which 
can influence the propensity of these cells to differentiate36,37. To explore this issue, we applied a conceptual 
time-course transcriptional analysis to prolong the passaging of hiPSCs and compared the expression profiles of 
hiPSCs between early and late passages at three time points (hiPSCs, the middle stage of differentiation, and the 
final stage of differentiation). The results revealed that whereas the expression profiles of early- and late-passage 
cells were, for the most part, similar, five clusters showed different patterns. More importantly, these clusters com-
prised immune response-related genes, which are considered to pose a significant risk in cell therapy; specifically, 
the immunogenicity of an hiPSC-derived product in autologous and allogenic human immune systems could 
cause a T-cell immune response.

The time-course transcriptomic analysis data provided valuable information regarding the safety of the prod-
uct derived from the prolonged passaging of hiPSCs. However, more data from multiple clinical-grade homozy-
gous hiPSC lines from multiple centres are required to validate our assay. To collect such extended datasets, we 
suggest the global networking of clinical-grade hiPSC banking entities to facilitate the development of better 
critical quality assessment (CQA) strategies for seed stocks.

The identification of lineage-specific differentiation markers and markers of undifferentiated cells is a critical 
step in the clinical application of PSC-derived cell therapy, as such markers could present applications in CQA and 
should be measured and monitored during manufacturing. Therefore, researchers have investigated PSC markers 
and tissue-specific differentiation markers using various techniques38. In this study, we performed a systematic 
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time-course transcriptome analysis to identify lineage-specific genes during differentiation. In total, we identified 
70, 126, and 107 genes in neuronal cells, cardiomyocytes, and hepatocyte-like cells, respectively (Supplementary 
Fig. S6 and Supplementary Table S10), most of which (with the exceptions of the cardiomyocyte-specific gene 
HAND1 and the hepatocyte-specific gene ALB) have not previously been identified as specific differentiation 
markers. In addition, we analysed hiPSC-specific gene clusters showing decreasing gene expression in all lineages. 
Our findings indicate that EMX2OS, EMX2, DMRT3, C1orf61, and TBR1 can serve as specific markers of neu-
ronal cells, whereas HAND2, AQP1, HAND1, ITGA8, and MYH6 can be considered cardiomyocyte-specific mark-
ers. These candidates play essential roles in the development of ectoderm and mesoderm, respectively. Unlike 
lineage-specific markers, we also found a gene cluster that showed continuously decreased expression during 
differentiation in all lineages (i.e., a non-specific gene cluster). This cluster, which comprised 134 genes, may be 
a hiPSC-specific gene cluster or a cluster that affects the genomic stability of hiPSCs and their differentiated lines 
and included the known stemness-related markers POU5F1 and NANOG (Supplementary Table S10). Although 
further studies will be necessary to confirm the functional effects of the lineage-specific or stemness-related genes 
identified in the present study, the data presented here provide important insights for those working in the fields 
of bioinformatics and systems biology research on hiPSCs.

The development of suitable QC parameters and methods for evaluating genetic stability in clinical-grade 
seed-stock banking is not yet standardized. A global consortium of expert stem cell researchers has concluded 
that the development of genetic variants found in hPSCs is a critical step for understanding the safety implica-
tions of advanced hPSC-derived products; therefore, the assessment of genetic integrity may be most critical for 
the final product18,39. At this stage of cell therapy development, the collection of genetic stability data alongside 
product manufacturing is valuable not only as part of QC or release testing but also for future utilization to collate 
clinical outcomes and patient follow-up. Therefore, we believe that this database could contribute to the explora-
tion of the utility of developing routine QC and risk assessment procedures10,40.

Methods
Differentiation into the three germ layers.  The hiPSC lines were expanded and differentiated into neu-
ronal cells, cardiomyocytes, and hepatocyte-like cells. For neuronal cell differentiation, hiPSCs were initially dif-
ferentiated into neural ectoderm via embryoid body formation using STEMdiff Neural Induction Medium (NIM; 
cat. no. 05835; Stem Cell Technologies) and SB431542 (1614; Tocris) and Dorsomorphin (Ab144821; Abcam) 
at 3 μM until they had attained a size of approximately 1 mm in diameter. Subsequently, the embryoid bodies 
were transferred to plates coated with Matrigel (354277; Corning), and neural rosette formation was induced 
using NIM. Thereafter, the neuronal rosettes were further differentiated into neuronal precursor cells using bFGF 
(P09038; R&D Systems), N2 (17502048; Thermo), nonessential amino acids (cat. no. 1114005; Thermo), and 
β-mercaptoethanol (cat. no. M6250; Sigma, St. Louis, MO, USA) in Dulbecco’s modified Eagle’s medium/F12 
medium (cat. no. 11330032; Gibco) for 5 days. Finally, mature neuronal cells were induced to differentiate from 
the neuronal precursor cell differentiation media using B27 (17504044; Gibco) instead of bFGF for approximately 
10 days.

For the generation of cardiomyocytes, hiPSCs were differentiated into mesodermal progenitor cells using 
the glycogen synthase kinase-3 inhibitor CHIR99021 (cat. no. 4423; Tocris) in Matrigel-coated dishes (cat. no. 
354230; Corning), and the mesodermal progenitor cells produced were further differentiated into a cardiac mes-
odermal lineage using Wnt-59 (cat. no. S7037; Selleckchem). Cardiac progenitor cells were induced from meso-
dermal lineage cells via B-27 supplementation (cat. no. 17504–044; Gibco). Upon the observation of contracting 
cardiomyocytes in the plates, the beating cells were purified with sodium lactate as previously described41,42.

For hepatocyte-like cells, we used a previously described differentiation protocol43,44 with some modifications. 
hiPSCs were plated in Matrigel-coated dishes (cat. no. 354277; Corning) 1 day before the initiation of endoder-
mal differentiation by treatment with Activin A (cat. no. 120–14E; Peprotech), sodium butyrate (cat. no. B5887; 
Sigma), and CHIR99021 (cat. no. SML1046; Sigma). Subsequent to the formation of definitive endodermal cells, 
bone morphogenic protein 4 (cat. no. 120–05ET; Peprotech) and SB431542 (cat. no. 1614; Tocris) were added to 
differentiate the hepatic endodermal linage. Finally, hepatocyte-like cells were induced by treatment with fibro-
blast growth factor 4 (cat. no. 100–31; Peprotech), hepatocyte growth factor (cat. no. 100–39; Peprotech), and 
oncostatin M (cat. no. 300–10; Peprotech) with dexamethasone (cat. no. D4902; Sigma).

Sample preparation.  Genomic DNA (gDNA) and RNA samples for genetic stability tests were prepared 
from collected cell pellets using a DNeasy Blood & Tissue kit (cat. no. 69504; Qiagen, Valencia, CA, USA) and an 
RNeasy plus mini kit (cat. no. 74136; Qiagen).

Karyotyping.  The G-banded karyotypes of 20 single clones of each cell line in metaphase with a band reso-
lution of 500 were analysed.

Mycoplasma test.  Supernatants from PSC culture medium were used for mycoplasma tests. Nested PCR 
targeting 12 representative mycoplasma samples was performed using a TaKaRa PCR Mycoplasma Detection Set 
(TaKaRa, Shiga, Japan) according to the manufacturer’s instructions.

Immunocytochemistry.  Cells were fixed with 4% paraformaldehyde and stained with antibodies targeting 
protein markers of the specific lineages of cells [anti-doublecortin (cat. no. sc-8600; Santa Cruz Biotechnology, 
Santa Cruz, CA, USA), anti-Tuj1 (cat. no. A-27023; Thermo-Fisher), and anti-microtubule-associated protein 2 
(cat. no. T8578; Sigma, St. Louis, MO, USA)]. Fluorescently tagged secondary antibodies were then used to detect 
the proteins. 4ʹ, 6-Diamidino-2-phenylindole was used for the counterstaining of nuclei.
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Fluorescence-assisted cell sorting analysis.  Cells were dissociated for 10 min using 1× TrypLE 
Express (Thermo Fisher) and washed with phosphate-buffered saline (PBS) containing 1% foetal bovine serum 
(FBS). For intracellular marker staining, cells were fixed, permeabilized with BD Cytofix/Cytoperm solution 
(BD Biosciences), and stained with 1 μg of anti-SOX17 (R&D Systems), anti-ALB (Dako), and anti-HNF4A 
(Santa Cruz Biotechnology) antibodies. For surface marker staining, cells were fixed in 4% paraformaldehyde 
(Sigma-Aldrich) for 20 min at room temperature, washed with PBS containing 1% FBS and then incubated 
for 30 min at 4 °C with 1 μg of anti-CXCR4 (BD Biosciences) and anti-asialoglycoprotein receptor 1 (Santa 
Cruz Biotechnology) antibodies. Flow cytometry was performed using a BD FACSCalibur instrument (BD 
Biosciences).

Single-nucleotide polymorphism (SNP) chip data processing for single-nucleotide var-
iant (SNV) and copy number variation (CNV) analyses.  SNP genotyping was performed using an 
Affymetrix CytoScan HD array (Affymetrix), which interrogates 2.6 million markers, including 750,000 SNPs 
and 1.9 million non-polymorphic probes, across the human genome. Genomic DNA (1 µg input) was amplified 
and labelled according to the manufacturer’s protocols.

For SNV analysis, probe calls were extracted to compare the differences between samples. An in-house script 
based on MySQL was applied to calculate the changes between the control (hiPSC lines) and case (differentiated 
cell lines) samples. Those SNVs showing differentiation between the control and case samples were subjected to 
ANNOVAR analysis45 for annotation from Ensembl identifiers to HGNC gene symbols. To identify rare variants 
with allele frequencies of less than 0.1 in the general population and the Korean population, we also performed 
annotations with reference to the 1000 Genomes46 and KRG databases (http://152.99.75.168/KRGDB). Thereafter, 
we evaluated the correlations between nonsynonymous SNVs and gene expression levels.

For CNV analysis, the raw data were analysed using the Chromosome Analysis Suite (ChAS) v3.2 
(Affymetrix). For QC, the median absolute pairwise difference score, measuring the variability in the log2 ratio, 
was set to ≤ 0.25, and SNP-QC, measuring how well genotype alleles were resolved in the microarray data, 
was set to ≥ 15. In addition, the waviness standard deviation was set to ≤ 0.12 according to the manufacturer’s 
recommendations. CNV segments of more than 100 kbp and 25 marker counts were considered. In the present 
study, we only considered CNVs within exonic regions, and we used the UCSC (hg19) database to identify genes 
within CNV areas. Moreover, CNVs were detected based on weighted log2 ratios and allelic differences. Manual 
inspection was applied to filter out false positives. All CNVs spanning centromeric regions and those on the X and 
Y chromosomes were considered false positives and were thus excluded.

eSNP karyotyping using RNA-seq data.  eSNP karyotyping was performed as previously described17. 
SNPs were called using GATK HaplotypeCaller47 after the raw RNAseq reads were aligned to the human reference 
genome (GRCh 38) using TopHat248. SNPs with a minimal minor allele frequency in the total allele depth of less 
than 0.2 and a low read depth (below 20 reads) were discarded. For visualization, the moving median values for 
allelic ratios (major to minor) were plotted along the chromosome positions using a window of 151 SNPs.

Transcriptome profiling.  In total, 22 samples were analysed using RNA sequencing to investigate the differ-
ential expression of genes between hiPSCs and differentiated cell lines and to examine differentiation processes at 
the transcriptome level. mRNA-seq libraries were prepared using an Illumina TruSeq RNA Sample Preparation 
Kit (Illumina). We sequenced 100-nt paired-end stranded reads in an Illumina HiSeq 2500 system (Illumina) 
according to the manufacturer’s protocols. Count-based transcriptome analysis was performed49. The reads were 
mapped to the reference human genome (GRCh37, hg19) using the STAR 2.5.2b aligner50. Alignment was per-
formed using a 2-pass approach by applying the splice junctions detected in the first alignment run to the second 
alignment. A splice junction database was constructed from the Ensembl database (GRCh 37.73, hg19). After 
the quantification of gene-based expression counts using htseq-count software, the read counts were normalized 
via relative log expression (RLE) using the DESeq2 package51. After the estimation of dispersion, we calculated 
the differential expression of genes based on negative binomial tests. A gene was considered to be differentially 
expressed when the false discovery rate (FDR) value was less than 0.01 and the |log2 fold change| was ≥ 4 between 
differentiated cell lines versus the original hiPSCs. BiomaRt packages52 were applied to obtain the corresponding 
HUGO Gene Nomenclature (HGNC) symbols from the Ensembl Gene identifier. Differentially expressed genes 
(DEGs) with HGNC gene symbols were considered for downstream analysis. To calculate changes in the expres-
sion of tumourigenicity-related genes, we evaluated 707 cancer-related genes20,21.

Having converted the raw count values for each gene using regularized log transformation, a sample distance 
matrix was constructed using the DESeq2 package51 Principal component analysis (PCA) was performed using 
an in-house script based on a dedicated DESeq2 function. To determine the functional enrichment of signifi-
cant DEGs, gene ontology (GO) analysis was carried out in conjunction with statistical tests based on biological 
processes using GeneAnswers53. The top five GO categories with an FDR of less than 0.05 were considered for 
assessment.

SNV calling using RNA-seq data.  After alignment to the human reference genome as described above, the 
reads were processed by using the best practice pipeline, which includes the replacement of read groups, mark-
ing of duplicate reads, base recalibration, and realignment of insertions/deletions (indels) with GATK 4.0.4.0. 
Thereafter, variant calling was performed using GATK HaplotypeCaller. Variant filtration was performed based 
on the following criteria: ReadPosRankSum < −2.0, MQRankSum < −2.0, QUAL < 30.0, QD < 3.0, FS> 30.0, 
MQ < 30.0, DP < 10, and GQ < 10.0. The resulting SNPs were annotated using snpEff54 with the 1000 Genomes46 
and Korean Reference Genome (KRG) 1100 databases (http://152.99.75.168/KRGDB).
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HLA typing using RNA-seq data.  HLA calling of the RNA-seq data was implemented to identify rare 
and common HLA alleles in both the hiPSCs and their derivatives using HLAProfiler55. After the assembly of 
a database as a reference, HLA calling was performed based on the developer’s recommendations. The results 
included major HLA genes for two alleles to identify the homozygous HLA type. The prediction of HLA type was 
performed when a sample exhibited more than 100 reads of the HLA gene. The final HLA type for each cell line 
was inferred based on Proportion_reads, Proportion_signal, Correlation, error, and Final_score values.

Time-course analysis.  To investigate dynamic expression changes during differentiation into the three 
germ layers, the count-based raw values of each gene for all 22 samples were used as the initial materials. After 
normalization using estimated size factors with the DESeq2 package51, the expression values were transformed 
using the log 2 function. Differentiation-related expression dynamics were calculated using TimesVector v1.0356. 
The K-value, which is the number of clusters targeted for detection, was evaluated using the following equation:

K 85 71 28 57x, (1)= − . + .

where x is the product of the number of conditions and time points. The K-value was adjusted according to the 
data characteristics following the developer’s recommendations. TimesVector was applied to groups of cells that 
showed distinct expression patterns or similar expression patterns under K = 85. After manual filtering to remove 
false-positive gene clusters, we identified significant gene clusters showing dynamic expression during differenti-
ation. We also used the BiomaRt package for gene annotation52.

Variant calling using WES.  WES was performed on genomic DNA from hiPSCs and DE cells at passage 20 
and hiPSCs, DE cells, HE cells, and HLCs at passage 37 to identify SNPs and short indels transcribed into RNA. 
The exome region was captured using a SureSelect V6+UTR kit (Agilent) and sequenced on a NovaSeq 6000 sys-
tem (Illumina). After mapping against the GRCh38/hg38 assembly using BWA57, variant calling was performed 
using the GATK v4.0.4.0 tool58, including the marking of duplicates, base recalibration, and indel realignment. 
Joint variant calling was then performed with all samples using GATK HaplotypeCaller. Variant and gene anno-
tation was performed with SnpEff54 and dbSNP15159. Among the 132,248 called variants, the selection of vari-
ants for further analysis was performed as follows: (1) candidate mutations present in the control cell lines were 
discarded; (2) candidate mutant alleles with an allele frequency of greater than 20% were selected; (3) candidate 
mutations annotated in protein-coding regions were selected; and (4) candidate mutations annotated as intron 
variants and up-/downstream variants were discarded. In total, 827 variants were finally selected for downstream 
analysis.

Statistics.  All data are presented as the mean + SEM. Differences between two means were analysed using 
Student’s t-test.

Cell lines and data availability.  Raw data from the SNP chip and RNA sequencing analyses performed 
in this study have been deposited in the Clinical & Omics Data Archive (CODA, http://coda.nih.go.kr) under 
accession numbers R001856 and R001855, respectively. The cell lines used in this study are also available through 
the Korea Stem Cell Bank Institute (http://kscr.nih.go.kr).

Received: 12 August 2019; Accepted: 5 February 2020;
Published: xx xx xxxx

References
	 1.	 Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined 

factors. Cell 126, 663–676 (2006).
	 2.	 Yoshihara, M., Hayashizaki, Y. & Murakawa, Y. Genomic instability of iPSCs: challenges towards their clinical applications. Stem Cell 

Rev. Rep. 13, 7–16 (2017).
	 3.	 Keller, A. et al. Genetic and epigenetic factors which modulate differentiation propensity in human pluripotent stem cells. Hum. 

Reprod. Update 24, 162–175 (2018).
	 4.	 Shi, Y., Inoue, H., Wu, J. C. & Yamanaka, S. Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug Discov. 

16, 115–130 (2017).
	 5.	 Sullivan, S. et al. Quality control guidelines for clinical-grade human induced pluripotent stem cell lines. Regen. Med. 13, 859–866 

(2018).
	 6.	 Andrews, P. W. et al. Points to consider in the development of seed stocks of pluripotent stem cells for clinical applications: 

international stem cell banking initiative (ISCBI). Regen. Med. 10, 1–44 (2015).
	 7.	 Andrews, P. W. et al. Assessing the safety of human pluripotent stem cells and their derivatives for clinical applications. Stem Cell 

Rep. 9, 1–4 (2017).
	 8.	 Liang, G. & Zhang, Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell 

13, 149–159 (2013).
	 9.	 International Stem Cell Initiative. et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 

minimal amplicon conferring growth advantage. Nat. Biotechnol. 29, 1132–1144 (2011).
	10.	 Kim, J. H. et al. A report from a workshop of the international stem cell banking initiative, held in collaboration of global alliance for 

iPSC therapies and the harvard stem cell institute, Boston, 2017. Stem Cells 37, 1130–1135 (2019).
	11.	 Mandai, M. et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N. Engl. J. Med. 376, 1038–1046 

(2017).
	12.	 Sackett, S. D. et al. Modulation of human allogeneic and syngeneic pluripotent stem cells and immunological implications for 

transplantation. Transplant. Rev. (Orlando) 30, 61–70 (2016).
	13.	 Lee, S. et al. Repurposing the cord blood bank for haplobanking of HLA-homozygous iPSCs and their usefulness to multiple 

populations. Stem Cells 36, 1552–1566 (2018).
	14.	 Barry, J., Hyllner, J., Stacey, G., Taylor, C. J. & Turner, M. Setting up a haplobank: issues and solutions. Curr. Stem Cell Rep. 1, 110–117 

(2015).

https://doi.org/10.1038/s41598-020-60466-9
http://coda.nih.go.kr
http://kscr.nih.go.kr


1 4Scientific Reports |         (2020) 10:3939  | https://doi.org/10.1038/s41598-020-60466-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

	15.	 Williams, D. J. et al. Comparability: manufacturing, characterization and controls, report of a UK regenerative medicine platform 
pluripotent stem cell platform workshop, trinity hall, Cambridge, 14-15 september 2015. Regen. Med. 11, 483–492 (2016).

	16.	 Ben-David, U. et al. Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human 
pluripotent stem cells. Nat. Commun. 5, 4825 (2014).

	17.	 Weissbein, U., Schachter, M., Egli, D. & Benvenisty, N. Analysis of chromosomal aberrations and recombination by allelic bias in 
RNA-Seq. Nat. Commun. 7, 12144 (2016).

	18.	 Laurent, L. C. et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs 
during reprogramming and time in culture. Cell Stem Cell 8, 106–118 (2011).

	19.	 Martins-Taylor, K. et al. Recurrent copy number variations in human induced pluripotent stem cells. Nat. Biotechnol. 29, 488–491 
(2011).

	20.	 Walker, E. J. et al. Monoallelic expression determines oncogenic progression and outcome in benign and malignant brain tumors. 
Cancer Res. 72, 636–644 (2012).

	21.	 Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2019).
	22.	 Bock, C. et al. Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. 

Cell 144, 439–452 (2011).
	23.	 Li, M. et al. Widespread RNA and DNA sequence differences in the human transcriptome. Science 333, 53–58 (2011).
	24.	 Nakaki, F. & Saitou, M. PRDM14: a unique regulator for pluripotency and epigenetic reprogramming. Trends Biochem. Sci. 39, 

289–298 (2014).
	25.	 Tan, Y., Ooi, S. & Wang, L. Immunogenicity and tumorigenicity of pluripotent stem cells and their derivatives: genetic and epigenetic 

perspectives. Curr. Stem Cell Res. Ther. 9, 63–72 (2014).
	26.	 Xia, Y. et al. Reduced USP33 expression in gastric cancer decreases inhibitory effects of Slit2-Robo1 signalling on cell migration and 

EMT. Cell Prolif. 52, e12606 (2019).
	27.	 Maurizi, G., Verma, N., Gadi, A., Mansukhani, A. & Basilico, C. Sox2 is required for tumor development and cancer cell proliferation 

in osteosarcoma. Oncogene 37, 4626–4632 (2018).
	28.	 Kim, J. J. et al. Discovery of consensus gene signature and intermodular connectivity defining self-renewal of human embryonic 

stem cells. Stem Cells 32, 1468–1479 (2014).
	29.	 Camelliti, P., Borg, T. K. & Kohl, P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc. Res. 65, 40–51 

(2005).
	30.	 Fang, Y. et al. Translational profiling of cardiomyocytes identifies an early Jak1/Stat3 injury response required for zebrafish heart 

regeneration. Proc. Natl. Acad. Sci. USA 110, 13416–13421 (2013).
	31.	 Cambier, L., Plate, M., Sucov, H. M. & Pashmforoush, M. Nkx2-5 regulates cardiac growth through modulation of Wnt signaling by 

R-spondin3. Development 141, 2959–2971 (2014).
	32.	 Kruse, V. et al. Human induced pluripotent stem cells are targets for allogeneic and autologous natural killer (NK) cells and killing 

is partly mediated by the activating NK receptor DNAM-1. PLoS One 10, e0125544 (2015).
	33.	 Fairchild, P. J., Davies, T. J., Horton, C., Shanmugarajah, K. & Bravo, M. Immunotherapy with iPSC-derived dendritic cells brings a 

new perspective to an old debate: autologous versus allogeneic? Cell. Gene Ther. Insights 5, 565–577 (2019).
	34.	 Gornalusse, G. G. et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 

35, 765–772 (2017).
	35.	 Spies, D. & Ciaudo, C. Dynamics in transcriptomics: advancements in RNA-seq time course and downstream analysis. Comput. 

Struct. Biotechnol. J. 13, 469–477 (2015).
	36.	 Enver, T. et al. Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum. Mol. Genet. 14, 

3129–3140 (2005).
	37.	 Gokhale, P. J. et al. Culture adaptation alters transcriptional hierarchies among single human embryonic stem cells reflecting altered 

patterns of differentiation. PLoS One 10, e0123467 (2015).
	38.	 Muller, F. J. et al. A bioinformatic assay for pluripotency in human cells. Nat. Methods 8, 315–317 (2011).
	39.	 Abbot, S. et al. Report of the international conference on manufacturing and testing of pluripotent stem cells. Biologicals 56, 67–83 

(2018).
	40.	 International Stem Cell Initiative. Assessment of established techniques to determine developmental and malignant potential of 

human pluripotent stem cells. Nat. Commun. 9, 1925 (2018).
	41.	 Burridge, P. W. et al. Chemically defined generation of human cardiomyocytes. Nat. Methods 11, 855–860 (2014).
	42.	 Burridge, P. W., Holmstrom, A. & Wu, J. C. Chemically defined culture and cardiomyocyte differentiation of human pluripotent 

stem cells. Curr. Protoc. Hum. Genet. 87 (2015).
	43.	 Kim, H. M. et al. Xeno-sensing activity of the aryl hydrocarbon receptor in human pluripotent stem cell-derived hepatocyte-like 

cells. Sci. Rep. 6, 21684 (2016).
	44.	 Touboul, T. et al. Stage-specific regulation of the WNT/beta-catenin pathway enhances differentiation of hESCs into hepatocytes. J. 

Hepatol. 64, 1315–1326 (2016).
	45.	 Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. 

Nucleic Acids Res. 38, e164 (2010).
	46.	 Genomes Project Consortium. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
	47.	 DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 

43, 491–498 (2011).
	48.	 Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 

14, R36 (2013).
	49.	 Anders, S. et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat. Protoc. 8, 

1765–1786 (2013).
	50.	 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
	51.	 Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
	52.	 Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/

Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009).
	53.	 Huang, L. et al. GeneAnswers: integrated interpretation of genes. R Package Version 2.24.0. (2018).
	54.	 Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the 

genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).
	55.	 Buchkovich, M. L. et al. HLAProfiler utilizes k-mer profiles to improve HLA calling accuracy for rare and common alleles in RNA-

seq data. Genome Med. 9, 86 (2017).
	56.	 Jung, I. et al. TimesVector: a vectorized clustering approach to the analysis of time series transcriptome data from multiple 

phenotypes. Bioinformatics 33, 3827–3835 (2017).
	57.	 Li, H. & Durbin, R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25, 1754–1760 (2009).
	58.	 McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. 

Genome Res. 20, 1297–1303 (2010).
	59.	 Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

https://doi.org/10.1038/s41598-020-60466-9


1 5Scientific Reports |         (2020) 10:3939  | https://doi.org/10.1038/s41598-020-60466-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

Acknowledgements
This work was supported by the Korea National Institute of Health Intramural Research Program 4800-4861-312-
210-13 (grant nos. 2017-NG61003-00, 2017-NG61004-00, 2020-NG-018-00  and 2020-NG-019-00).

Author contributions
H.Y.J. Conception and design, collection of data, data analysis and interpretation, manuscript writing, and all 
bioinformatic-related analysis. H.W.H. Collection of study samples. J.H.J. Provision of the study material. S.J.P. 
and S.M. Culturing of hiPSC lines and differentiation into cardiomyocytes. H.K. and H.J.P. Culturing of hiPSC 
lines and differentiation into hepatocytes. D.G. Culturing of hiPSC lines and differentiation into neuronal cells. 
I.J. and S.K. Data analysis and interpretation. S.K.K. and G.N.S. Data interpretation. M.H.P. Data analysis and 
interpretation and manuscript writing. J.H.K. Concept and design, provision of study material, data analysis and 
interpretation, manuscript writing, and final approval of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-60466-9.
Correspondence and requests for materials should be addressed to M.-H.P. or J.-H.K.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-60466-9
https://doi.org/10.1038/s41598-020-60466-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Development of genetic quality tests for good manufacturing practice-compliant induced pluripotent stem cells and their der ...
	Results

	Scheme of the postdistribution genetic stability test for HLA-homozygous lines. 
	Differentiation into representative cells of the three germ layers. 
	Identification of SNVs and indels in hiPSCs and differentiated cells. 
	Evaluation of chromosomal aberrations of hiPSCs and differentiated cells. 
	Evaluation of cancer-related gene expression. 
	Quality testing of HLA types in differentiated cells using RNA-seq data. 
	Transcriptome profiling revealing effective differentiation into the three germ layers. 
	Time-course transcriptome analysis to evaluate the effects of the prolonged culture of hiPSCs on the differentiation proces ...

	Discussion

	Methods

	Differentiation into the three germ layers. 
	Sample preparation. 
	Karyotyping. 
	Mycoplasma test. 
	Immunocytochemistry. 
	Fluorescence-assisted cell sorting analysis. 
	Single-nucleotide polymorphism (SNP) chip data processing for single-nucleotide variant (SNV) and copy number variation (CN ...
	eSNP karyotyping using RNA-seq data. 
	Transcriptome profiling. 
	SNV calling using RNA-seq data. 
	HLA typing using RNA-seq data. 
	Time-course analysis. 
	Variant calling using WES. 
	Statistics. 
	Cell lines and data availability. 

	Acknowledgements

	Figure 1 Schematic depiction of the protocol used to study the differentiation potential of good manufacturing practice-compliant human induced pluripotent stem cells (hiPSCs).
	Figure 2 Detection of chromosomal aberrations in human induced pluripotent stem cells (hiPSCs) and their derivatives using eSNP karyotyping.
	Figure 3 Characterization of differentiated cells of three lineages and the original human induced pluripotent stem cells (hiPSCs) at the transcriptome level.
	Figure 4 Time-course transcriptome analysis of differentiation during early and late passages.
	Figure 5 Gene ontology enrichment analysis of the genes of differential expression profiles (DEPs).
	Table 1 Single-nucleotide variants (SNVs) and indels in the differentiated lines based on RNAseq data.
	Table 2 Human leucocyte antigen (HLA) types of human induced pluripotent stem cells (hiPSCs) and differentiated cells.




