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Growth, ionic homeostasis, 
and physiological responses 
of cotton under different salt 
and alkali stresses
Huijuan Guo, Zhijie Huang, Meiqi Li & Zhenan Hou*

To better understand the mechanism of salt tolerance, we analyzed cotton growth and the ionomes 
in different tissues under different types of salt–alkali stress. Cotton was exposed to the soil salt 
and alkali stresses, NaCl, Na2SO4, and Na2CO3 + NaHCO3, in a pot study. Salt and alkali stress 
significantly inhibited cotton growth, significantly reduced root length, surface area, and volume, 
and significantly increased relative electrical conductivity (REC) and malondialdehyde (MDA) content 
but also significantly increased antioxidant enzyme activities, and proline (Pro) content. The REC in 
leaves was higher under salt stress than under alkali stress, but the effects on Pro were in the order 
Na2CO3 + NaHCO3 > NaCl > Na2SO4. Principal component analysis showed a significant difference in 
ion composition under the different types of salt–alkali stress. Under the three types of salt–alkali 
stress, concentrations of Na and Mo increased significantly in different organs of cotton plants. Under 
NaCl stress, the absorption of Ca was inhibited, the transport capacity of P, Mg, and Cu was reduced, 
and the ion balance was maintained by promoting the uptake and transport of Zn, Mn, Al, and Mo. 
Under Na2SO4 stress, the absorption of P and Ca was inhibited, the transport capacity of Mg, B, and 
Cu was reduced, and the ion balance was maintained by promoting the uptake and transport of S, 
Zn, Fe, Mo, Al, and Co. Under Na2CO3 + NaHCO3 stress, the absorption of P and S was inhibited, the 
transport capacity of Mg and B was reduced, but that of Al and Fe increased, and the ion balance was 
maintained by promoting the uptake and transport of Mn, Mo, Ni, and Co. The relative expression 
of GhSOS1 and GhNHX1 in leaves increased significantly under salt stress but decreased under alkali 
stress. These results suggest that cotton is well-adapted to salt–alkali stress via the antioxidant 
enzyme system, adjustment of osmotic substances, and reconstruction of ionic equilibrium; neutral 
salt stress primarily disrupts the ion balance, whereas alkali stress decreases the ability to regulate Na 
and inhibits the absorption of mineral elements, as well as disrupts the ion balance; and the changes 
in the expression of salt tolerance-related genes may partially explain the accumulation of Na ions in 
cotton under salt–alkali stress.

Soil salinization is a global ecological problem that threatens the environment and the development of sustainable 
agriculture1. Cotton is a “pioneer crop” used to develop and use salt–alkali soil and is also a model plant used 
to study the mechanism of salt tolerance because of its relatively high salt tolerance. However, salt–alkali stress 
still greatly affects cotton growth2. With the increasing change in the global climate and the worsening of soil 
salinization, it is urgent that we improve salt tolerance in plants3. There are different types of soil salinization, 
with neutral and alkaline salts causing two distinct types of salt stress, to which crops have different responses 
and salt-tolerance mechanisms4. Salt stress occurs with neutral salts (NaCl and Na2SO4), with osmotic stress 
and ion toxicity the main effects on plants5. Alkali stress occurs with alkaline salts (NaHCO3 and Na2CO3)6, 
mainly because the high pH affects plant growth and disrupts the ion balance7. The risk of salt–alkali stress may 
be greater than that of neutral salt stress8. However, few studies have examined the effects of different types of 
salt stress, even though our understanding of the salt-tolerance mechanisms of crops under different salt–alkali 
stresses needs to be improved9,10.

The salt-tolerance mechanism of cotton has been widely studied. Under salt–alkali stress, the morphologi-
cal index and root development during cotton growth can most intuitively reflect the stress status of cotton. 
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According to Wang et al.11 and Chachar et al.12, cotton growth is significantly inhibited, seedling biomass is 
significantly reduced, and root development is inhibited under salt–alkali stress. Furthermore, salt–alkali stress 
causes ion toxicity in plants, as a result of imbalances disrupting ion homeostasis. The reconstruction of ion 
homeostasis under salt–alkali stress is one important mechanism by which plants improve their salt–alkali 
tolerance13. Ionomics is a new approach to study the response of plants to salt–alkali stress, and the mineral 
nutrient and trace element ionome of plants can be used to characterize the inorganic components of cells and 
biological systems14. Mineral elements guarantee the growth of crops15. However, primarily because excess salt 
ions in soil cause competition among ions for absorption in cotton under salt–alkali stress, the absorption and 
transport of mineral elements are substantially affected, resulting in mineral nutrient stress and imbalance in 
crop ion homeostasis. Salt stress not only inhibits the uptake of macro elements (N, P, K, Ca, Mg, S) by crops 
but also limits the absorption of trace elements (Fe, Cu, Zn, Mn, and B, among others)16. In addition to being 
nutrients for crop growth, these mineral elements also participate in various physiological metabolic processes 
that directly or indirectly affect the salt tolerance of crops.

Although each element has a unique physiological function in crop growth, the primary function of each is to 
maintain intracellular ionic homeostasis. Maintaining intracellular ionic homeostasis is an important mechanism 
by which crops adapt to salt stress, and all the physiological activities related to salt tolerance in crops are aimed 
at maintaining ionic homeostasis. Therefore, to reveal the mechanism of salt tolerance in crops, it is important to 
examine the mechanisms that maintain ionic homeostasis during the absorption of mineral nutrients by plants 
under salt stress. The absorption of ions by cotton under salt stress and the use of mineral elements to improve 
the salt tolerance of cotton have been investigated17,18. However, the focus of most previous studies has been on 
the effects of salt stress on one or more mineral elements, and the responses of other elements and their interac-
tions with salt stress have not been fully elucidated16. Therefore, our understanding of the relationship between 
the mechanism of salt-tolerance and the ionome remains fragmented and incomplete.

Environmental factors can also influence ion homeostasis by regulating associated genes. Two key salt-
tolerance genes are SOS1 and NHX119,20. The SOS pathway is involved in the maintenance of ionic homeostasis, 
and NHX1 participates in Na+ transport and compartmentalization, maintains osmotic balance, and reduces 
cytosolic Na+ concentration21. Therefore, the analysis of the expression of Na+ transport-related genes can help to 
explain the changes in ion homeostasis and reveal the salt-tolerance mechanism in cotton under salt–alkali stress.

The salt tolerance of crops involves a variety of defense mechanisms, including maintaining ionic homeostasis 
and osmotic equilibrium and scavenging reactive oxygen species (ROS)22,23. In ionomics, high-throughput analy-
sis (ICP-MS) is used to quantitatively study the ionome characteristics of an organism, providing an important 
approach to understand the element–element and element–environment interactions as well as the physiological 
and biochemical functions of elements24. Because salt–alkali stress is one of the most serious abiotic stress fac-
tors limiting crop production, an in-depth understanding of the responses of ionomes under salt–alkali stress 
remains essential to understand the mechanism of ionic homeostasis in cotton. In addition, as understanding 
increases, we can provide a theoretical basis to improve the salinity and alkalinity tolerance of cotton by ionic 
regulation and rational fertilization in salt–alkali soil, as well as provide a reference for the breeding of salt-
tolerant cotton cultivars.

In this study, we examined the effects of different types of salt–alkali stress on (1) the biomass of cotton plants 
and the morphological characters of root length, surface area, and volume; (2) the physiological indices of salt tol-
erance (REC, MDA, Pro), the biochemical indices (activities of superoxide dismutase (SOD), peroxidase (POD), 
catalase (CAT)), and the mechanisms of organic osmotic regulation and enzyme protection; (3) the ionomic 
responses and distributions of the main mineral elements in cotton plants, as well as the correlations between Na 
and other elements; and (4) the expression of Na+ transport-related genes involved in ionic homeostasis in cotton.

Results
Changes in cotton biomass and root morphology after salt and alkali stresses.  Cotton biomass 
decreased significantly under salt–alkali stress (Fig. 1). Compared with the CK, total cotton biomass decreased 
by 57.55% in the CS treatment, by 49.19% in the SS treatment, and by 58.61% in the AS treatment. Compared 
with the CK, the biomass of the root, stem, and leaves was significantly lower by 47.98%, 65.64%, and 32.07%, 
respectively, in the CS treatment (Fig. 1a), by 46.86%, 51.17%, and 43.18%, respectively, in the SS treatment 
(Fig. 1b), and by 59.93%, 57.50%, and 31.17%, respectively, in the AS treatment (Fig. 1c).

Salt–alkali stress significantly decreased root length, surface area, and volume (Fig. 2). Compared with the 
CK, root length, surface area, and volume decreased significantly by 44.33%, 25.62%, and 10.80%, respectively, 
in the CS treatment, by 40.53%, 38.49%, and 38.40%, respectively, in the SS treatment; and by 23.63%, 20.85%, 
and 25.28%, respectively, in the AS treatment.

Changes in cotton physiological response after salt and alkali stresses.  The MDA content and 
REC of leaves increased significantly under salt–alkali stress (Fig. 3). Compared with the CK, the MDA content 
in the leaves increased significantly by 211.72% in the CS treatment, by 114.48% in the SS treatment, and by 
208.28% in the AS treatment. Similarly, compared with the CK, the REC in leaves increased significantly by 
74.06% in the CS treatment, by 99.83% in the SS treatment, and by 31.54% in the AS treatment.

Salt–alkali stress significantly increased the activities of SOD, POD, and CAT in leaves (Fig. 4). Compared with 
the CK, the SOD activity increased significantly by 118.89% in the CS treatment, by 159.92% in the SS treatment, 
and by 215.29% in the AS treatment; the POD activity increased significantly by 8.98% in the CS treatment, by 
16.80% in the SS treatment, and by 12.38% in the AS treatment; and the CAT activity increased significantly by 
139.78% in the CS treatment, by 116.70% in the SS treatment, and by 275.91% in the AS treatment.
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Salt–alkali stress significantly increased the Pro content in cotton leaves (Fig. 5). Compared with the CK, the 
proline content in the leaves increased significantly by 230.07% in the CS treatment, by 77.91% in the SS treat-
ment, and by 264.19% in the AS treatment.

Changes in cotton tissue ionomes after salt and alkali stresses.  To demonstrate the effect of salt–
alkali stress on element distribution in cotton, we analyzed the concentrations of the ions Na, P, K, Ca, Mg, S, 
Fe, Mn, Zn, Cu, B, Mo, Ni, Co, Al, Si, and Se in the leaf, stem, and root under different types of salt–alkali stress. 
In the PCAs, the leaf (Fig. 6a), stem (Fig. 6b), and root (Fig. 6c) ionomes were separated on the basis of differ-
ent types of salt–alkali stress. The different types of salt–alkali stress were well separated on the first principal 
component, accounting for 61.2% of the total variation in leaves, 42.3% of that in stems, and 41.4% of that in 
roots. The major elements that contributed to the PC1 were Na, Ca, Mn, Fe, Mo, Al, and Co in the leaf ionome; 
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Figure 1.   Leaf, stem, root, and total biomass (g/plant) of cotton plants under different types of salt–alkali 
stress: (a) NaCl (CS), (b) Na2SO4 (SS), and (c) Na2CO3 + NaHCO3 (AS). Columns with bars represent the 
mean ± standard error (n = 3). Asterisks indicate a significant difference between the control (CK) and the salt–
alkali stress (**p < 0.01).
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Na, P, Ca, Cu, Zn, and Mo in the stem ionome; and Na, P, Mg, Mn, Mo, and B in the root ionome. Leaf and stem 
ionome analyses demonstrated that the SS treatment could be clearly distinguished from the other salt–alkali 
stress treatments using the second principal component, which explained 21.0% (leaf) and 25.0% (stem) of the 
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Figure 2.   Root length (cm), surface area (cm2), and volume (cm3) of cotton plants under different types of 
salt–alkali stress (NaCl (CS), Na2SO4 (SS), and Na2CO3 + NaHCO3 (AS)). Columns with bars represent the 
mean ± standard error (n = 3). Asterisks indicate a significant difference between the control (CK) and the salt–
alkali stress (*p < 0.05; **p < 0.01). (a–c) indicate the root length in NaCl, Na2SO4, and Na2CO3 + NaHCO3 stress, 
respectively. (d–f) indicate the surface area in NaCl, Na2SO4, and Na2CO3 + NaHCO3 stress, respectively. (g–i) 
indicate the root volume in NaCl, Na2SO4, and Na2CO3 + NaHCO3 stress, respectively.
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total coefficient of variation. The contribution of elements to the PC2 was dominated by S and Zn in the leaf 
ionome and by S, Al, and Fe in the stem ionome. In the root ionome, the PC2 clearly distinguished between the 
neutral salt (CS and SS) treatments and the alkaline salt (AS) treatment, explaining 32.7% of the total coefficient 
of variation. The elements Ca, Cu, Zn, and Co were the dominant contributors to the PC2 in the root ionome.

In the hierarchical cluster analysis, the leaf, stem, and root ionomes of cotton were also separated on the 
basis of different types of salt–alkali stress (Figs. 7, 8, and 9, respectively), indicating high similarity among the 
ionomes in the samples from each treatment. In leaves (Fig. 7, Tables S1–S3), compared with the CK, the con-
centrations of Na, Zn, Mn, Fe, B, Mo, Al, and Co increased significantly in the CS treatment; the concentrations 
of Na, S, Zn, Fe, Mo, Al, and Co increased significantly in the SS treatment; and the concentrations of Na, Fe, 
Mn, Zn, Cu, Mo, Ni, Co, Al, and Si increased significantly in the AS treatment. By contrast, the concentrations 
of P, K, Ca, Mg, S, and Cu decreased significantly in the CS treatment; the concentrations of P, Ca, Mg, B, Cu, 
and Se decreased significantly in the SS treatment; and the concentrations of P, K, Ca, Mg, S, B, and Se decreased 
significantly in the AS treatment.

In the stems (Fig. 8, Tables S4–S6), compared with the CK, the concentrations of Na, Zn, Mn, Fe, Mo, and Al 
increased significantly in the CS treatment; the concentrations of Na, S, Zn, Fe, Mo, Al, Mn, and Co increased 
significantly in the SS treatment; and the concentrations of Na, Mn, Zn, Mo, Ni, Co, and B increased significantly 
in the AS treatment. By contrast, the concentrations of B, Ca, Cu, P, K, Mg, and S decreased significantly in the 
CS treatment; the concentrations of P, Ca, Mg, and Cu decreased significantly in the SS treatment; and the con-
centrations of Al, Ca, Cu, Fe, Mg, P, and S decreased significantly in the AS treatment.

In the roots (Fig. 9, Tables S7–S9), compared with the CK, the concentrations of Na, P, Mg, Cu, Zn, Mn, Co, 
Mo, and Al increased significantly in the CS treatment; the concentrations of Na, Mg, S, Zn, Fe, Mo, B, Cu, Al, 
Mn, Ni, and Co increased significantly in the SS treatment; and the concentrations of Na, Mg, Mn, Mo, Ni, Co, 
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Figure 3.   Malondialdehyde (MDA) content (nmol/g fresh weight (FW)) and relative electrical conductivity 
(REC) (dS/m) in cotton leaves under different types of salt–alkali stress (NaCl (CS), Na2SO4 (SS), and 
Na2CO3 + NaHCO3 (AS)). Columns with bars represent the mean ± standard error (n = 3). Asterisks indicate a 
significant difference between the control (CK) and the salt–alkali stress (**p < 0.01). (a–c) indicate the MDA 
content in cotton leaves under NaCl, Na2SO4, and Na2CO3 + NaHCO3 stress, respectively. (d–f) indicate the REC 
in cotton leaves under NaCl, Na2SO4, and Na2CO3 + NaHCO3 stress, respectively.
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Figure 4.   Activities (U/g fresh weight (FW)) of the antioxidant enzymes superoxide dismutase (SOD), 
peroxidase (POD), and catalase (CAT) in cotton leaves under different types of salt–alkali stress (NaCl (CS), 
Na2SO4 (SS), and Na2CO3 + NaHCO3 (AS)). Columns with bars represent the mean ± standard error (n = 3). 
Asterisks indicate a significant difference between the control (CK) and the salt–alkali stress (*p < 0.05; 
**p < 0.01). (a–c) indicate the SOD in cotton leaves under NaCl, Na2SO4, and Na2CO3 + NaHCO3 stress, 
respectively. (d–f) indicate the POD in cotton leaves under NaCl, Na2SO4, and Na2CO3 + NaHCO3 stress, 
respectively. (g–i) indicate the CAT in cotton leaves under NaCl, Na2SO4, and Na2CO3 + NaHCO3 stress, 
respectively.
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and B increased significantly in the AS treatment. By contrast, the concentration of Ca decreased significantly in 
the CS treatment; the concentrations of P and Ca decreased significantly in the SS treatment; and the concentra-
tions of Al, Fe, P, and S decreased significantly in the AS treatment.

Changes in K/Na ratio after salt and alkali stresses.  Salt–alkali stress significantly decreased the K/
Na ratio in cotton plants (Fig. 10). Compared with the CK, the K/Na ratio in cotton leaves was significantly lower 
by 87.46% in the CS treatment, by 92.58% in the SS treatment, and by 95.20% in the AS treatment; the K/Na 
ratio in cotton stems was significantly lower by 84.16% in the CS treatment, by 92.22% in the SS treatment, and 
by 94.44% in the AS treatment; and the K/Na ratio in cotton roots was significantly lower by 76.92% in the CS 
treatment, by 84.43% in the SS treatment, and by 84.80% in the AS treatment.

Relationship between Na element and other elements.  An excess of Na ions is the main cause of 
salt–alkali stress, and thus, it is essential to understand the correlations between Na and other elements. The 
correlations between Na and other elements in the leaf, stem, and root were analyzed under the different types 
of salt–alkali stress (Figs. 11, 12, 13). In the CS treatment, the Na levels in the leaves were significantly negatively 
correlated with seven elements (Cu, Ca, Mg, K, P, S, and Si) and significantly positively correlated with seven ele-
ments (Zn, Mo, Mn, Al, Fe, B, and Co), Ni and Se were negatively correlated with Na, but the correlations were 
not significant (Fig. 11a). In the SS treatment, the Na levels in the leaves were significantly negatively correlated 
with six elements (Ca, B, P, Mg, Se, and Cu) and significantly positively correlated with nine elements (Zn, Mo, 
Al, S, Fe, Co, Si, Mn, and K), but had a significantly negative correlation with Ni (Fig. 11b). In the AS treatment, 
the Na levels in the leaves were significantly negatively correlated with seven elements (Ca, Mg, S, K, Se, P, and 
B) and significantly positively correlated with nine elements (Zn, Mo, Mn, Al, Fe, Co, Cu, Si, and Ni), but had a 
significantly negative correlation with Ni (Fig. 11c).

In the CS treatment, the Na levels in the stems were significantly negatively correlated with Cu, K, Ca, Mg, 
P, S, and B and significantly positively correlated with Mo, Zn, Mn, Al, Fe, Co, Se, and Si, but had a significantly 
negative correlation with Ni (Fig. 12a). In the SS treatment, the Na levels in the stems were significantly negatively 
correlated with Cu, Mg, P, Ca, and Se and significantly positively correlated with Fe, Al, Mn, Mo, Zn, S, Co, Si, 
and B, but had significantly negative correlations with K and Ni (Fig. 12b). In the AS treatment, the Na levels 
in the stems were significantly negatively correlated with Ca, P, Al, Cu, Mg, S, Fe, Se, and K and significantly 
positively correlated with Co, Mn, Mo, Zn, Ni, B, and Si (Fig. 12c).

In the CS treatment, the Na levels in the roots were negatively correlated with Ca, K, Fe, Ni, B, and Se and 
significantly positively correlated with Mg, Zn, Mo, Co, Mn, Cu, P, Al, S, and Si (Fig. 13a). In the SS treatment, 
the Na levels were significantly positively correlated with almost all elements, with Ca, P, and Se the exceptions 
(Fig. 13b). In the AS treatment, the Na levels in the roots were negatively correlated with P, Al, Fe, S, Se, Ca, and 
Zn and positively correlated with Mg, Mo, Mn, B, Co, Ni, K, Cu, and Si (Fig. 13c).

Changes in expression of GhSOS1 and GhNHX1 after salt and alkali stresses.  To determine the 
changes in Na+ transport-related genes of cotton under salt–alkali stress, the expression patterns of GhSOS1 and 
GhNHX1 were analyzed by RT-qPCR (Fig. 14). In the leaf, the expression of GhSOS1 increased significantly 
under salt stress but decreased significantly under alkali stress. However, in the roots, the expression levels of 
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Figure 5.   Proline content (U/g fresh weight (FW)) in cotton leaves under different types of salt–alkali stress 
(NaCl (CS), Na2SO4 (SS), and Na2CO3 + NaHCO3 (AS)). Columns with bars represent the mean ± standard 
error (n = 3). Asterisks indicate a significant difference between the control (CK) and the salt–alkali stress 
(**p < 0.01). (a–c) indicate the Proline content in cotton leaves under NaCl, Na2SO4, and Na2CO3 + NaHCO3 
stress, respectively.
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GhSOS1 decreased significantly in all salt–alkali treatments. The expression of GhNHX1 increased significantly 
in leaves and roots under salt stress treatments; however, the difference between the CK and AS treatments was 
not significant for either leaves or roots.

Discussion
Effects of salt and alkali stresses on cotton growth.  Excessive soil salinity mainly causes damage to 
plants through osmotic stress and ion toxicity, and the inhibition of growth is the most common physiological 
response in a saline habitat25–27. In this study, salt–alkali stress significantly inhibited cotton growth. The inhibi-
tion might have been due to the toxicity of Na ions with salt stress28,29 and the increase in pH and disturbance 
of plant nutrition and metabolism with alkali stress30. In addition, salt–alkali stress reduced root length, surface 
area, and root volume in this study. Chachar et al.12 found similar results in cotton, with salt stress inhibiting the 
elongation of main roots and the occurrence of lateral roots.

Effects of salt and alkali stress on cotton physiological response.  The structure and function of 
cell membranes are important in plant adaptability to adversity. Plants respond to salt stress by up-regulating 
protective enzymes, such as SOD, POD, and CAT, to increase the ability to scavenge reactive oxygen species 
(ROS)31–34. Under normal physiological conditions in plants, the continuous production and consumption of 

Figure 6.   Principal component analysis (PCA) of tissue ionome variation in cotton under different types of 
salt–alkali stress (Control (CK), NaCl (CS), Na2SO4 (SS), and Na2CO3 + NaHCO3 (AS)), with the loadings of 
mineral elements to the PC1 and PC2. (a) Leaf ionome variation among samples and the loadings of elements to 
the PC1 and PC2; (b) Stem ionome variation among samples and the loadings of elements to the PC1 and PC2; 
(c) Root ionome variation among samples and the loadings of elements to the PC1 and PC2.
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ROS are maintained in dynamic equilibrium, whereas salt stress destroys that dynamic equilibrium, resulting 
in the peroxidation and deacylation of membrane lipids. With such damage to the membrane system and meta-
bolic processes, as well as to biological macromolecules such as proteins and nucleic acids, the result is cell 
death35,36. In this study, salt–alkali stress significantly increased the REC of leaves. In addition, the REC under 
alkali stress was significantly lower than that under salt stress, indicating that salt stress was more harmful to the 
permeability of leaf cell membranes. By contrast, the MDA content was significantly higher under alkali stress 
than under salt stress, with the lowest MDA content under Na2SO4 stress, indicating greater damage by ROS 
under alkali stress. Chen et al.37 also found that with increases in soil salinity and pH, both MDA content and 
REC increased significantly, especially at high soil salinity. Increasing the activity of antioxidant enzymes and the 
level of antioxidant metabolism is an important mechanism to improve the salt tolerance of plants. Moreover, 
SOD, POD, and CAT stabilize the ability to scavenge active oxygen-free radicals38. In this study, salt–alkali stress 
increased the activities of SOD, POD, and CAT in leaves. With a significant increase in SOD activity, the ability 
of leaves to scavenge oxygen-free radicals can increase, whereas with a significant increase in CAT activity, H2O2 

Figure 7.   Hierarchical cluster analysis of the leaf ionomes in cotton plants under different types of salt–alkali 
stress (Control (CK), NaCl (CS), Na2SO4 (SS), and Na2CO3 + NaHCO3 (AS)). The relative values are indicated by 
color intensity in the legend in the upper right.
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can be eliminated by directly decomposing H2O2 into water and oxygen39. Zhang et al.40 and Ibrahim et al.41 also 
reported that salinity stress increases the activities of SOD, POD, and CAT in cotton leaves.

To protect themselves under salt stress, plants can also biosynthesize soluble compounds, such as carbohy-
drates, proline, and betaine, to adjust cellular osmotic conditions, maintain membrane integrity and function42,43, 
and stabilize enzyme activities. In addition, the increase in soil pH under alkali stress can inhibit the uptake of 
mineral elements by crops, and therefore, some crops secrete organic acids to activate mineral elements around 
the roots and resist the alkali stress. Proline is one of the organic acids, and its content might be higher under 
alkali stress. In this study, the Pro content was higher under alkali stress than under salt stress, which suggested 
that Pro played a more important role in resisting alkali stress. Several studies also show that Pro content increases 
with increasing soil salinity39,44,45.

Effects of salt and alkali stresses on cotton tissue ionomes.  The absorption of nutrients by plants is 
inhibited by salt–alkali stress46,47, and the lack of a particular nutrient element changes the metabolism of plants 

Figure 8.   Hierarchical cluster analysis of the stem ionomes in cotton plants under different types of salt–alkali 
stress (Control (CK), NaCl (CS), Na2SO4 (SS), and Na2CO3 + NaHCO3 (AS)). The relative values are indicated by 
color intensity in the legend in the upper right.
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and affects the biosynthesis of metabolites. Salt stress is primarily caused by excess salt ions in soil, and rebuild-
ing ion homeostasis under salt–alkali stress remains an important salt-tolerance strategy in plant cells13,48. Chen 
et al.37 suggest that osmotic adjustment by accumulating and absorbing inorganic ions such as Na+, K+, and 
Ca2+ in cells is an important salt-tolerance mechanism in plants; however, this adjustment can easily destroy the 
ion balance in cells and cause ion poisoning. Whether such ion poisoning will cause changes in other ions has 
become a focus of research. Wu et al.16 report that salt stress inhibits the uptake of macro and trace elements 
by crops, which leads to nutrient deficiency and cell metabolic disorder. In our experiment, the changes in ion 
groups in cotton under the three different types of salt–alkali stress were examined, and a total of 17 related ions 
were screened. According to PCAs, the elements that most strongly contributed to the first principal component 
were Na, Ca, Mn, Fe, Mo, Al, and Co in the leaf ionome; Na, P, Ca, Cu, Zn, and Mo in the stem ionome; and Na, 
P, Mg, Mn, Mo, and B in the root ionome.

In this study, salt–alkali stress increased the Na concentration in roots, stems, and leaves, with the concentra-
tion higher in leaves than in stems and roots, indicating that cotton could not prevent the transport of Na from 
the roots to the leaves. Consistent with the results of this study, Yang et al.30 also show that salt stress (NaCl, 

Figure 9.   Hierarchical cluster analysis of the root ionomes in cotton plants under different types of salt–alkali 
stress (Control (CK), NaCl (CS), Na2SO4 (SS), and Na2CO3 + NaHCO3 (AS)). The relative values are indicated by 
color intensity in the legend in the upper right.
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Na2SO4) and alkali stress (NaHCO3, Na2CO3) increase the Na concentration in plants. In addition, we found that 
the increase in Na concentration was higher in leaves, stems, and roots under alkali stress than under salt stress. 
Wang et al.49 also observed that the Na+ content is greater under alkali stress than under salt stress. Because more 
Na accumulates in the shoots than in the roots, the shoots are more sensitive to salt stress50,51. Cotton responds 
to salt stress by maintaining the balance of K and Na ions in tissues, and maintaining a relatively high K/Na ratio 
in tissues is more important than simply maintaining a lower Na concentration52. In this study, salt–alkali stress 
significantly decreased the K/Na ratio in cotton. The K/Na ratio was higher under alkali stress than under salt 
stress. Potassium is an essential nutrient element for plants, and when the Na concentration is higher than the 
K concentration in the external environment, Na ions inhibit K uptake by plants through competitive action53. 
Sodium can replace K at binding sites and thus inhibit the normal metabolism of plants. In this study, the leaf 
K concentration decreased under NaCl stress and alkali stress, but Na2SO4 and alkali stress had no significant 
effect on K absorption. This result might be attributed to an inhibitory effect of high pH on K transport, which 
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Figure 10.   Leaf, stem, and root K/Na ratios of cotton plants under different types of salt–alkali stress: (a) NaCl 
(CS), (b) Na2SO4 (SS), and (c) Na2CO3 + NaHCO3 (AS). Columns with bars represent the mean ± standard error 
(n = 3). Asterisks indicate a significant difference between the control (CK) and the salt–alkali stress (**p < 0.01).

(a)

-1 -0.5 0 0.5 1

Na

Zn

Mo

Mn

Al

Fe

B

Co

Se

Ni

Si

S

P

K

Mg

Ca

Cu

Correlation coefficient

(b)

-1 -0.5 0 0.5 1

Na

Zn

Mo

Al

S

Fe

Co

Si

Mn

K

Ni

Cu

Se

Mg

P

B

Ca

Correlation coefficient

(c)

-1 -0.5 0 0.5 1

Na

Zn

Mo

Mn

Al

Fe

Co

Cu

Si

Ni

B

P

Se

K

S

Mg

Ca

Correlation coefficient

Figure 11.   Pearson’s coefficients of correlation between the element Na and other elements in cotton leaves 
under different types of salt–alkali stress. (a) NaCl; (b) Na2SO4; and (c) Na2CO3 + NaHCO3. Blue, negative 
correlation; red, positive correlation.
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relies on a transmembrane proton gradient49. Wang et al.11 also observed that salt stress significantly reduces the 
K concentration in cotton shoots and roots.

Salt–alkali stress inhibited P absorption in leaves, stems, and roots, which indicated that high-salt and high-
pH environments inhibit P absorption and transportation in cotton. The most likely explanations for these 
results are the following: (1) under salt stress, the high concentration of Na+ and Cl− in plants results in a sig-
nificant decrease in the concentrations of K+, Ca2+, and P in plant leaves and roots, which hinders normal cell 

(a)

-1 -0.5 0 0.5 1

Na

Mo

Zn

Mn

Al

Fe

Co

Se

Si

Ni

B

S

P

Mg

Ca

K

Cu

Correlation coefficient

(b)

-1 -0.5 0 0.5 1

Na

Fe

Al

Mn

Mo

Zn

S

Co

Si

B

K

Ni

Se

Ca

P

Mg

Cu

Correlation coefficient

(c)

-1 -0.5 0 0.5 1

Na

Co

Mn

Mo

Zn

Ni

B

Si

K

Se

Fe

S

Mg

Cu

Al

P

Ca

Correlation coefficient

Figure 12.   Pearson’s coefficients of correlation between the element Na and other elements in cotton stems 
under different types of salt–alkali stress. (a) NaCl; (b) Na2SO4; and (c) Na2CO3 + NaHCO3. Blue, negative 
correlation; red, positive correlation.
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Figure 13.   Pearson’s coefficients of correlation between the element Na and other elements in cotton roots 
under different types of salt–alkali stress. (a) NaCl; (b) Na2SO4; and (c) Na2CO3 + NaHCO3. Blue, negative 
correlation; red, positive correlation.
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Figure 14.   Relative expression (RQ) of the genes GhSOS1 and GhNHX1 in leaf and root of cotton under different types of salt–
alkali stress (NaCl (CS), Na2SO4 (SS), and Na2CO3 + NaHCO3 (AS)). Columns with bars represent the mean ± standard error 
(n = 3). Asterisks indicate a significant difference between the control (CK) and the salt–alkali stress (*p < 0.05; **p < 0.01), and 
ns indicates no significant difference. (a–c) indicate the GhSOS1 gene relative expression in cotton leaf under NaCl, Na2SO4, and 
Na2CO3 + NaHCO3 stress, respectively. (d–f) indicate the GhNHX1 gene relative expression in cotton leaf under NaCl, Na2SO4, and 
Na2CO3 + NaHCO3 stress, respectively. (g–i) indicate the GhSOS1 gene relative expression in cotton root under NaCl, Na2SO4, and 
Na2CO3 + NaHCO3 stress, respectively. (j–l) indicate the GhNHX1 gene relative expression in cotton root under NaCl, Na2SO4, and 
Na2CO3 + NaHCO3 stress, respectively.
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metabolism and material transportation54; and (2) under alkali stress, with high soil pH, Na+, Cl−, and CO3
2+ 

ions compete with available P and exchangeable calcium combines with P to form insoluble calcium phosphate 
salts, which result in a sharp decrease in the concentration of available P in the rhizosphere of crops55,56. Sulfur is 
a component of amino acids in enzymes and other proteins and is involved in the formation of chlorophyll and 
the metabolism of carbohydrates. In this study, under NaCl and alkali stresses, the concentration of S in leaves 
decreased, but under Na2SO4 stress, the concentration of S increased significantly in roots, stems, and leaves, 
most likely because of the addition of SO4

2−. In addition to K, Ca and Mg are also important in improving the 
salt tolerance of cotton57,58. Calcium and Na interact antagonistically, and excessive Na intake leads to a relative 
deficiency of Ca in cotton. The findings in this study are similar to those of Zhang et al.59 who reported that salt 
stress significantly decreases the Ca concentration in plants. However, Severino et al.60 showed that Ca and Mg 
do not reduce Na toxicity at the seedling stage of cotton. In this study, salt–alkali stress significantly increased 
the Mg concentration in roots but significantly decreased the concentration in leaves, indicating that salt–alkali 
stress inhibited the transport of Mg. The significant decrease in the Mg concentration in leaves might be due to 
lower chlorophyll concentration in the leaves after salt stress59.

The essential micronutrient elements in plants are Fe, Mn, Cu, Zn, B, and Mo, which are components of 
enzymes or coenzymes in plants, with strong specificity. Competition and interaction between soluble salts and 
mineral nutrients can lead to nutritional disequilibrium and deficiency61. Iron is an essential component in chlo-
rophyll biosynthesis and respiration and is associated with enzymes. In this study, salt–alkali stress significantly 
increased the Fe concentration in leaves. The increase might be because cotton responded to salt–alkali stress 
by biosynthesizing chlorophyll in order to increase photosynthesis and maintain growth. Manganese has a cata-
lytic role in chlorophyll biosynthesis, which is closely related to photosynthesis and respiration in plants. In our 
study, salt–alkali stress increased the Mn concentration in cotton plants. However, Karimi et al.62 reported that 
excessive accumulation of Na reduces the absorption of Mn. Copper is a component of some proteins in plants 
and participates in photosynthesis, in addition to increasing the stability of chloroplasts. In this study, both salt 
and alkali stress increased the Cu concentration in roots. However, salt stress decreased the Cu concentration in 
leaves, whereas alkali stress increased the Cu concentration in the leaves. Zinc is involved in the biosynthesis of 
auxins, and with a lack of Zn, crop growth and development are inhibited. To maintain their growth in a stressed 
environment, plants can promote the absorption of Zn. In this study, neutral salt stress significantly increased 
the Zn concentration in root, stem, and leaf, whereas alkali stress significantly increased the Zn concentration in 
stem and leaf. These results showed that salt stress promoted the absorption and transport of Zn, whereas alkali 
stress only promoted the transport of Zn to the shoots. Boron promotes carbohydrate transport and metabolism. 
In this study, Na2SO4 stress and alkali stress increased the B concentration in roots but decreased the concentra-
tion in leaves. However, NaCl stress showed the opposite effect. Molybdenum is the main component of nitrate 
reductase, which directly affects nitrogen metabolism. In this study, the Mo concentration in leaves, stems, and 
roots of cotton increased significantly under the different types of salt–alkali stress and was also significantly 
positively correlated with the Na concentration. Tang et al.63 found that the application of Mo can increase the 
salt tolerance of cotton, with the effectiveness of Mo increasing as the soil pH increased. Therefore, Mo can affect 
the salt and alkali resistance of cotton. We also found that alkali stress significantly increased the concentration 
of Ni in cotton roots, stems, and leaves, indicating that alkali stress promoted the absorption and transport of Ni, 
suggesting it may play an important role in cotton resistance to alkali stress. Silicon, Co, Se, and Al are beneficial 
elements, and changes in their concentrations are caused by changes in other ions, which are companion ions 
and are not associated with salt and alkali resistance in plants.

On the basis of the comparative analysis of the three ionomes in cotton under salt–alkali stress, the inhibi-
tion of ion absorption was greater under alkali stress than under salt stress, because the concentrations of more 
elements were reduced in roots, stems, and leaves under alkali stress than under neutral salt stress. Therefore, 
under neutral salt stress, the absorption of only individual ions decreased, and as a result, neutral salt stress 
mainly disrupted the ion balance. However, alkali stress also inhibited the absorption of mineral elements, in 
addition to disrupting the ion balance.

Effects of salt and alkali stresses on expression of GhSOS1 and GhNHX1.  The key ion that affects 
the ion homeostasis of cotton under saline–alkali stress is Na+. Therefore, it is critical to study the molecular 
mechanisms involving Na+ to better understand the changes in ion homeostasis. GhSOS1 and GhNHX1 are two 
key salt-tolerance genes of cotton. GhSOS1 mainly regulates the plasma membrane Na+/H+antiporter, which can 
exclude excess Na+ from the cytoplasm19,64. In our study, the relative expression of GhSOS1 increased signifi-
cantly in cotton leaves and roots under neutral salt (NaCl and Na2SO4) stress, but under alkali stress, the relative 
expression decreased significantly, indicating that high pH could inhibit GhSOS1 expression in leaf cells. This 
result might explain the different ion changes in cotton and was also consistent with the results for Na in the cot-
ton ionome under alkali stress. GhNHX1 is a vacuolar membrane-bound Na+/H+ antiporter, which can transport 
Na+ from the cytoplasm into vacuoles and reduce the toxicity of excess Na+ in the cytoplasm, thereby regulating 
ion homeostasis in cotton20,65. In our study, salt stress significantly increased the relative expression of GhNHX1 
in roots and leaves. The up-regulation of GhNHX1 under salt stress could help cotton to isolate excess Na+ and 
regulate ion homeostasis. In addition, alkali stress reduced the relative expression of GhNHX1 somewhat in this 
study, but the effect was not significant. It may be that when the degree of alkali stress reaches a critical level in 
cotton growth, the salt tolerance mechanisms are destroyed, including a decline in GhNHX1 expression. In pre-
vious studies, the overexpression of SOS166 or NHX167 in transgenic plants increases salt tolerance.



16

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21844  | https://doi.org/10.1038/s41598-020-79045-z

www.nature.com/scientificreports/

Conclusions
Salt–alkali stress inhibited cotton growth and reduced root length, surface area, and volume, and the K/Na ratio 
of cotton, but increased REC, MDA, PRO content and antioxidant enzyme activities. Alkali stress inhibited 
ion absorption more than salt stress. Although neutral salt stress mainly disrupted the ion balance, alkali stress 
also inhibited the absorption of mineral elements, in addition to disrupting the ion balance. Cotton can adapt 
to salt–alkali stress through the formation of new ionic homeostasis. However, strategies differ in cotton under 
salt–alkali stress. Under NaCl stress, the absorption of Ca in cotton is inhibited, the transport capacity of P, Mg, 
and Cu is reduced, and the ion balance is maintained by promoting the absorption and transport of Zn, Mn, Al, 
and Mo; Under Na2SO4 stress, the absorption of P and Ca in cotton is inhibited, the transport capacity of Mg, 
B, and Cu is reduced, and the ion balance is maintained by promoting the uptake and transport of S, Zn, Fe, 
Mo, Al, and Co; Under Na2CO3 + NaHCO3 stress, the absorption of P and S in cotton is inhibited, the transport 
capacity of Mg and B is reduced, and the ion balance is maintained by promoting the absorption and transport 
of Mn, Mo, Ni, and Co. In addition, the relative expression of GhSOS1 and GhNHX1 in leaves decreased under 
Na2CO3 + NaHCO3 stress but increased significantly under NaCl and Na2SO4 stress. The changes in the expres-
sion of GhSOS1 and GhNHX1 might partially explain the accumulation of Na ions under different types of 
salt–alkali stress in cotton.

Materials and methods
Materials.  The experiment was conducted in a greenhouse at the experimental station (N 44°18′, E 86°02′) 
of the College of Agriculture, Shihezi University, China, in 2019. The soil used in the experiment was collected 
from the 0 to 30-cm depth at the experimental station. The soil type was grey desert soil with a loam texture, and 
the basic soil properties were as follow: soil salinity, 0.35 dS m−1; pH, 7.86; total nitrogen, 0.58 g kg−1; organic 
matter, 9.45 g kg−1; available phosphorus, 6.71 mg kg−1; available potassium, 142 mg kg−1. The cotton cultivar 
was Lu-mian-yan No. 24.

Experimental design.  Three common types of soil salinization were tested in the experiment, including 
chloride (NaCl, CS), sulfate (Na2SO4, SS), and carbonate (Na2CO3 + NaHCO3, AS). Non-salt-alkali stress was 
set as the control. There were three replicates of each treatment. The specific experimental treatments, i.e., soil 
salinization types, and their salinization degree are shown in Table 1.

Before initiating the experiment, the field-collected soil was naturally dried, crushed, and passed through a 
2-mm sieve. Then, the solutions of NaCl, Na2SO4, or Na2CO3 + NaHCO3 (weight ratio 1:1) at different concentra-
tions were added to the soil to produce a supersaturated state (the same volume of deionized water was added to 
the control soil) for 1 month to achieve the equilibrium of the soil. Thus, three different types of salt soils were 
formed. Then, the three types of saline soil were naturally dried, crushed, and passed through a 2-mm sieve. 
Soil columns that were 20 cm in diameter and 60 cm in height were prepared. The soil was layered to the 50-cm 
depth at the soil bulk density of 1.25 g cm−3, with 10 cm per layer and 20 kg per soil column. The columns were 
drip-irrigated, and the emitters (columns) were 0.4 m apart with a discharge rate (pressure compensated) of 
2.1 L h−1. The drip irrigation pipe was laid flat on the surface of the soil columns, with each soil column supplied 
by one emitter fixed at the center of the top of the column.

Cotton was sowed on 28 April 2019, and 10 seeds were sown per soil column. To ensure cotton emergence, 
each soil column was irrigated with 3 L of water after sowing. When the cotton seedlings reached the “2 leaves 
and 1 heart” stage, two cotton seedlings with uniform growth were retained in each soil column. To ensure an 
adequate water supply, water was replenished by drip irrigation at regular intervals during the experiment to 
maintain the soil moisture content at 60% to 80% of field capacity. The experiment ended 60 days after sowing.

Sample collection and treatment.  Growth.  To determine the dry matter of cotton, three representa-
tive cotton plants were selected in each treatment. The roots, stems, and leaves were separated in the laboratory, 
and the fresh material was heat-treated at 105 °C for 30 min. Then, the materials were oven-dried at 70 °C for 
48 h, weighed, ground to pass through a 1-mm sieve, and stored at room temperature.

Root morphology.  To collect the roots, a soil column (soil + root system) was put in a nylon net, and the soil was 
washed away in running water. The intact root system was removed and stored in a ziplock bag in an ultra-low 
temperature refrigerator. Roots were scanned with a flatbed image scanner (Epson Expression 1600 scanner). 
To determine root length, surface area, and volume, the images were analyzed using WinRhizo software (V5.0, 
Regent Instruments, Quebec, Canada).

Table 1.   Type and degree of saline and alkaline stress in the soils of different treatments.

Treatment Salinity and alkalinity EC1:5 (dS m−1) pH (1:2.5)

Control (CK) No salinization or alkalization 0.35 8.16

NaCl (CS) Moderate salinization 1.39 8.43

Na2SO4 (SS) Moderate salinization 2.01 8.19

Na2CO3 + NaHCO3 (AS) Moderate alkalization 0.63 9.92
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Relative electrical conductivity, malondialdehyde, and antioxidant enzyme activity.  Sixty 
days after cotton seedling emergence, all functional leaves on the main stem (the third leaves on the main stem 
were completely unfolded) were collected in each treatment and then transported to the laboratory in an ice-
box. The dust and dirt on leaf surfaces were removed; the moisture on the surface was wiped with an absorbent 
paper; and the main vein was removed. The relative electrical conductivity (REC) of leaves was measured by the 
conductance method. The malondialdehyde (MDA) content in leaves was measured according to Wu et al.68, 
and the proline (Pro) content was measured according to Bates et al.69. The SOD activity was measured accord-
ing to Zhang et al.70, the POD activity according to Tan et al.71, and the CAT activity according to Cakmak and 
Marschner72.

Ionomes.  The plant ionomic analysis included the following steps. The leaves, stems, and roots were crushed 
and passed through sieves. Then, 10 mL of concentrated nitric acid was added to 100 mg of each sample, which 
was followed by digestion in a microwave digestion instrument (Milestone, ETHOSA). After microwave diges-
tion, the samples were placed on an electric heating plate at 230 °C for approximately 20 min to drive off the acid. 
After the digestion tank was removed, the solution was transferred to a 25-mL colorimetric tube with ultrapure 
water. The microwave digestion tank and the lid were rinsed 3 to 5 times to remove all materials. A buffer solu-
tion was transferred to the colorimetric tube, diluted to volume, and then shaken evenly. The ion concentrations 
(Na, P, K, Ca, Mg, S, Fe, B, Mn, Zn, Cu, Mo, Ni, Si, Co, Al, and Se) in leaves, stems, and roots were measured 
using inductively coupled plasma mass spectrometry (Agilent 7700X ICP-MS, USA).

Gene expression.  The expression of GhSOS1 and GhNHX1 was assessed using reverse-transcription quan-
titative PCR (qRT-PCR).The primers used in the RT-qPCR analysis are listed in Table 2. The qRT-PCR method 
is given by Peng et al.73. The qRT-PCR was performed on an ABI PRISM 7300 Sequence Detection System using 
0.1 μL of cDNA, 5 μL of SYBR Premix Ex Taq II (Takara, Dalian, China), 0.4 μL of each primer (forward and 
reverse, 10 μmol/L), and H2O added to a final reaction volume of 10 μL. The qPCR conditions were as follows: 
preincubation at 95 °C for 5 min, followed by 40 cycles at 95 °C for 15 s and 60 °C for 1 min. The UBQ7 was cho-
sen as the housekeeping gene for standardizing the qRT-PCR experiments. The relative expression level of each 
gene was determined relative to UBQ7 as a housekeeping gene and was calculated using the 2−ΔΔCT method74.

Data analysis.  The data were analyzed using SPSS 21.0 software (SPSS Inc., Chicago, IL, USA). Values are 
presented as the mean (n = 3) ± standard error (SE). Duncan’s multiple range tests were conducted to deter-
mine whether there were significant differences between individual treatments at p < 0.05. Pearson’s correla-
tion analyses were performed between the concentrations of Na and those of other minerals in the different 
tissues (p < 0.05). The R package software (Version 4.0.3) was used for principal component analysis (PCA) of 
the ionome. For hierarchical cluster analysis of the ionomes in cotton plants, the online software was used at 
MetaboAnalyst website (http://www.metab​oanal​yst.ca/).

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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