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A B S T R A C T   

The human brain encodes information in neural activation patterns. While standard approaches to analyzing 
neural data focus on brain (de-)activation (e.g., regarding the location, timing, or magnitude of neural re
sponses), multivariate neural pattern similarity analyses target the informational content represented by neural 
activity. In adults, a number of representational properties have been identified that are linked to cognitive 
performance, in particular the stability, distinctiveness, and specificity of neural patterns. However, although 
growing cognitive abilities across childhood suggest advancements in representational quality, developmental 
studies still rarely utilize information-based pattern similarity approaches, especially in electroencephalography 
(EEG) research. Here, we provide a comprehensive methodological introduction and step-by-step tutorial for 
pattern similarity analysis of spectral (frequency-resolved) EEG data including a publicly available pipeline and 
sample dataset with data from children and adults. We discuss computation of single-subject pattern similarities 
and their statistical comparison at the within-person to the between-group level as well as the illustration and 
interpretation of the results. This tutorial targets both novice and more experienced EEG researchers and aims to 
facilitate the usage of spectral pattern similarity analyses, making these methodologies more readily accessible 
for (developmental) cognitive neuroscientists.   

1. Introduction 

A key notion in cognitive neuroscience is the concept of neural 
representation (Kriegeskorte and Kievit, 2013). It assumes that infor
mation is represented in neural activity. Incoming sensory information, 
for example, initiates a neural activation cascade, thus translating the 
percept into a neural code that corresponds to the perceived information 
(Tulving, 2007). Hence, neural representation is a concept that links the 
physical world to the way it is mentally experienced (cf. Bain, 1874; 
Churchland, 1986; Koch, 2004), indicated by a systematic relationship 
between features of the world and observed neural activity (Poldrack, 
2020). The specificity with which experiences are encoded into neural 
representations is thought to be directly related to cognition, in partic
ular how accurately and precisely aspects of the experience can later be 
remembered (Rissman and Wagner, 2012). Specifically, the stability of 
neural representations across time as well as their distinctiveness from 
other representations are considered to be crucial for memory success (e. 

g., Kobelt et al., 2021; Kuhl et al., 2012; Lu et al., 2015; Xue, 2018). 
Understanding how information is represented in the brain and how the 
quality of neural representations influences cognition are major goals in 
cognitive neuroscience (for related reviews, see Rissman and Wagner, 
2012; Xue, 2018). Cognitive abilities improve across childhood and 
adolescence (e.g., Keresztes et al., 2018; Schneider, 2015; Shing et al., 
2010; Weigelt et al., 2014), suggesting an enhancement of neural 
functioning that enables the formation of increasingly high-quality 
neural representations. However, developmental studies to date have 
only rarely looked at cognition through the lens of neural representa
tions (cf. Cohen et al., 2019; Fandakova et al., 2019). In the following, 
we present current approaches on how to study neural representations 
and delineate their role in cognition, taking the example of episodic 
memory performance. We present arguments in favor of a representa
tional perspective in developmental cognitive neuroscience and provide 
a step-by-step tutorial that will detail all necessary steps to conduct 
multivariate neural pattern similarity analyses on 
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time–frequency-resolved EEG data. 
In practice, neural representations are measured as patterns of neural 

activity, for example, during stimulus perception or imagination. It 
should be noted that there are ongoing debates on whether these neural 
activity patterns permit being interpreted as neural representations in 
the philosophical sense (cf. Baker et al., 2021). Nevertheless, 
content-specific neural activation patterns can be identified with various 
neuroimaging methods (cf. Ishai et al., 2000; Kuhl et al., 2012; 
Michelmann et al., 2018; Xue, 2018), which neuroscientists use to 
investigate neural representations and the factors influencing whether 
and how well information is successfully encoded into neural activity. 
Patterns of neural activity can be compared across conditions using 
representational similarity analysis (RSA; Edelman, 1998; Kriegeskorte 
et al., 2008; Kriegeskorte and Kievit, 2013). RSA quantifies the distance 
between neural representations in multidimensional space by, for 
example, determining correlations of the underlying activity patterns 
(Kriegeskorte et al., 2008; see Fig. 2). For instance, by correlating the 
neural activity patterns evoked by repetitions of a given stimulus, one 
can assess the stability, i.e., the self-similarity, of the stimulus repre
sentation over time (e.g., Kobelt et al., 2021; Xue et al., 2010). Corre
lations between the activity patterns in response to different stimuli can 
be taken as a measure of the similarity (or its inverse, distinctiveness) 
across neural representations (e.g., Davis et al., 2014; Sommer et al., 
2019). For example, representations of similar content, such as different 
face stimuli, are more similar to each other, i.e., show a higher corre
lation, than those of relatively distinct content, such as faces and houses 
(cf. Kriegeskorte et al., 2008). Overall, RSA is a versatile tool to study 
neural representational properties that shape cognition. 

Multivariate pattern analysis approaches such as RSA are more 
commonly adopted in the analysis of functional magnetic resonance 
imaging (fMRI) data. But pattern analysis approaches have gained 
additional traction in recent years for time-resolved brain recordings 
like magneto- and electroencephalography (M/EEG) as well (Carlson 
et al., 2019; Fahrenfort et al., 2018; Jafarpour et al., 2013). In addition 
to representing information in the two dimensions space and activation 
magnitude, neural activity is continuous, recurrent, and highly dynamic. 
Thus, time is also an important aspect for neural information coding, 
allowing multiple neural networks to coexist in the same space (Cohen, 
2011). Using multivariate methods in M/EEG data has revealed critical 
insights concerning, for example, object perception (e.g., Contini et al., 
2017; Teng et al., 2017), decision-making (e.g., Bode et al., 2012), and 
memory (e.g., Kerrén et al., 2018; Lu et al., 2015). Furthermore, the high 
temporal resolution of such data enables examination of the similarity of 
neural patterns at different time points within stimulus presentation 
trials, allowing one to identify when, and for how long, specific infor
mation is represented in the brain (King and Dehaene, 2014). To sum up, 
tools for analyzing the similarity of multivariate neural activity patterns 
measured with M/EEG offer great potential for studying the properties 
and temporal dynamics of neural representations. 

The excitability of neural populations fluctuates rhythmically, 
resulting in oscillatory electrophysiological activity (Buzsáki and Dra
guhn, 2004; Singer, 1999; Tiesinga et al., 2008; Wang, 2010). Such 
rhythmic neural activity is thought to enable communication and inte
gration within and across brain networks (Fries, 2015; Varela et al., 
2001). Oscillatory activity is considered to be crucial for virtually every 
domain of cognition including long-term memory, which we use as 
example domain for the current tutorial (cf. Düzel et al., 2010; Fell and 
Axmacher, 2011; Hanslmayr and Staudigl, 2014; Sander et al., 2020). 
Research over the past two decades or so has identified rhythmic neural 
activity in various frequency bands as being critical for successful 
memory operations: It has been suggested that the hippocampus rapidly 
binds information through synchronized theta (~ 7 Hz) and gamma (>
30 Hz) oscillations (Lisman and Jensen, 2013; Rutishauser et al., 2010; 
Staudigl and Hanslmayr, 2013), whereas neocortical systems form 
long-term representations mediated by desynchronization of alpha (~ 
10 Hz) and beta (~ 15 Hz) rhythms (Griffiths et al., 2019; Hanslmayr 

et al., 2012; Staudigl et al., 2015). Overall, theoretical considerations 
and empirical evidence (Axmacher et al., 2010; Lisman and Jensen, 
2013) as well as simulations (Akam and Kullmann, 2010; Parish et al., 
2021) indicate that neural activity on various time scales, i.e., across 
different frequencies, is coordinated in order to represent diverse con
tents (e.g., Whittingstall and Logothetis, 2009). 

Although RSA is increasingly applied to EEG data, the majority of 
studies to date use it to compare spatiotemporal activity patterns (e.g., 
from event-related potentials), that is, the activation amplitudes across 
stimulus presentation time and electrodes (e.g., Chan et al., 2011; Fell
ner et al., 2020; Lu et al., 2015; Schaefer et al., 2011). In view of the 
recognized significance of rhythmic neural activity across a wide range 
of frequencies for cognitive processes, we extend previous approaches to 
pattern similarity in EEG here by implementing a pipeline that computes 
the similarity of time–frequency representations (TFRs) in children and 
adults (Sommer et al., 2019; for other approaches of RSA on spectral 
(intracranial) EEG patterns, see Michelmann et al., 2018; Staresina et al., 
2016). 

Many cognitive abilities including episodic memory advance across 
childhood and adolescence (Graf and Ohta, 2002; Li et al., 2004; Ngo 
et al., 2018) as relevant brain regions and functions mature (Casey et al., 
2000; Keresztes et al., 2017; Ofen, 2012; Ofen et al., 2007; Tang et al., 
2018). The observation that performance in many tasks improves across 
childhood, particularly with regard to the formation and retention of 
memories, indicates an increasing quality of the underlying neural 
representations (Bauer, 2015). For example, the ability to bind different 
features of an event into a unique memory representation and the ca
pacity to keep similar memories separate are crucial competences that 
develop during childhood (Lee et al., 2016; Ngo et al., 2018). While 
age-related differences in representational properties are a relatively 
longstanding topic in neurocognitive aging research – in particular the 
hypothesis and evidence regarding neural dedifferentiation (Carp et al., 
2011; Kobelt et al., 2021; Koen and Rugg, 2019; Li et al., 2001, 2000; 
Park et al., 2004, 2010) – childhood development has only recently been 
investigated from a representational perspective, and mainly with fMRI 
so far (cf. Cohen et al., 2019; Fandakova et al., 2019; O’Hearn et al., 
2020). Accordingly, RSA is not yet a commonly utilized approach in 
developmental cognitive neuroscience, especially not for M/EEG 
studies. In adults, evidence is accumulating that neural distinctiveness 
and neural stability facilitate cognitive performance and change in the 
course of aging (Kobelt et al., 2021; Koen et al., 2020, 2019; Lu et al., 
2015; Sommer et al., 2019; Xue, 2018), suggesting that representational 
properties may also play an important role in understanding cognitive 
development during childhood. RSA offers an excellent tool to study 
neural representations, and furthermore, EEG is a widely applicable 
tool, even for infants, thus offering the great potential to explore new 
research avenues and advance the understanding of neurocognitive 
development. The tutorial we provide here along with the accompa
nying data and code makes multivariate EEG pattern similarity analyses 
readily accessible for a broad audience of (developmental) researchers, 
nurturing the wider adoption of such approaches in developmental 
cognitive neuroscience. 

In the following, we provide a comprehensive tutorial guiding 
through the steps of time-resolved spectral pattern similarity analysis 
(cf. Sommer et al., 2019) to compute (and plot) the stability and 
distinctiveness of neural representations derived from TFRs, their sta
tistical comparison using cluster-based permutation analysis imple
mented with FieldTrip (Maris and Oostenveld, 2007; Oostenveld et al., 
2011), and the association with (memory) performance. The MATLAB 
code is publicly accessible and executable with the accompanying 
sample EEG dataset from ten children and ten young adults who 
participated in a memory study (Sommer et al., 2021; Fig. 1). 
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2. Representational similarity analysis on spectral EEG data 

2.1. Tutorial overview 

This tutorial provides comprehensive step-by-step instructions that 
detail all necessary computations to conduct multivariate neural pattern 
similarity analyses on time–frequency-resolved EEG data (as recently 
applied in Sommer et al., 2019, see Fig. 2 below for a schematic illus
tration). Furthermore, we demonstrate how cluster-based permutation 
statistics (Maris and Oostenveld, 2007) can be used to ascertain differ
ences in neural patterns across representational levels and age groups. 

As exemplary data analysis pipelines, we demonstrate how to assess 
neural stability of representations (within-item pattern similarity) 

across stimulus repetitions and neural distinctiveness in response to 
different stimuli (between-item pattern similarity). Furthermore, we 
contrast within-item similarity and between-item similarity to examine 
whether the neural representations are item-specific (cf. Kobelt et al., 
2021; Xue et al., 2010; Zheng et al., 2018). 

The tutorial is accompanied by a sample dataset comprising EEG 
data from children and adults (Sommer et al., 2021) as well as 
custom-written MATLAB code interfacing with the open-source Field
Trip toolbox (Oostenveld et al., 2011). The tutorial has been tested on 
MATLAB R2016b, R2019b, R2020b and FieldTrip-20180709 and 
FieldTrip-20210507 (not provided but available at https://www.fieldt 
riptoolbox.org/download/) and does not require high-performance 
computing power. In addition to the input data (single-subject TFRs), 

Fig. 1. Overview of the encoding phase of the memory task 
paradigm (Sommer et al., 2021) and representational 
similarity levels. In the encoding task, objects were 
sequentially presented, and participants were asked to 
press a button whenever the fixation cross changed color. 
The sample dataset contains trials of two repetitions of two 
exemplars from each object category. Within-item simi
larity is the similarity of the neural patterns elicited by 
seeing identical objects. Within-category similarity is the 
similarity of the neural patterns evoked by different ex
emplars from the same object category. Between-category 
similarity is the mean pairwise similarity of the neural 
patterns evoked by all of the different object categories. 
Both within-category and between-category similarity are 
also called between-item similarity.   

Fig. 2. Illustration of spectral EEG pattern similarity analysis. A. Representational similarity is operationalized as pairwise correlations of the frequency patterns at 
each trial time point, separately for each electrode and subject. B. The resulting time–time similarity matrices contain the individual similarity at all trial time point 
combinations and can be averaged across trials, electrodes, and/or participants, and compared between conditions or groups, for instance. To assess differences in 
similarity patterns across conditions or groups, non-parametric cluster-based permutation statistics can be applied. 
Figure adapted from Sommer et al. (2019). 
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we also provide all intermediate outputs such that all analysis steps can 
be executed independently of each other. The data and code are publicly 
available under https://osf.io/jbrsa/. 

2.2. Sample dataset 

The sample dataset includes EEG data from ten 7–9-year-old children 
(6 female, 4 male) and ten 18–30-year-old adults (5 female, 5 male) 
during the encoding phase of an episodic memory study (Fig. 1; for a 
detailed description of the task and data preprocessing, see Sommer 
et al., 2021). The data made available stem from a subsample of the 
original participants and selected conditions of the original experiment 
that allow the interested reader to run this tutorial. In particular, the task 
length differed between children and adults in the original study. Here, 
we included an identical number of trials for all age groups (except for 
subject-specific differences in the number of excluded trials during 
preprocessing). Furthermore, for both children and adults, we excluded 
trials that are irrelevant for the current tutorial pipeline (e.g., additional 
stimulus repetitions). Included trials stem from the encoding part of the 
paradigm in which participants viewed images of objects from 40 
different categories (e.g., lollipops, hats). Categories are represented by 
two different exemplars and all exemplars are presented twice. Stimuli 
were presented successively at the center of a computer screen on a 
white background. A central fixation cross was superimposed on the 
objects and remained on the screen throughout the task. The stimulus 
presentation lasted 1500 ms with an inter-stimulus-interval jittered 
between 1500 and 2000 ms. The stimulus order was pseudorandomized 
such that 3–10 stimuli (from other categories) appeared between repe
titions of the same item and at least 5 items were presented in-between 
different exemplars from the same category. Participants were instruc
ted to attend to the objects but to fixate on the cross in order to minimize 
eye movements. To ensure that participants attended to each trial, they 
performed a target detection task in which they were asked to press a 
button whenever the fixation cross changed its color from black to 
magenta. Trials with targets were excluded from all analyses and are 
also not included here. 

EEG data provided here are preprocessed, artifact-free single-subject 
single-trial TFRs that were obtained via a multitaper approach (for de
tails, see below). Therefore, the number of trials included in the indi
vidual TFRs varies across participants based on the number of excluded 
trials due to artifacts in the EEG data. The TFRs are the basis for all 
representational similarity analyses described in this tutorial. Further
more, for the sample dataset, all intermediate outputs for within-item 
and within-category similarity (but not between-category similarity) 
are provided as well. For a detailed description of the enclosed files in 
the dataset, see the Wiki on the Open Science Framework (OSF) re
pository (https://osf.io/jbrsa/wiki/). 

2.3. Setup for running the RSA tutorial 

To run the analyses on the sample dataset, download the code re
pository and data to your computer (https://osf.io/jbrsa/). In addition, 
download the FieldTrip toolbox (https://www.fieldtriptoolbox.org/do 
wnload/). All steps of the analyses are implemented in separate 
(wrapper) functions. Each function receives a config struct as input that 
sets all adjustable specifications for the respective analysis. All imple
mented steps are listed in Table 1. 

In principle, the analysis steps need to be executed one after the other 
because the previous step’s output is usually required as the next step’s 
input. However, for the sample dataset, all intermediate outputs are 
provided as well, so that each step can be run individually (for within- 
item and within-category similarity). To run the functions in the 
intended order, we suggest using the script config_and_run_rsa.m. Here, 
you can adjust the config input that is required for all analysis steps and 
run them one by one, without adjusting the individual functions. Spe
cifically, you need to configure your path settings under config.pdat (in 

code section "Path configurations"), specifying where to find the data, 
the FieldTrip toolbox, where to save the results etc. Furthermore, the 
RSA itself requires configuration (in code section "RSA configurations") 
namely which data should be analyzed (age group and individual sub
ject IDs) and which representational level (type, see below). By default, 
the results are saved into the specified folder(s), but you may also run 
any of the steps without saving the output by setting config.save to false 
(0). No specific folder structure is required for the input and output data. 

Table 1 
All analysis steps included in the tutorial along with the respective functions to 
run them, the required settings for the config input, the required data, and the 
output that is returned and/or saved. You need the individual TFRs to start; all 
other required data can be produced by previous steps. For the sample dataset, 
all intermediate data are also provided so you can also start with any later step. 
For details on each function, see code documentation.  

Analysis step + function Required 
settings in 
config 

Required data 
(input) 

Saved data 
(output) 

Step 1: Run RSA for each subject 
step1_rsa_get_sim_matrices  

– subjects  
– type  
– pdat.tfr  
– pdat.rsa 

individual 
time–frequency 
EEG data (TFRs) 

individual 
similarity 
matrices 

Step 2: Compute similarity grand 
average step2_rsa_group_ga  

– subjects  
– group  
– type  
– pdat.rsa  
– pdat.ga 

individual 
similarity 
matrices 

grand average 
similarity 
matrices 

Step 3: Plot average similarity 
matrix step3_plot_sim_matrices  

– group  
– typea  

– pdat.ga  
– pdat.fig 

grand average 
similarity 
matrices 

group average 
time–time 
similarity plot, 
diagonal 

Step 4: Test for item specificity 
(within-item versus between- 
item similarity) 
step4a_sim_comparison_1st_level  

– subjects  
– group  
– pdat.tfr  
– pdat.rsa  
– pdat. 

stat  
– pdat.ga 

individual 
similarity 
matrices 

first-level 
statistics 

step4b_sim_comparison_2nd_level  – first-level 
statistics  

– electrode 
layout 

second-level 
statistics 

step4c_sim_comparison_3rd_level for both age 
groups:    

– first-level 
statistics  

– second-level 
statistics  

– individual 
similarity 
matrices  

– third-level 
statistics  

– individual 
mean 
similarities 

Step 5: Plot clusters 
step5_plot_clusters  

– group  
– pdat.ga  
– pdat. 

stat  
– pdat.fig  
– pdat.tfr  

– grand average 
similarity 
matrices  

– first-level 
statistics  

– second-level 
statistics  

– electrode 
layout 

plots showing 
cluster 
dimensions 

Step 6: Plot similarity comparison 
step6_plot_sim_comparison  

– pdat.ga  
– pdat.fig 

for both age 
groups:    

– individual 
mean 
similarities 

plots 
comparing 
similarities 
and age groups 

Step 7: Correlate with memory 
performance 
step7_correlation_with_behavior  

– pdat.ga  
– pdat. 

beh  
– pdat.fig  

– individual 
mean 
similarities  

– individual 
mean item 
memory  

– correlation 
results  

– scatter plot  

a If this is not specified, both within-item and within-category similarity will 
be plotted. 
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2.4. A note on the input: time–frequency representations of EEG data 

In the sample dataset, the TFRs comprise a large range of fre
quencies, namely from 2 to 125 Hz. However, the input data are not 
restricted to a specific frequency range or resolution but can be varied 
according to research questions and hypotheses. There are several 
methods to achieve frequency decomposition that are not part of the 
current tutorial (for details, see Abbate et al., 2002; Cohen, 2003; 
Debnath, 2003). The enclosed single-subject TFRs of the sample dataset 
were derived using a multitaper approach. For low frequencies 
(2–20 Hz), Hanning tapers were used with a fixed width of 500 ms, 
resulting in frequency steps of 2 Hz. For higher frequencies 
(25–125 Hz), discrete prolate spheroidal sequences (DPSS) tapers were 
used with a width of 400 ms in steps of 5 Hz with seven Slepian tapers, 
resulting in ± 10 Hz smoothing. We used trial lengths of –0.6 to 2 s 
relative to stimulus onset. In this way, we obtained TFRs for each trial 
and electrode, resulting in 4-dimensional power spectra for each 
participant (trial × electrode × frequency × time). 

The data are provided in accordance with the FieldTrip data struc
ture as required for use of the tutorial pipeline (see https://www.fi 
eldtriptoolbox.org/development/datastructure/). 

2.5. Computing estimates of representational similarity 

RSA can be used to investigate neural representations at different 
levels (see Fig. 1). The similarity of the neural activation patterns eli
cited by the same stimulus input (within-item similarity; also called self- 
similarity) is an indicator of the stability of the neural representation 
across repetitions. And the similarity or dissimilarity of activation pat
terns elicited by different stimulus inputs (between-item similarity) is an 
indicator of how distinctively these stimuli are represented. Such 
between-item representational similarity can be assessed between items 
from the same broader stimulus category (within-category similarity) 
and between items from different stimulus categories (between-category 
similarity). 

To measure within-item representational similarity, the respective 
stimulus items have to be presented at least twice while brain activity is 
recorded. A common approach is to assess the neural pattern similarity 
between these first and second stimulus presentations (e.g., Kobelt et al., 
2021). Another possibility is to present the stimuli more than twice and 
measure within-item similarity as the mean similarity across all repeti
tions (e.g., Lu et al., 2015). With regard to between-item similarity, one 
may be interested in the similarity of two or more stimuli, such as all 
stimuli that were presented during the experiment (also called global 
similarity) which may belong to one or different categories (Davis et al., 
2014; Kobelt et al., 2021; Sommer et al., 2019). 

Note that category membership is to some degree variable and often 
differs between studies. In the current dataset, exemplars from the same 
object category (e.g., different hats) are defined as belonging to one 
category, and different objects (e.g., hats, trees) are defined as different 
categories (Sommer et al., 2021). Other studies may select more specific 
(e.g., cowboy hats, oaks) or more superordinate categories (e.g., clothes, 
plants, or inanimate and animate objects). 

Overall, there is a large methodological variety in how RSA can be 
used to assess representational properties such as neural stability and 
distinctiveness (e.g., Carp et al., 2011; Davis et al., 2014; Lu et al., 2015). 
Not all of these different approaches to within-item and between-item 
similarity are implemented in the current tutorial or feasible in the 
provided sample dataset (for details of what is implemented, see below). 
But the general logic and procedures resemble each other across 
different approaches, such that the pipeline can be adjusted easily and 
extended to allow the desired similarity analyses. 

2.6. Implementation of within-item similarity (stability) 

To compute RSA on the subject level, the function 

step1_rsa_get_sim_matrices is called. For within-item similarity, adjust 
the config.type input to specify the desired similarity level to ’within- 
item’ (you may use the config_and_run_rsa script to configure and run 
each analysis step). For each subject, step1_rsa_get_sim_matrices invokes 
the function self_rsa that loads the TFRs, i.e., the spectral power across 
time and frequency at all electrodes and for all presented stimulus trials 
(trial × electrode × frequency × time). The function then selects the 
TFRs of the trials to be correlated, namely the spectral patterns evoked 
during the first and second presentations of items from all object cate
gories (for simplicity, first exemplars only). This is done based on the 
trial information provided with the individual EEG data. Before 
computing the similarity, data are log-transformed and the background 
noise spectrum is removed from the TFRs to counter the effect of 
intrinsically high correlations between frequency patterns due to the 1/ 
frequency characteristic of the EEG power spectrum (Schönauer et al., 
2017). For this, an approach from the better oscillation detection (BOSC) 
framework is applied (Caplan et al., 2001; Kosciessa et al., 2020; 
Whitten et al., 2011; for discussion see also Allefeld et al., 2016; Cai 
et al., 2016) which is called via the function 
subtract_mean_noise_spectrum. 

At the core of this pattern similarity analysis is the correlation of 
individual TFRs that is implemented in the function spectral_rsa called 
by self_rsa. Correlations are computed separately at each electrode be
tween two time–frequency pattern matrices (pattern 1 and pattern 2; see 
Fig. 2A), here with 31 frequency bins from 2 to 125 Hz (see above), and 
326 time points from 0.6 s before stimulus onset (0) to 2 s after stimulus 
onset. Specifically, the frequency vectors at each time point tp1 of the 
first pattern are correlated with the frequency vectors at each time point 
tp2 of the second pattern. Thus, we obtain a correlation coefficient for 
each tp1 × tp2 combination. If not specified otherwise, Pearson correla
tion is used. The resulting correlation matrix (time × time) is then 
Fisher-z transformed and returned. It represents the similarity of the two 
spectral patterns at all time point combinations. This procedure is 
repeated for all electrodes (for adults, these are 60 and for children 64 
scalp electrodes) resulting in an electrode–time–time similarity matrix 
for each pair of correlated stimulus trials. Note that the number of trials 
varies between participants after preprocessing due to differences in 
EEG data quality and depends on your choice of type of RSA. 

The resulting category × electrode × time × time similarity matrices 
are represented in a FieldTrip data structure for time–frequency data 
(see https://www.fieldtriptoolbox.org/development/datastructure/). 
Since having two time dimensions is not a valid data type, we denote one 
of the time dimensions as frequency and thus “fake” a frequency 
dimension such that FieldTrip treats the data like TFRs. In addition to 
the usual data and metadata fields required by FieldTrip, additional 
information about the original trials and object categories that were 
correlated in the RSA are also saved in the data structure. The function 
step1_rsa_get_sim_matrices then saves the individual similarity data in 
the specified output folder. 

Before moving on to averaging the data, we highly recommend to 
carefully inspect (e.g., plot) some parts of the similarity results already 
on the trial level (not implemented in the current tutorial). This helps to 
get an impression of the overall level and variance of similarity in the 
analyzed data set and to potentially identify interesting patterns that 
may get lost with averaging similarity across trials. 

In the next step, step2_rsa_group_ga computes and saves the grand 
averages of the individual similarity matrices. That is, the similarity 
matrices for each subject are averaged across items, resulting in a 
channel × time × time similarity matrix containing the respective 
representational similarities independent of the individual items or 
categories that were compared with each other. These average similarity 
matrices of each subject are combined in one data structure (subject ×
channel × time × time, with one time dimension again denoted as fre
quency; see above) and saved to the specified output folder. 

The group mean similarity matrices (averaged across all electrodes) 
and the diagonals of the mean similarity matrices can be plotted using 
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step3_plot_sim_matrices (see Figs. 3 and 4). The diagonals show the 
similarity of the respective spectral patterns at identical time points. As 
elevated similarities often occur at and around the diagonal, one may 
want to plot the diagonals to better illustrate group or condition com
parisons (see also Sommer et al., 2019). In the sample dataset, the 
pattern similarity values in adults are overall much higher than in 
children. 

2.7. Implementation of between-item similarity (distinctiveness) 

Between-item similarity can be computed for items from the same 
object category (within-category similarity) or for items from different 
object categories (between-category similarity), which can be selected 
by specifying config.type as ’within-cat’ or ’between-cat’, respectively, 
when running step1_rsa_get_sim_matrices. The trials to be correlated are 
selected with self_rsa or betw_cat_rsa, which are called by step1_rsa_
get_sim_matrices for within-category or between-category similarity, 
respectively. Before computing the similarity, the data are log- 
transformed and the background noise spectrum is removed from the 
TFRs using BOSC (see above). Within-category similarity is computed as 
the correlation between spectral patterns evoked by the first and second 
exemplars of each object category (for simplicity, first presentations 
only). Between-category similarity is computed as the average similarity 
between each category and all other categories (for simplicity, first 
presentations of first exemplars only). This means that in within- 
category RSA (as in within-item RSA), exactly two TFRs for each 

Fig. 3. Time–time pattern similarity matrices of within-item similarity (left) and between-item (within-category) similarity (right), averaged across trials, electrodes, 
10 children (CH; top), and 10 young adults (YA, bottom). Similarity is measured in Fisher-z transformed Pearson correlation coefficients (z’). These figures can be 
created with step3_plot_sim_matrices. Note that the color scales differ between age groups. 

Fig. 4. Diagonals of the time–time pattern similarity matrices (see Fig. 3) for 
within-item similarity (solid line) and within-category similarity (dotted line) in 
children (blue) and adults (black). These plots can be created with step3_
plot_sim_matrices (separately for children and adults). 
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object category are correlated with each other. Specifically, for n cate
gories and, e.g., 60 electrodes, 60 × n time–time correlation matrices 
are computed for each subject. In contrast to that, between-category 
RSA computes all pairwise combinations of all available categories 
(except self-similarity), resulting in 60 × n-1 × n-1 time–time correla
tion matrices. Thus, between-category RSA requires considerably more 
computations and correspondingly takes longer to run. Again, spec
tral_rsa is called and runs the core computation of correlating the TFRs. 
In the next steps, the grand averages of the resulting similarity matrices 
are computed in step2_rsa_group_ga and plotted using step3_
plot_sim_matrices (same as above). 

The diagonal of a similarity matrix divides the matrix into an upper 
and a lower triangle (above and below the diagonal, respectively). These 
triangles are not necessarily mirrored. For within-category similarity, 
for instance, each time point of the neural pattern during presentation of 
the first exemplar (trial 1) is compared to each time point of the neural 
pattern of the second exemplar (trial 2). If the beginning of trial 1 shows 
high similarity to the end of trial 2, this high similarity would appear off- 
diagonal in one of the triangles and not in both. The mirrored point in 
the other triangle would instead show the similarity of the end of trial 1 
and the beginning of trial 2. However, for between-item similarities in 
which all pairwise comparisons are computed (here, between-category 
similarity), each correlation of the frequency vectors at two time 
points is actually computed twice, thus appearing on both sides of the 
diagonal. For example, the similarity of the responses to stimulus X and 
stimulus Y is computed twice but in different orders (similarity(X,Y) and 
similarity(Y,X)), namely once when X is compared to all other stimuli, 
and once when Y is compared to all other stimuli. The individual simi
larity matrices are not identical, but when the mean similarity is 
computed across all stimulus combinations, the resulting mean simi
larity matrix is mirrored across the diagonal. In these cases, one of the 
triangles suffices for plotting and subsequent analyses (cf. Sommer et al., 
2019). 

2.8. Statistical comparison of RSA matrices 

Depending on the research questions and the level of comparison, we 
use different statistical tests, which are mainly implemented in FieldTrip 
(Oostenveld et al., 2011). To test for differences in representational 
similarity matrices, the major tool are non-parametric cluster-based 
random permutation statistics that account for the multiple comparison 
problem (Maris and Oostenveld, 2007; see also Fields and Kuperberg, 
2020). Univariate two-sided, dependent or independent t-statistics are 
calculated for the time–time similarity matrices at all electrodes. Clus
ters are formed by grouping neighboring channel × time × time samples 
with a p-value below 0.05 (spatially and temporally). The respective test 
statistic is then determined as the sum of all t-values within a cluster. We 
use the Monte Carlo method to compute the reference distribution for 
the summed cluster-level t-values. To derive the reference distribution 
under the null hypothesis that there is no difference between group
s/conditions, samples are repeatedly assigned into arbitrary groups and 
the t-tests are computed between these random groups and summed 
within the respective clusters. Finally, the summed t-values for a given 
cluster derived from the true group comparison is compared against the 
reference distribution of summed t-values from the same cluster derived 
from the random assignments. 

2.9. Implementation 

The computations are implemented in FieldTrip using the function 
ft_freqstatistics for time–frequency data (for a detailed tutorial, see htt 
ps://www.fieldtriptoolbox.org/tutorial/cluster_permutation_freq/). As 
these statistical tests are intended for frequency-resolved data, we again 
“fake” TFRs by denoting one of the time dimensions of the electro
de–time–time similarity matrices as frequency. FieldTrip functions 
receive a configuration input cfg that specifies the desired computations. 

Depending on the applied statistics, the output stat contains the t-maps, 
p-values, cluster dimensions etc. for all channel × time × time 
coordinates. 

2.9.1. Comparison between representational levels (item and category 
specificity) 

If the neural patterns we measure with a given brain recording 
technique truly represent a specific content that is presented at the time, 
we would expect representational similarity between related contents 
(e.g., from the same stimulus category) to be higher than between less 
related stimuli (e.g., from different categories). Accordingly, several 
studies – especially those concerned with age-related differences in 
neural differentiation (Koen and Rugg, 2019; Li et al., 2001) – have 
measured neural representational (category) specificity as 
within-category similarity corrected for (i.e., subtracting) 
between-category similarity (e.g., Carp et al., 2011; Kobelt et al., 2021; 
Koen et al., 2019). In analogy, the specificity of neural item represen
tations has been defined as higher item stability than representational 
similarity to other, similar items and thus assessed as the difference 
between within-item and within-category similarity (Kobelt et al., 2021; 
Xue et al., 2010). As such, the assessment of item specificity is a measure 
that combines neural stability and neural distinctiveness by quantifying 
or testing their difference. In this tutorial, we implement item specificity 
by directly testing within-item similarity against within-category simi
larity for each participant (first-level analysis). (Alternatively, we could 
also compute item specificity matrices by subtracting within-category 
similarity from within-item similarity and testing them against zero.) 
Subsequently, we test the t-values from the first-level analysis against 
zero to examine whether the differences are reliable on the group level 
(second-level analysis). For group comparison (third-level analysis), see 
section 2.4.2. Equivalently, testing for category specificity would 
involve testing within-category similarity against between-category 
similarity (not implemented here). 

Note that, in addition to the stimulus content (e.g., the presented 
item or category), other factors may influence their neural representa
tional similarity, for instance their temporal distance within the exper
iment. Such confounding factors need to be identified and corrected for. 

2.10. Implementation of first-level (within-subject) analysis 

Contrasting individual within-item similarity and within-category 
similarity matrices for all specified participants is implemented in the 
function step4a_sim_comparison_1st_level. Here, the FieldTrip input 
struct cfg is configured to specify the statistical test run with ft_freq
statistics. For each item, the item’s pattern similarity to itself across 
repetitions is contrasted against the item’s pattern similarity to the other 
item from the same object category using two-sided paired sample t- 
tests. The resulting t-maps can be considered as point-wise effect size 
measures of the difference between the representational levels. The t- 
maps of all specified subjects are concatenated and the stat output is 
returned and saved as 1st_level_stat to the specified output folder. 

2.11. Implementation of second-level (within-group) analysis 

In step4b_sim_comparison_2nd_level, the t-maps of the first-level 
analysis are tested against zero using two-sided independent samples 
t-tests, controlling for multiple comparisons by conducting cluster-based 
random permutation (500 ×) tests. The output stat2 contains the posi
tive and negative cluster statistics and the channel × time × time co
ordinates of the identified clusters and is saved as 2nd_level_cluster_stat 
(for discussions of how the results should (not) be interpreted, see Maris 
and Oostenveld, 2007; Maris, 2012; Sassenhagen and Draschkow, 2019; 
and https://www.fieldtriptoolbox.org/faq/how_not_to_interpret_results 
_from_a_cluster-based_permutation_test/). Clusters are positive or nega
tive based on the direction of the effect, which in this case is determined 
by the order in which within-item and between-item similarity were 

V.R. Sommer et al.                                                                                                                                                                                                                             

https://www.fieldtriptoolbox.org/tutorial/cluster_permutation_freq/
https://www.fieldtriptoolbox.org/tutorial/cluster_permutation_freq/
https://www.fieldtriptoolbox.org/faq/how_not_to_interpret_results_from_a_cluster-based_permutation_test/)
https://www.fieldtriptoolbox.org/faq/how_not_to_interpret_results_from_a_cluster-based_permutation_test/)


Developmental Cognitive Neuroscience 54 (2022) 101071

8

contrasted during the first-level analysis. In the provided dataset and 
with the current settings, the analysis identifies 2861 positive and 271 
negative clusters for the child sample and 1788 positive and 137 nega
tive clusters for the adult sample. Of these clusters, 2 positive clusters for 
children and 1 positive cluster for adults exceed the 97.5th percentile 
(ps < 0.025) for their respective reference distribution, indicating sig
nificant effects in both age groups. Here, positive clusters indicate that 
within-item similarity is significantly higher than within-category sim
ilarity (suggesting item specificity). Note that the number of permuta
tions determines how small the p-values can be. With 500 permutations, 
p-values cannot be smaller than 0.002. 

The identified clusters span over a wide range of time–time combi
nations and over all electrodes (see Fig. 5), suggesting widespread dif
ferences in within-item and within-category similarity and thus highly 
item-specific neural representations. The identified cluster dimension 
can be used to extract similarity values from those channel × time 
× time coordinates in which differences were shown to be reliable (see  
Fig. 6). 

2.11.1. Comparison between age groups 
Testing whether age groups differ in their neural representational 

properties can be approached in different ways. One straightforward 
approach is a cluster-based permutation analysis, similar to the one 
described above, directly contrasting the similarity data of participants 
of different ages. This could indicate cortical regions and time–time 
points at which age groups might show reliable pattern similarity dif
ferences. However, the interpretation of such age effects require careful 
consideration because they can potentially emerge due to many un
specific age differences, for instance, in skull thickness which substan
tially influences EEG signal (Frodl et al., 2001; Hämmerer et al., 2013). 

The impact of these confounding factors can be minimized by refraining 
from interpreting main effects of age such as absolute differences in 
neural activation, and instead focusing on, for example, age differences 
in within-person effects (cf. Rugg, 2017; Rugg and Morcom, 2005). 
Therefore, in the current analysis pipeline, we suggest comparing dif
ferences in the within-person item specificity effects (i.e., higher 
within-item similarity than between-item similarity) between age 
groups rather than absolute similarity values. Specifically, the clusters 
identified on the group level (second-level analysis) can be used to 
extract subject-specific similarity values (or effect sizes) at those channel 
× time × time coordinates that showed reliable differences, which can 
then be contrasted between groups. This approach is implemented in the 
current tutorial to investigate whether children and adults show dif
ferences in neural item specificity. 

2.12. Implementation of third-level (between-group) analysis 

Children’s and adults’ neural item specificity is contrasted in 
step4c_sim_comparison_3rd_level. For each group, all clusters from the 
2nd level analysis with ps < 0.025 and the channel × time × time vol
ume they enclose are identified and used as a mask to extract the indi
vidual within-item and within-category similarity values. These 
extracted similarities are averaged (see Fig. 7) and saved. Because the 
two age groups are compared with each other, the similarity data and 
statistics of both are required for this step. 

The difference between within-item and within-category similarity 
(indicating item specificity) is computed for each subject, which is then 
used for the age group comparison that uses a standard two-sided in
dependent samples t-tests to test for age difference in item specificity 
(see Fig. 8). The results are returned in the command window. In the 

Fig. 5. Visualization of effect sizes (t-values) in 
clusters identified to show item specificity (i.e., 
reliable differences between within-item and 
between-item similarity) in children (top) and 
adults (bottom). Left: Effect sizes within time ×
time cluster dimensions, averaged across sig
nificant electrodes. Right: Topographic repre
sentations of effect sizes across electrodes, 
averaged over significant time points. High
lighted channels (asterisks) are included in the 
cluster. Note that different EEG systems were 
used for children and adults, resulting in 
different electrode layouts. These images can be 
created with step5_plot_clusters.   
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provided sample dataset, children and adults do not show significantly 
different item specificity (t = 0.93, p = 0.364). 

Instead of using a simple difference score, likewise, the individual 
effect sizes obtained in the first-level analysis can be extracted within the 

Fig. 6. Pattern similarity matrices (identical to Fig. 2) plus outlines of identified clusters (see Fig. 5) showing at what time–time coordinates within-item (left) and 
within-category (right) similarities may show reliable differences, averaged across electrodes, for children (top) and adults (bottom). These images can be created 
with step5_plot_clusters. 

Fig. 7. Comparison of mean within-item and between-item (within-category) 
pattern similarities extracted from identified clusters in individual children 
(blue, x) and adults (black, o). This figure can be created with 
step6_plot_sim_comparison. 

Fig. 8. Item specificity (computed as the difference between within-item and 
within-category similarity) in children (blue) and adults (black). Group distri
butions as un-mirrored violin plots (probability density functions), boxplots 
with 1st, 2nd (median), and 3rd quartiles, whiskers with 2nd and 98th per
centiles, and individual (vertically jittered) data points. This figure can be 
created with step6_plot_sim_comparison, which uses the raincloud_plot function 
(Allen et al., 2019). 
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cluster masks and averaged (not implemented here). These would also 
indicate how much within-item and within-category similarity differ 
and thus how item-specific the neural representations are, and can then 
be compared between age groups. 

2.13. Association with behavior 

Our measure of item specificity reflects how much stimulus-specific 
information is represented in the neural activation patterns during 
stimulus encoding. According to previous research, adult participants, 
who show more item-specific neural representations, can better 
remember the items than participants with less item-specific represen
tations can (Kobelt et al., 2021). The participants in the current dataset 
also performed a memory recognition test following the encoding phase. 
In the recognition task, exact item repetitions, similar lures (new ex
emplars from the same object categories), and entirely new objects were 
presented (cf. Stark et al., 2019), allowing for an estimation of precise 
item memory (for details, see Sommer et al., 2021). Here, as an example, 
we correlate item memory performance with neural item specificity 
(computed above) to identify between-person associations between 
brain and behavior. Other analyses to investigate behavioral effects of 
differences in neural specificity are possible, e.g., one could compute 
subsequent memory effects (Paller and Wagner, 2002), that refer to the 
within-person association of item specificity and the respective memory 
outcomes (see 3.8 Further applications). 

2.14. Implementation 

Participants’ item memory performance is provided in the sample 
dataset (CH+YA_mean_item_memory.mat). The wrapper script step7_
correlation_with_behavior loads the individual item specificity and item 
memory data and correlates them using Pearson correlations, separately 
for children and adults as well as across age groups. The results are 
returned in the command window. Furthermore, a scatter plot is created 
that illustrates the correlations (Fig. 9). Results from the sample dataset 
suggest that item memory and item specificity may be positively related 
to each other, but the correlations are not significant (children: r = 0.18, 
p = 0.612; adults: r = 0.41, p = 0.245; across groups: r = 0.35, 
p = 0.128). 

2.15. Further applications 

The current pipeline is just one example for the ways in which RSA 

can be used to compute the similarities of neural representations of 
certain stimuli, identify differences in these similarities, compare these 
differences between age groups, and associate them with behavior. We 
already hint on many more options above, and briefly list these and 
other applications that are feasible:  

– Category specificity indicates how much category information is 
represented in the neural activation patterns and is measured as the 
difference between within-category and between-category similarity 
(Carp et al., 2011; Kobelt et al., 2021; Koen et al., 2019). It is one of 
the classic measures of aging-related neural dedifferentiation in 
fMRI, indicating that neural representations become less distinct in 
old age, but the evidence on its association to cognition is mixed (cf. 
Kobelt et al., 2021; Koen et al., 2020). The current pipeline can 
simply be adjusted for category specificity by replacing within-item 
and within-category similarity data by within-category and 
between-category similarity data, respectively (in all scripts for 
running the statistical comparisons as well as for plotting the results).  

– Pattern reinstatement (or reactivation/replay; cf. Genzel et al., 
2020) is the similarity of activation patterns during encoding to the 
activation patterns during retrieval, for example, in a recognition or 
recall task (Staresina et al., 2016; Wimber et al., 2012; Xue et al., 
2010) and is thus closely related to pattern stability. It is a key 
element of episodic memory models that processes involved in an 
event’s encoding are also involved in its retrieval (Damasio, 1989; 
Norman and O’Reilly, 2003; Nyberg et al., 2000; Rugg et al., 2008). 
Reinstatement of item information has been demonstrated in tem
poral and spectral (intracranial) EEG patterns (Kerrén et al., 2018; 
Michelmann et al., 2018; Yaffe et al., 2014; Zhang et al., 2015). The 
current pipeline can be adjusted for pattern reinstatement analysis 
by using the self_rsa script with different data, namely encoding and 
retrieval data rather than first and second presentations during 
encoding.  

– Global similarity/matching is the representational similarity 
among all stimuli that were presented in an experiment or condition 
(Davis et al., 2014; LaRocque et al., 2013; Lu et al., 2015; Sommer 
et al., 2019). Just like the implementation of between-category 
similarity, all pairwise comparisons are computed. Cognitive the
ories postulate that memory strength for an item arises from the 
similarity of its representation to the representations of other enco
ded items (Clark and Gronlund, 1996; Hintzman, 1984; Raaijmakers 
and Shiffrin, 1992; Xue, 2018). The current pipeline can be used to 
examine the association of global similarity and memory perfor
mance by computing between-item similarities separately for 
remembered and not remembered items and contrasting them with 
the scripts used for the statistical comparisons (see subsequent 
memory effects below). For an investigation of this effect in EEG 
time–frequency representations in young and older adults, see 
Sommer et al. (2019).  

– Representational dissimilarity matrix (RDM) is an illustration of 
all pairwise item dissimilarities (inverse of similarities, e.g., corre
lation distance r – 1, or decodability) and thus characterizes the 
represented informational structure (Kriegeskorte et al., 2008). The 
rows and columns correspond to individual items and each cell is the 
(dis-)similarity between the two items (e.g., the averaged time–time 
similarity matrix). These RDMs can be compared to RDMs from other 
brain regions or other modalities, to hypothesized model RDMs, to 
behavior, and between individuals or species (i.e., second-order 
isomorphism; Edelman, 1998; Kriegeskorte et al., 2008). That is, in 
this step the represented informational structure is compared rather 
than the activity patterns themselves. The current pipeline can be 
used to run all pairwise item similarities (between-category simi
larity). The resulting time–time similarity matrices would need to be 
averaged to obtain one similarity value for each item pair in each 

Fig. 9. Between-subject association of item specificity and item memory in 
children (blue, x) and adults (black, o) indicated by least-squares lines. This 
figure can be created with step7_correlation_with_behavior. 
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participant, which could then be illustrated in an RDM and compared 
to other RDMs.  

– Subsequent memory effects show within-person differences in 
neural activity in response to items that are subsequently remem
bered versus those that are not (Paller and Wagner, 2002). This can 
be applied to any measure of representational similarity by sepa
rating items according to their memory outcome for each participant 
before computing the individual similarity matrices. The resulting 
similarity matrices for remembered and not remembered items can 
then be contrasted using cluster-based permutation analysis (see 
Sommer et al., 2019). 

2.16. Adjusting the code for your own data 

The tutorial pipeline is specifically designed to analyze the provided 
dataset and needs adjustment to be applicable for other data formats. 
Since the pipeline depends on the FieldTrip toolbox and on its data 
structures, we would recommend that our readers also use FieldTrip’s 
preprocessing and/or frequency-decomposition tools, as these yield 
TFRs in the required format or that they convert their data to the 
FieldTrip format (e.g., for converting from EEGLAB, see: https://eeglab. 
org/others/EEGLAB_and_Fieldtrip.html). In addition to that, the trial 
selection in the current pipeline is specific to the sample dataset and the 
memory task paradigm. For application to your own data, you will also 
need to provide the specific trial information, e.g., about item repeti
tions and category membership. This information is used in self_rsa and 
betw_cat_rsa and needs to be adjusted (in the code section "Find stimulus 
pairs") to select those trials that are to be correlated. 

3. Challenges and limitation 

In this tutorial we argue that the investigation of neural represen
tations may open new avenues to understand developmental changes in 
cognition across childhood, and suggest that pattern similarity analysis 
of time-resolved brain recordings (such as EEG) provides a powerful tool 
to delineate developmental differences in the temporal dynamics of 
neural representations (e.g., Fellner et al., 2020; Jafarpour et al., 2013; 
Sommer et al., 2019). The differences between classic univariate and 
multivariate analyses are often interpreted as focusing on different 
neurocognitive aspects, namely on the involvement of a particular re
gion in a function versus the representational content present in that 
region (Mur et al., 2009). However, we would like to advise caution in 
claiming that univariate versus multivariate analyses measure neural 
processes versus neural representations as these may not be strictly 
separable (cf. Davis and Poldrack, 2013; Xue, 2018). Indeed, the neural 
activation patterns that we define as neural representations of course 
also capture neural processes. Furthermore, the dichotomy between 
process and content is, like the computer metaphor of the brain in 
general, useful for cognitive theories but does not actually reflect the 
biology of neural systems (Feldman, 2016; Searle, 1990). As the un
derlying neural units are recurrently connected in local and global 
networks (e.g., Bullmore and Sporns, 2009; van den Heuvel and 
Hulshoff Pol, 2010), any activity of a given neural assembly that rep
resents a certain mnemonic content will also immediately lead to its 
transformation within the context of ongoing network activity. This 
transformation can be regarded as a process, emphasizing the practical 
inseparability of representations and processes as understood in the 
cognitive literature (e.g., Tulving and Bower, 1974). Hence, although 
one can focus on the representational aspects of the neural basis of 
cognition rather than on specific neural processes, neural representa
tions are not strictly to be understood as being separate from processes 
such as encoding (cf. Feldman, 2016). Currently, in cognitive neuro
science, representations are a central concept that link cognition to brain 
activity (Kriegeskorte and Kievit, 2013), and do not necessarily distin
guish between content and process. Neural activity represents content 
and, at the same time, reflects the processes concerned with these 

contents. Nonetheless, multivariate similarity analyses are able to 
differentiate content-specific information (e.g., Kuhl and Chun, 2014), 
even at the level of individual stimuli (Kobelt et al., 2021; Yaffe et al., 
2014; Zheng et al., 2018) and are thus suitable to study neural repre
sentations in a broader sense. 

In the methods introduced in this tutorial, we focus on dynamic 
neural representations and their fine-grained similarities across trial 
times. Traditionally, neural representations are interpreted and studied 
as spatially distributed activation patterns and accordingly usually 
measured with fMRI (e.g., Haxby et al., 2001; Rissman and Wagner, 
2012). While the spatial resolution of EEG is much lower than of fMRI, 
and spatial differences of neural representations are therefore not the 
main focus of EEG-based RSA, the high spatial resolution in fMRI comes 
at the cost of low temporal resolution. Hence, fMRI does not lend itself to 
techniques like the presented time–time similarity computations. Here, 
we exploit the rich information contained across multiple neural 
rhythms and topographical sites by applying RSA to time
–frequency-transformed EEG data, which allows identification of 
item-specific neural signatures (Kerrén et al., 2018; Michelmann et al., 
2016; Staresina et al., 2016, 2019). Our approach may be particularly 
attractive for developmental researchers, as among all available neu
roimaging tools, EEG is probably most readily available and highly 
feasible to collect high-quality data from children and even infants, at 
the lowest cost. Overall, different brain recording and pattern similarity 
approaches offer complementary views on neural representational 
properties and their individual strengths should be combined by inte
grating results from different methodologies to gain a complete picture 
of how the brain encodes information. 

4. Conclusions 

Time-resolved spectral pattern similarity analysis provides a 
powerful toolset for cognitive neuroscientists to gain insights into what 
and how information is dynamically represented in the human brain. In 
this article, we provide a thorough introduction and tutorial for applying 
multivariate similarity analysis on EEG data, based on time–frequency 
power spectra. To provide a practical example, we implemented an 
executable pipeline from single-subject similarity analyses at different 
representational levels to statistical comparisons using non-parametric 
cluster-based permutation tests, explaining each step and discussing 
practical considerations and alternative approaches. We expect multi
variate similarity analyses to have an increasing impact on develop
mental cognitive neuroscience, opening up new research directions and 
enhancing our understanding of how the contents and properties of 
neural representations develop over the lifespan and influence cognitive 
abilities. Our tutorial makes advanced multivariate EEG pattern simi
larity analyses readily accessible to a broad audience of developmental 
scientists, facilitating the wider adoption of such approaches. 
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