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Abstract

Background: Bright light at night is known to suppress melatonin secretion. Novel photoreceptors named
intrinsically photosensitive retinal ganglion cells (ipRGCs) are mainly responsible for projecting dark/bright

information to the suprachiasmatic nucleus and thus regulating the circadian system. However, it has been shown
that the amplitude of the electroretinogram of ipRGCs is considerably lower under flickering light at 100 Hz than at
1-5 Hz, suggesting that flickering light may also affect the circadian system. Therefore, in this study, we evaluated
light-induced melatonin suppression under flickering and non-flickering light.

Methods: Twelve male participants between the ages of 20 and 23 years (mean + S.D.=21.6+ 1.5 years) were
exposed to three light conditions (dim, 100-Hz flickering, and non-flickering blue light) from 1:00 AM. to 2:30 AM,,
and saliva samples were obtained just before 1:.00 AM. and at 1:15, 1:30, 2:00, and 2:30 AM.

Results: A repeated measures t test with Bonferroni correction showed that at 1:15 A.M., melatonin concentrations
were significantly lower following exposure to non-flickering light compared with dim light, whereas there was no
significant difference between the dim and 100-Hz flickering light conditions. By contrast, after 1:30 AM, the mean
melatonin concentrations were significantly lower under both 100-Hz flickering and non-flickering light than under

dim light.

Conclusion: Although melatonin suppression rate tended to be lower under 100-Hz flickering light than under
non-flickering light at the initial 15 min of the light exposure, the present study suggests that 100-Hz flickering light
may have the same impact on melatonin secretion as non-flickering light.

Introduction

The development of artificial lighting systems has allowed
us to have a bright environment at night, bringing comfort
and safety. However, light has also been reported to have a
range of physiological impacts on humans, such as changes
in pupillary constriction [1-4], autonomic nervous function
[5-7], brain activity [8], and cortisol secretion [9]. Further-
more, bright light at night is known to delay the circadian
phase [10-12], resulting in disruption of the circadian
rhythm [13], which, in turn, can lead to poor sleep and vari-
ous kinds of health risks, such as cardiac disease and depres-
sion [14]. Bright light also suppresses the night-time

* Correspondence: kozaki@fwu.ac.jp

1Department of Environmental Science, International College of Arts and
Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku,
Fukuoka 813-8529, Japan

Full list of author information is available at the end of the article

B BMC

secretion of the hormone melatonin [15-18], which is pro-
duced by the pineal gland and has several physiological ac-
tivities, including anticancer activity [19-21]. As an example
of the anticancer activity, Blask et al. [19] indicated that hu-
man breast cancer xenografts with melatonin-rich blood ex-
hibited suppressed proliferative activity and linoleic acid
uptake/metabolism, compared with melatonin-deficient
blood. Consequently, the International Agency for Research
on Cancer lists shiftwork that involves circadian disruption
as a probable carcinogenic factor (Group 2A) and a pro-
spective study has suggested that residential outdoor bright
light at night may contribute to breast cancer risk [22].
Therefore, there is a real need to understand the physio-
logical effects of light so that we can create healthy artificial
lighting environments.

Novel retinal photoreceptors known as intrinsically
photosensitive retinal ganglion cells (ipRGCs) or
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melanopsin-containing retinal ganglion cells (mRGCs)
are mainly responsible for projecting dark/bright infor-
mation to the suprachiasmatic nucleus and thus regulat-
ing the circadian system [23-26]. ipRGCs have several
different properties from cones and rods, which are the
traditional photoreceptors found in the eye. For ex-
ample, the spectral peak sensitivity of ipRGCs is ap-
proximately 480 nm [23], resulting in an acute
light-induced suppression of melatonin production in
blue light [27-30]. Furthermore, the depolarizing voltage
response of ipRGCs increases more slowly in response
to a light pulse (i.e., has a long latency) and declines
more slowly after the onset of the light pulse (i.e., exhibits
sustained depolarization) compared with traditional pho-
toreceptors [31]. In an examination of ipRGC electoreti-
nograms (ERGs) under different light conditions, Takao
et al. [32] found that ipRGCs that were exposed to
flickering light at 100 Hz had steady-state ERGs, suggesting
a high temporal frequency sensitivity, but lower-amplitude
ERGs than those obtained under 1-5-Hz flickering
light. Therefore, it appears that the flickering condition
of light may also impact our circadian system.

In this study, we evaluated light-induced melatonin
suppression under 100-Hz flickering and non-flickering
blue light. We chose these conditions because ipRGCs
are most sensitive to light at a wavelength of 480 nm
and some artificial light sources such as fluorescent
lamps flicker at approximately 100 Hz.

Methods

Subjects

Twelve Asian male subjects aged between 20 and
23 years (mean+ S.D.=21.6+ 1.5 years) participated in
this study. Each subject gave informed consent to par-
ticipate, had no history of psychiatric or sleep disorders,
and was free from any medical conditions at the start of
the experiment. The subjects were instructed to abstain
from alcohol for 1 day and from caffeine and smoking
for 3 h prior to the experiment. In addition, they were
asked to keep a regular sleep-wake schedule (sleep onset
between 1:00 and 2:00 A.M. and wake between 8:00 and
9:00 A.M.) for 6 days prior to the experiment. These
sleep-wake schedules were checked by actigraphy
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devices (MotionWatch 8; CamNtech Ltd., Cambridge,
UK) before each experiment.

Experimental design

The experimental design followed the principles outlined
in the Declaration of Helsinki and was approved by the
ethical committee of the Faculty of Design, Kyushu Uni-
versity, Fukuoka, Japan. The experiments were carried
out at the Research Center for Human Environmental
Adaptation of Kyushu University between August and
September 2016.

Subjects were exposed to three light conditions: dim
(<3 Ix), 100-Hz flickering, and non-flickering blue light.
Each light condition was provided in a random order at
6-day intervals. On the experimental day, each subject
was admitted to the experimental chamber at 11:50 P.M.
and a saliva sample was taken. The experiment started
at 0:00 A.M. under the dim light condition. The experi-
mental light condition was then provided for 1.5 h from
1:00 A.M. During the light exposure, the subjects
remained awake and listened to music through head-
phones while sitting on a chair with their head resting
on an ophthalmologic head holder to ensure delivery of
the prescribed treatment. Saliva samples were taken just
before 1:00 AM and then again at 1:15, 1:30, 2:00, and
2:30 A.M. The ambient temperature in the experimental
chamber was maintained at 25 °C with a relative humid-
ity of 50% (see Fig. 1 for an outline of the experimental
schedule.)

Light conditions

The 100-Hz flickering and non-flickering light condi-
tions were delivered to each subject from a 0.5-m cubic
light box. The two light conditions were obtained from
arrays of blue light-emitting diodes (LEDs) on a board,
which was placed with a white diffuser in front of the
subject. The spectral emissions of the blue LEDs peaked
at 465 nm, with a full width at half maximum of 24 nm.
The 100-Hz flickering light was modulated by a pulse
generator (PCI-6105; Interface Corp., Hiroshima, Japan)
installed in a computer (AT-960, Epson Direct Corp.,
Matsumoto, Japan) with a purpose-built pulse width
modulator circuit. The LED was on for 1 ms and off for
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9 ms (10% duty ratio) in the flickering light condition.
Before each experiment, the melanopic illuminance of
the two light conditions at the subject’s cornea was ad-
justed to 38.0 uW/cm? (irradiance was almost 52.0 uW/
cm?) using a direct-current power source (KX-100H;
Takasago Ltd., Kawasaki, Japan) and a spectroradiometer
(LA-105; NK System, Osaka, Japan); Melanopic illumin-
ance is a representation of irradiance by the activity of
ipRGC [33]. The illuminance and photon density at the
cornea were 30.2 Ix and 14.09 log photons/s/cm?
respectively.

Salivary melatonin sampling and analysis

Saliva samples were collected using non-cotton (poly-
propylene-polyethylene complex swab) collection de-
vices (Sarstedt K.K., Numbrecht, Germany) to avoid any
interference with the salivary melatonin assay results
[34]. Saliva samples were centrifuged at 1500 g for 5 min
and then frozen at - 30 °C until assay. Melatonin levels
in the samples were analyzed using a commercially avail-
able radioimmunoassay (RIA) kit (Direct Saliva Melatonin
RIA; Buhlmann Laboratories, Allschwil, Switzerland),
which had a limit of detection of 0.9 pg/mL and a limit of
quantification of 0.2 pg/mL. The mean intra- and
inter-assay coefficients of variance were 7.9% and 9.8%,
respectively.

Data analysis
Given the substantial inter-individual variation in en-
dogenous melatonin levels [35, 36], melatonin suppres-
sion rates were calculated using the following formula:
Melatonin suppression = (concentration at each time
point after light exposure — concentration before light
exposure)/concentration before light exposure.
Differences in the mean melatonin concentration and
melatonin suppression rate over time and between light
conditions were analyzed using a two-way within-subject
repeated measures analysis of variance with the
Huynh-Feldt € correction, to evaluate F ratios for re-
peated measures involving more than one degree of
freedom. Post hoc analyses were then conducted
using repeated measures ¢ tests with the Bonferroni
correction for the mean melatonin concentration and
repeated measures ¢ tests for the melatonin suppres-
sion rate. All statistical analyses were performed in
SPSS (version 22.0; SPSS, Chicago, US) with a signifi-
cance level of p <0.05.

Results

Data from one subject were excluded from the analysis
because his melatonin levels were lower than the limit of
detection of the RIA kit (0.9 pg/ml). Therefore, data
from 11 subjects are reported below.
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Temporal changes in the mean melatonin concentra-
tions under the three light conditions are shown in
Fig. 2. The light condition had a significant effect on
melatonin concentration (F,50=21.00, p<0.01, €=
0.66), and there was a significant interaction between
the time interval and light condition (Fggo=11.75, p <
0.01, £=0.30). Post hoc comparisons showed that the
melatonin concentration was significantly lower under
non-flickering light than under dim light at 1:15 A.M,,
whereas there was no significant difference between the
concentration under dim light and 100-Hz flickering
light. However, after 1:30 A.M., the mean melatonin
concentrations were significantly lower under both
100-Hz flickering and non-flickering light than under
dim light (Fig. 2).

Temporal changes in the melatonin suppression rate
under the three light conditions are shown in Fig. 3.
Time interval had a significant effect on the mela-
tonin suppression rate (F330=11.88, p<0.01, € =0.50),
and there was a significant interaction between the
time interval and light condition (F53=4.01, p < 0.05,
£=1.00). The melatonin suppression rate tended to
be lower under 100-Hz flickering light than under
non-flickering light at 1:15 A.M. However, after
1:30 AM, there was no significant difference in the
melatonin suppression rate between the 100-Hz flick-
ering and non-flickering light conditions (Fig. 3).
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Fig. 2 Temporal changes in the mean melatonin concentrations
under dim (dark circle), non-flickering (gray diamond), and 100-Hz
flickering blue light (white square). Data are shown as mean +SD. A
number of the subject was eleven. Single asterisk (¥) means
statistical significance (p < 0.05) between light conditions by a
repeated measures t test with the Bonferroni correction
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Fig. 3 Temporal changes in the rate of melatonin suppression under
non-flickering (gray bar) and 100-Hz flickering blue light (white bar).
Data are shown as mean + S.D. A number of the subject was eleven.
Single plus (+) means statistical tendency (p < 0.1) between non-
flickering and 100 Hz-flickering light condition by a repeated
measures t test

Discussion
Melatonin suppression rate under 100-Hz flickering light
showed a tendency to be lower than under non-flickering
light 15 min after the start of the experiment, despite hav-
ing no significant difference on mean melatonin concen-
tration between the light conditions. This finding suggests
a capability that the high-frequency flickering and
non-flickering light may have a different impact on mela-
tonin secretion. From a physiological perspective, this may
be explained by the temporal properties of ipRGCs. Takao
et al. [32] obtained larger-amplitude ERGs from mouse
retinae under 1-5-Hz flickering light than under 100-Hz
flickering light. Therefore, it is possible that the amplitude
of ERGs under non-flickering light may also be larger than
under 100-Hz flickering light. Another explanation may
be the rapidity of adaptation of ipRGCs to the light condi-
tions. It has previously been reported that the ERGs of
ipRGCs are significantly larger in dark-adapted retinae
than in light-adapted retinae [32]. In the present study,
the subjects spent 1 h in dim light conditions (< 3 Ix) be-
fore the light exposure, allowing their retinae to adapt to
this. Therefore, although we have no conclusive evidence,
there may be a difference in the rapidity of adaptation of
ipRGCs to 100-Hz flickering and non-flickering light.
These findings indicated a small difference in mean
melatonin concentration between 100-Hz flickering and
non-flickering light at 1:15 A.M., which may have health
benefits given the anticancer activity of melatonin. How-
ever, the efficacy of this treatment may be limited, as we
only observed a difference in melatonin suppression
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between 100-Hz flickering and non-flickering light at
15 min after the light exposure, indicating that the
ipRGCs may respond to 100-Hz flickering light in the
same manner as to non-flickering light but after a delay
of several minutes. In addition, 100-Hz flickering light
may not prevent a shift in the circadian phase, as it has
previously been found that a sequence of 2-ms flashes of
bright light occurring once per minute for 60 min delays
the melatonin onset time, despite having no effect on
melatonin secretion [37], and that 2-ms light flashes
change the circadian phase even while the subjects are
asleep [38]. Therefore, it appears that circadian phase
shifting is more sensitive to flickering light than mela-
tonin suppression.

Although this study suggests that high-frequency flick-
ering light may have less impact on melatonin secretion
than non-flickering light, the difference was small and
limited. However, the effect of 100-Hz flickering light on
melatonin secretion may be related to the light intensity.
It has been shown that ipRGCs show continued dis-
charge after the light offset following exposure to bright
light, whereas no such effect occurs at lower light levels
[31], and the amplitude of the ERG response of ipRGCs
between dark-adapted and light-adapted retinae differs
more greatly at higher light levels than at lower light
levels [32]. Therefore, further research is needed to de-
termine how best to create a healthy artificial lighting
environment.

Conclusions

This study evaluated light-induced melatonin suppres-
sion under 100-Hz flickering and non-flickering blue
light. The melatonin concentration was significantly
lower under non-flickering light than under dim light
15 min after the light exposure, whereas there was no
significant difference between the concentration under
dim light and 100-Hz flickering light. These findings
suggest that 100-Hz flickering light may have the same
impact on melatonin secretion as non-flickering light.
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